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Abstract 

Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung 

infections, collectively termed aspergillosis. Aspergilli are ubiquitous in environment with 

healthy immune systems routinely eliminating inhaled conidia, however, Aspergilli can become 

an opportunistic pathogen in immune-compromised patients. The aspergillosis mortality rate and 

emergence of drug-resistance reveals an urgent need to identify novel targets. Secreted and cell 

membrane proteins play a critical role in fungal-host interactions and pathogenesis. Using a 

computational pipeline integrating data from high-throughput experiments and bioinformatic 

predictions, we have identified secreted and cell membrane proteins in ten Aspergillus species 

known to cause aspergillosis. Small secreted and effector-like proteins similar to agents of 

fungal-plant pathogenesis were also identified within each secretome. A comparison with 

humans revealed that at least 70% of Aspergillus secretomes has no sequence similarity with the 

human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed that the 

secretome is significantly more antigenic than cell membrane proteins or the complete proteome. 

Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during infection 

and with available structures, were found to be structurally similar to known drug target proteins 

in other organisms, and were able to dock in silico with the respective drug. 
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Introduction 

Aspergillosis is an umbrella term for a wide array of infections caused by multiple 

Aspergillus species. The majority of reported aspergillosis cases originate from ten species: 

Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus 

versicolor, Aspergillus lentulus, Aspergillus nidulans, Aspergillus glaucus, Aspergillus oryzae, 

and Aspergillus ustus1-3.  A. fumigatus alone is responsible for over 90% of the reported cases, 

followed by A. flavus, A. niger, A. terreus and A. versicolor2,4,5. The disease is an increasing 

concern for immune-compromised individuals, putting at risk patients with neutropenia, 

allogenic stem cell transplantation, organ transplantation, and acquired immunodeficiency 

syndrome (AIDS), among others6. High-risk patients can see mortality rates between 40-90%7. 

Compounding the issue is the limited number of drugs available to treat aspergillosis, and their 

widespread use has led to the emergence of drug-resistant strains, creating the pressing need for 

novel drugs, biomarkers and preventive therapies such as vaccines8.   

Aspergillosis is caused by an opportunistic pathogen. Under normal conditions, Aspergilli 

are saprotrophic fungi which are present in soil and decaying organic matter, thereby, playing a 

fundamental role in nitrogen and carbon recycling. They have a broad geographical range with 

colonies typically spread through microscopic airborne conidia. As Aspergillus conidia are 

ubiquitous in the atmosphere, humans often inhale several hundred spores daily. While these 

spores are quickly eliminated by a healthy immune system9, in an immune-compromised host, 

the fungus becomes an opportunistic pathogen and overwhelms the weakened defences. The 

underlying mechanisms behind the successful initiation of pathogenesis by Aspergilli remain 

unclear. However, studies have shown that in immune-compromised hosts, A. fumigatus can 

reach the respiratory epithelia upon inhalation where it secretes proteases and secondary 

metabolites, specifically gliotoxin, which aids in colonizing healthy lung tissue10,11. Proteases 

secreted by A. fumigatus have also been implicated in establishing infection by morphologically 

altering respiratory epithelial cells11,12. In addition, A. fumigatus secretes a diverse array of 

catabolic enzymes that enable degradation of macromolecular biopolymers like elastin and 

collagen, which are present in large quantities in lung tissue, for uptake of nutrients13. Apart from 

secreted proteins, cell membrane and cell wall proteins also play a crucial role in interactions 

with the host immune system and establishing infection10. Thus, the diverse set of secreted and 
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cell membrane proteins of A. fumigatus and other Aspergillus species play a vital role in 

pathogenesis.  

Given the central role played by the secretome and cell membrane proteins of Aspergillus 

species during human pathogenesis, they are potential candidates for identifying new 

biomarkers, vaccines and druggable targets. This is especially urgent as prophylactic use of 

antifungal therapies has led to the emergence of resistance in many Aspergillus species to 

antifungal drugs8,14,15. Prospecting the secretome and cell membrane proteins of Aspergillus 

species for druggable targets is advantageous, since any identified target will be exposed to the 

extracellular space. In addition, targeting extracellular rather than intracellular proteins will 

provide fewer mechanisms for resistance to develop in the pathogen. 

 This study aims to identify and analyze the secretome and cell membrane proteins of A. 

fumigatus and nine other Aspergillus species known to cause aspergillosis, namely, A. flavus, A. 

niger, A. terreus, A. versicolor, A. lentulus, A. nidulans, A. glaucus, A. oryzae, and A. ustus. To 

our knowledge, this is the first dedicated effort to characterize the secretome and cell membrane 

proteins of Aspergillus species with an aim to understand their role in pathogenesis and to 

analyze them as potential druggable proteins. While previous studies such as FSD16, 

FunSecKB217 and SECRETOOL18 have developed computational pipelines for fungal secretome 

prediction, they rely solely on bioinformatic predictions even though many experimental high-

throughput proteomic datasets in Aspergillus species are available. Thus, we have designed a 

computational pipeline which systematically integrates experimental high-throughput proteomic 

datasets, UniProt19 annotations with experimental evidence, and predictions from bioinformatic 

tools to identify a comprehensive set of secreted extracellular proteins and cell membrane 

proteins in Aspergillus species. Furthermore, small secreted and effector-like proteins20-23 were 

identified in Aspergillus species, and the set of secreted and cell membrane proteins were 

analyzed for the abundance of antigenic regions (AAR)24 and similarity to known drug target 

proteins from DrugBank25. Finally, analysis of a published gene expression dataset26 for A. 

fumigatus, led to identification of secreted and cell membrane proteins which are upregulated 

under pathogenesis and have no human homologs, and such candidates were taken for further 

druggability analysis by computational docking experiments, thereby identifying pre-existing 

drugs used against other pathogens as candidates for repurposing against aspergillosis.   
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Results and discussion 

Identification of the secretome from high-throughput experimental studies 

An extensive literature search was undertaken to compile high-throughput experimental 

studies that have characterized the secretome of Aspergillus species. A systematic search led to a 

comprehensive list of 46 high-throughput proteomic studies27-73 on the secretome of 6 

Aspergillus species analyzed here. Note that many high-throughput studies report proteins with 

transmembrane (TM) domains as part of secretome but a few studies have specifically identified 

cell membrane and cell wall associated proteins along with the secretome30,36. Our compilation 

of high-throughput proteomic studies led to experimentally identified lists of 437, 364, 454, 96, 

469 and 171 secreted proteins in A. fumigatus27-41, A. flavus30,42-45, A. niger30,46-58, A. 

terreus30,59,60, A. nidulans58,61-65 and A. oryzae57,66-73, respectively (Methods; Supplementary 

Table S1).  

Computational pipeline for fungal secretome prediction 

High-throughput experimental studies that identify secretome can be limited by the 

detection technology used or the small set of experimental conditions assessed. Such secretomic 

studies mainly focus on identifying the proteins secreted to the extracellular matrix and not on 

proteins incorporated into the cell membrane by the eukaryotic secretion pathway. Since cell 

membrane proteins, including integral proteins, are localized on the cell surface, they can serve 

as excellent targets for drugs or vaccines.  Here we have designed a computational pipeline to 

predict both secreted extracellular and cell membrane proteins in fungi. Importantly, our pipeline 

also incorporates and prioritizes available information on the experimentally identified secreted 

and cell membrane proteins. Furthermore, our pipeline subdivides the secretome into two 

subsets, proteins that follow the classical secretion pathway through the endoplasmic reticulum 

(ER) and those that exit the cell boundary through a non-classical secretion pathway. Figure 1 

contains a flowchart of our prediction pipeline.  

Our pipeline starts from the complete proteome of a fungus. Initially, intracellular 

proteins based on UniProt19 annotation with experimental evidence were removed from later 

analysis. Subsequently, the remaining proteins without experimental evidence for intracellular 

localization were classified into two mutually exclusive categories. The first category contained 

secreted or cell membrane proteins with experimental evidence from compiled list of high-
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throughput proteomic studies or UniProt, and the second category contained proteins without 

experimental evidence of secretion to the extracellular matrix or localization to the cell 

membrane.    

The first category of proteins with experimental evidence were assessed for signal 

peptide, Glycosylphosphatidylinositol (GPI) anchor or TM domain, confirming passage through 

the classical pathway (Branch A in Figure 1; Methods). Next, the presence of GPI anchor or TM 

domain in proteins sorted by classical pathway is used to separate the cell membrane from 

extracellular proteins. Next, the proteins without a signal peptide, GPI anchor and TM domain 

but with experimental evidence of secretion to extracellular matrix were assigned to non-

classical pathway (Branch A in Figure 1).  

The second category of proteins without experimental evidence were screened based on 

predictions from computational tools as follows. Firstly, the second category of proteins were 

screened for signal peptide, GPI anchor or TM domain, suggesting translocation into the ER and 

passage through classical pathway. Next, the proteins predicted to have a signal peptide, GPI 

anchor or TM domain but also with an ER retention signal were removed from later analysis 

(Branch B in Figure 1; Methods). Next, the proteins predicted to have GPI anchor or TM domain 

along with subcellular localization as cell membrane were classified as cell membrane proteins, 

and proteins without GPI anchor and TM domain along with subcellular localization as 

extracellular were classified as extracellular proteins sorted by classical pathway (Branch B in 

Figure 1).  

Lastly, the subset of the second category of proteins which lack signal peptide, GPI 

anchor and TM domain, were assessed for presence of orthologs in the list of secreted proteins 

with experimental evidence in other fungi (Methods; Branch C in Figure 1). Next, those proteins 

in the subset which are orthologs of experimentally identified secreted proteins in other fungi 

were assessed for an ER retention signal and their predicted subcellular localization, and those 

without an ER retention signal and predicted subcellular localization as extracellular were 

classified as extracellular proteins secreted through a non-classical secretion pathway (Branch C 

in Figure 1). To our knowledge, SecretomeP74,75 is the only prediction tool for non-classical 

secretion pathway, however, SecretomeP74,75 is designed for bacteria and mammals and not for 

fungi. Still FSD16 has employed SecretomeP74,75 to predict approximately 40% of the proteome 
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in several fungi as secreted via a non-classical secretion pathway which clearly is an 

overestimation. For example, FSD predicts 3546 A. fumigatus proteins, which is 35% of the 

proteome, to be secreted by a non-classical pathway. Thus, we employ here an alternate 

ortholog-based method to predict proteins secreted via a non-classical pathway.  

Using this pipeline, we identified comprehensive sets of secreted and cell membrane 

proteins in ten Aspergillus species causing aspergillosis; Figure 2 displays the size of each set, 

Supplementary Table S2 lists the proteins in each set, and Supplementary Table S3 gives 

detailed annotations such as protein family, conserved domain, carbohydrate-binding modules 

and gene ontology (GO) terms for proteins in each set. Additionally, our pipeline provides a 

refined view of the protein sorting mechanisms in Aspergillus species by classifying secreted 

proteins into classical and non-classical pathway. In A. fumigatus, the predicted set of secreted 

and cell membrane proteins contained 662 and 1129 proteins, respectively, representing 6.7% 

and 11.5% of the proteome. Among the 662 proteins in A. fumigatus secretome, 64 were 

predicted to be secreted by a non-classical pathway. Figures 3 shows the significantly enriched 

GO biological processes in the predicted secretome and cell membrane proteins of A. fumigatus. 

Within the A. fumigatus secretome, 598 proteins sorted by classical pathway have GO 

annotations related to carbohydrate metabolism, proteolysis and cell wall modification, and 64 

proteins secreted by a non-classical pathway have GO annotations related to carbohydrate 

metabolism, response to reactive oxygen species (ROS), alcohol degradation and gliotoxin 

metabolism. Many of the GO processes annotated with A. fumigatus proteins secreted by non-

classical pathway are associated with virulence. Especially, gliotoxin has immunosuppressive 

properties and is suspected to be an important virulence factor in Aspergillus pathogenesis76-79. 

This suggests that non-classical pathways may be important for the secretion of virulence factors 

in A. fumigatus. 

Small secreted and effector-like proteins 

Within the fungal secretome, small secreted proteins (SSPs) with sequence length less 

than 300 amino acids have been widely studied for their role in fungal-plant pathogenesis20,21. A 

few of the SSPs have been found to act as effectors that play a central role in establishing plant 

infection22,23. Typically, fungal effector proteins do not share conserved domains which renders 

effector prediction a challenge80,81. Still, fungal effectors often share certain sequence 
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characteristics such as size, cysteine content, or small motifs identified in fungi and 

oomycetes80,81. A recent study82 compared the SSPs across eight Aspergillus species focusing on 

plant biomass degradation. However, the role of SSPs and effector-like proteins in fungal-human 

pathogenesis, including aspergillosis, remains largely unanswered83. Thus, we have identified 

SSPs and effector-like proteins within the secretomes of Aspergillus species to enable discovery 

of potential virulence proteins (Supplementary Table S4). Note that effector-like proteins of 

Aspergillus species were predicted based on EffectorP81 predictions or cysteine content of SSPs 

(Methods). We found that SSPs and effector-like proteins account for more than 30% and 10%, 

respectively, of the secretomes in Aspergillus species (Figure 2). Specifically, 96 effector-like 

proteins were predicted among 210 SSPs in A. fumigatus secretome, of which, 44 do not have 

conserved Pfam domains and 4 contain one of the known fungal or oomycete effector motifs80, 

making them intriguing candidates for future virulence experiments.  

Upregulated secretome and cell membrane proteins in A. fumigatus during pathogenesis 

To place the identified secretome and cell membrane proteins of A. fumigatus within the 

context of aspergillosis, we overlaid a previously published gene expression dataset26. 

Significantly differentially expressed and upregulated genes coding for secreted and cell 

membrane proteins may suggest a vital path or key towards pathogenesis. Note that several gene 

expression studies in A. fumigatus have been published on various cell cultures. However, due to 

the difficulty in obtaining sufficient high-quality RNA directly from sites of infection, gene 

expression studies of A. fumigatus in live animal models are limited. Thus, we selected for our 

analysis a published microarray dataset26 from a murine lung model which provided one of the 

first transcriptional snapshots of A. fumigatus during initiation of mammalian infection.  

In this dataset26, A. fumigatus genes significantly upregulated over 2-fold during 

pathogenesis when compared to control conditions were selected for further analysis, totaling, 

1264 proteins (12.9%) of the proteome. Within the predicted A. fumigatus secretome, 121 out of 

662 proteins (18.3%) were upregulated over 2-fold during pathogenesis, indicating that a larger 

fraction of secretome is employed during pathogenesis. Moreover, 113 out of the 121 

upregulated proteins in the A. fumigatus secretome are secreted via classical pathway and their 

GO analysis revealed involvement in carbohydrate metabolic processes and regulation of host 

immune response, while the remaining 8 are secreted via a non-classical pathway and their GO 
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analysis revealed involvement in response to mycotoxin, synthesis of mycotoxin and gliotoxin, 

and response to oxidative stress apart from carbohydrate metabolic processes. Within the cell 

membrane proteins of A. fumigatus, 151 out of 1129 proteins (13.3%) were upregulated during 

pathogenesis, and GO analysis revealed that many of them are involved in transmembrane 

transport processes. Moreover, 45 SSPs in the A. fumigatus secretome, of which 21 have 

effector-like features, were upregulated over 2-fold during pathogenesis. For example, 

Afu3g14940 a predicted peptidase inhibitor I78 family protein which has a known conserved 

effector motif ([KRHQSA][DENQ]EL) and Afu1g01210 with the adhesion fasciclin domain, are 

among the 21 effector-like SSPs with over 2-fold upregulation during pathogenesis.  

Conservation of secretome across Aspergillus species 

The ability of multiple Aspergilli to switch into an opportunistic pathogen may be derived 

from conserved proteins. Conversely, species-specific proteins may explain the observed 

differences in virulence between Aspergilli. To determine the unique and conserved proteins 

across Aspergillus species, OrthoMCL84 was used to identify orthologs between the proteins of 

nine Aspergillus species. As A. ustus has an incomplete genome, it was omitted from this 

comparative analysis. Figures 4A-C display for each species the fraction of unique and 

conserved proteins within the complete proteome, cell membrane proteins and secretomes, 

respectively, across the nine Aspergillus species. In comparison to the cell membrane proteins, 

the secretomes of Aspergillus species have a larger set of unique proteins and a smaller set of 

conserved proteins across the nine Aspergillus species. Interestingly, 3.6% of the secretome of A. 

fumigatus is unique, while 27.3% and 26.9%, respectively, of the secretomes of A. niger and A. 

glaucus is unique, when compared across the nine Aspergillus species. Thus, the secretome of A. 

fumigatus has among the smallest fraction of unique proteins which is in contrast to its position 

as the most prevalent agent of aspergillosis. The unique and conserved proteins identified here 

across the secretomes of Aspergillus species could lead to a better understanding of the important 

players for virulence and provide potential targets for the development of broad spectrum 

antifungals. 

Comparison with the human proteome 

Ideally, antifungals should target fungi-specific proteins to prevent cross-toxicity with 

human proteins. In order to identify fungi-specific druggable targets, BLASTP with an E-value 
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cut-off of ≤ 1e-3 was used to identify Aspergillus proteins without a close homolog in the human 

proteome. We find that more than 70% of the secretomes in Aspergillus species is unique, 

without a homolog in humans (Figure 5). In contrast to the secretomes, the cell membrane 

fraction or whole proteome of Aspergillus species have a much lower fraction of unique proteins 

without a homolog in humans (Figure 5). Specifically, A. fumigatus has 71% of its secretome and 

52% of its cell membrane proteins without a homolog to humans, and this offers a significant 

candidate set that may be screened for druggability or biomarker design. The striking difference 

between conservation of whole proteome and secretome of Aspergillus species in humans can 

likely be attributed to the large presence of proteins associated with plant cell wall degradation85 

in the Aspergillus secretomes. 

Antigenicity of the secretome 

Protein vaccines have been proven successful for several invasive fungi86,87,88. For 

example, vaccination with the A. fumigatus allergen Aspf3 protected immunosuppressed mice 

from developing aspergillosis89. One measure of clinical importance is the number of potential 

antigenic regions on a protein. The more antigenic a protein the more likely it can be used as a 

biomarker, targeted for immunotherapy, or used in vaccinations. To help prioritize Aspergillus 

proteins, the Abundance of Antigenic Regions (AAR)24 value of proteins was calculated using 

two methods, Kolaskar-Tongaonkar90 and BepiPred 2.091 (Methods). The lower the AAR value 

the more antigenic the protein24. Interestingly, in each Aspergillus species, the average AAR of 

the secretome is always significantly lower than cell membrane proteins (Figure 6; Methods). 

Furthermore, the average AAR of the secretome and cell membrane proteins was also found to 

be significantly lower (p < 0.001) and significantly higher (p < 0.001), respectively, in 

comparison to the average AAR of randomly chosen, equally sized sets of proteins from the 

whole proteome (Methods). Note that similar observations on relative AAR of secretome and 

cell membrane proteins were also recently made in tapeworms, Taenia solium24 and 

Echinococcus multilocularis92, and in bacterium Mycobacterium tuberculosis93. Thus, secreted 

proteins are likely to be more antigenic than cell membrane proteins, and while choosing 

candidates for vaccine development, the secretome may provide a more antigenic landscape than 

cell membrane proteins. While a comparison of the AAR of secretome and cell membrane 

proteins in Aspergillus species provides insight on relative virulence within a proteome, no 
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significant difference in the average AAR could be detected between A. fumigatus and the 

Aspergillus cohort. 

Druggability analysis of A. fumigatus secretome and cell membrane proteins upregulated 

during pathogenesis  

Beyond immune-therapy, biomarker, and vaccine development, drugs are often the main 

line of defence against aspergillosis. However, the current arsenal to combat aspergillosis is 

limited to 7 approved drugs. Furthermore, resistance to these few drugs is an ever-emerging 

threat14. Particularly, fungi are adept at developing resistance to drugs that act on intracellular 

proteins by pumping them back out into the extracellular matrix through efflux pumps. However, 

targeting of secreted proteins and cell membrane proteins could circumvent this specific defence 

mechanism altogether. To expedite drug discovery pipeline, DrugBank25 provides a database of 

known drugs and their targets, many of which have been successfully repurposed against similar 

protein targets in different pathogens94.   

Firstly, the list of 4063 known drug target proteins was compiled from DrugBank25. 

Secondly, the secreted and cell membrane proteins in Aspergillus species with no close human 

homologs based on BLASTP with an E-value cut-off of ≤ 1e-3 were determined. Thereafter, 

secreted and cell membrane proteins in Aspergillus species with no close human homologs but 

with sequence similarity to known drug target proteins based on BLASTP E-value cut-off of ≤ 

1e-5 were determined (Supplementary Table S5). In A. fumigatus, 50 secreted and 16 cell 

membrane proteins were found to have sequence similarity with known drug target proteins. 

Subsequently, we focused on upregulated genes in a transcriptome dataset26 for A. fumigatus 

during pathogenesis to identify potential target proteins for drug repurposing.    

In the transcriptome dataset26 for A. fumigatus, we found 97 secreted and 101 cell 

membrane proteins with no close human homologs to be significantly upregulated over 2-fold 

during pathogenesis. These 97 secreted and 101 cell membrane proteins in A. fumigatus were 

searched against known target protein sequences for sequence similarity to known drug targets. 

Seven secreted proteins, Afu7g06140, Afu8g01670, Afu2g15160, Afu5g14380, Afu6g09740, 

Afu3g00610 and Afu1g09900, of which three proteins, Afu8g01670, Afu6g09740 and 

Afu1g09900, are secreted via non-classical pathways, and one membrane protein, Afu6g03570, 

had a significant hit to known drug target proteins. After establishing the sequence similarity 
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between A. fumigatus proteins and known drug target proteins, structural similarity was probed 

(Methods). Experimentally identified protein structure was available only for Afu6g09740, and it 

was downloaded from the protein data bank95 (PDB). As good-quality structure model was also 

unavailable for Afu2g15160, it was omitted from later analysis. For the remaining five secreted 

proteins and one cell membrane protein, structure models were obtained from ModBase96 and 

SWISS-MODEL97. Thereafter, the compiled protein structures were compared to their DrugBank 

counterparts for structural similarity. Four secreted proteins, Afu5g14380, Afu8g01670, 

Afu1g09900 and Afu6g09740, had significant structural similarity with TM scores greater than 

0.8 and root-mean-square deviation (RMSD) values lower than 3Å2 (Table 1; Methods). One of 

the proteins, Afu8g01670, is a putative bifunctional catalase-peroxidase which has been shown 

to be involved in virulence98. Afu5g14380 is an α-glucuronidase involved in the hydrolysis of 

xylan. Afu1g09900 is involved in degradation of arabinoxylan. Afu6g09740 is a thioredoxin 

reductase which is a part of the gene cluster involved in biosynthesis of gliotoxin in A. fumigatus, 

and its knockout has been shown to affect the oxidation of gliotoxin and render the fungi 

hypersensitive to exogenous gliotoxin99. Afu6g09740 was also found to be immunogenic in 

humans and a potential biomarker of aspergillosis100.  

Given the sequence and structural similarity of these four A. fumigatus proteins, 

Afu5g14380, Afu8g01670, Afu1g09900 and Afu6g09740, to known drug targets, the proteins 

were subsequently tested whether they could bind to their respective drugs (Table 2; Methods). 

The four proteins were analyzed for the presence of ligand binding pockets using metaPocket 

2.0101. For each of the four proteins, the top three ligand binding pockets were tested for ligand 

binding affinity using AutoDock Vina102. Table 2 lists the four Aspergillus proteins, the 

corresponding target proteins in DrugBank with both sequence and structural similarity, 

their reported approved or experimental drugs, and the binding affinity of each drug to the 

ligand pockets. Using AutoDock Vina102, it was found that most of the identified drug 

candidates have an affinity value of ≤ -5.0 kcal/mol for their respective Aspergillus 

proteins which signifies good binding and suggests that the drugs may be able to bind to 

the upregulated and secreted A. fumigatus proteins (Table 2; Methods). Further 

experimental validation of these hit molecules is needed to verify whether the drug will 

act upon the A. fumigatus protein in the same fashion and whether the drug will have an 

impact upon the ability of A. fumigatus to cause aspergillosis.   
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Comparison of our prediction pipeline with earlier work 

We have designed here a computational prediction pipeline to identify the secretome and 

cell membrane proteins in Aspergillus species, and the pipeline can be used for any fungi. To our 

knowledge, FSD16 and FunSecKB217 are the only databases on pan-fungi secretome prediction. 

While FSD and FunSecKB2 contain pre-computed secretome predictions for several fungal 

genomes, SECRETOOL18 provides an online sever that enables implementation of a 

computational pipeline to predict secreted proteins among user-input protein sequences. In 

Supplementary Text and Supplementary Table S6, we report a detailed comparison of the 

secretome predictions from our pipeline with those from FSD, FunSecKB2 and SECRETOOL.  

Based on this comparative analysis with FSD, FunSecKB2 and SECRETOOL, our 

pipeline has following additional features. Firstly, we incorporate available experimental 

information from high-throughput studies and UniProt on secreted proteins (Branch A in Figure 

1). Secondly, we incorporate and prioritize UniProt annotations with experimental evidence for 

presence of signal peptide, GPI anchor or TM domain in a protein sequence over bioinformatic 

prediction tools (Branch B in Figure 1). Thirdly, we provide a sub-classification of the secreted 

extracellular proteins into those sorted by classical pathway and those transported via non-

classical pathways. Fourthly, we have used an alternate approach whereby orthologs to secreted 

proteins with experimental evidence in other fungi is used to predict secretion via non-classical 

pathways (Branch C in Figure 1). We remark that our pipeline predicts a much smaller set of 

secreted proteins via non-classical pathways (albeit with much higher confidence) in comparison 

to FSD which uses SecretomeP74,75, a tool designed for bacteria and mammals rather than fungi. 

Lastly, to our knowledge, this is the first study to perform a comparative analysis of both 

secreted and cell membrane proteins across Aspergillus species causing aspergillosis.  

Conclusions 

Aspergillosis is a serious concern among immune-compromised patients worldwide. 

Fungal secretome and cell membrane proteins are often the first point of contact between fungal-

host interactions, and thus are key factors in initiating infection or to mounting any defence 

against the disease. Thus, here, we report a comprehensive set of secreted and cell membrane 

proteins in Aspergillus fumigatus and nine other Aspergillus species that will serve as a valuable 

resource for understanding the pathogenesis of aspergillosis. We also identified protein cohorts 
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that could be further screened and targeted for development of novel treatments. To summarize, 

we have firstly implemented a computational pipeline that integrates data from experiments and 

bioinformatic-based predictions to identify a comprehensive set of secreted and cell membrane 

proteins. Secondly, the identified secretome was analyzed for SSPs and effector-like SSPs for 

correlating their role during pathogenesis. Thirdly, the antigenicity of the secretome and cell 

membrane proteins were computed to aid in understanding their role in inducing immune 

responses. Fourthly, the secreted and cell membrane proteins without homologs in humans were 

scanned for similarity with known drug target proteins in DrugBank to identify new druggable 

proteins. Lastly, a systematic representative drug repurposing analysis was performed in A. 

fumigatus responsible for overwhelming majority of the aspergillosis cases. Contextualization of 

an expression dataset for A. fumigatus within its secretome and cell membrane proteins led to 

identification of potential targets with over 2-fold upregulation during pathogenesis, and similar 

to DrugBank target proteins based on both sequence-wise and structure-wise comparison, and 

able to dock with their respective drug. This led to identification of new potential drug 

candidates against aspergillosis from existing drugs. The identified secretome and cell membrane 

proteins in the ten Aspergillus species along with their sub-classification and functional 

annotations is also hosted at https://cb.imsc.res.in/aspertome for convenient access and retrieval. 

Methods 

Protein sequences and associated annotations for Aspergillus species  

The proteomes of A. fumigatus Af293, A. niger CBS 513.88, A. terreus NIH2624, A. 

versicolor CBS 583.65, A. lentulus IFM 54703T, A. nidulans FGSC A4, A. glaucus CBS 516.65 

and A. oryzae RIB40 were retrieved from the Aspergillus genome database (AspGD103; 

http://www.aspgd.org/). The proteomes of A. flavus NRRL3357 and A. ustus 3.3904 were 

retrieved from FungiDB104 (http://fungidb.org/fungidb/) and Ensembl Genomes105 

(http://ensemblgenomes.org/), respectively. Note that the A. ustus 3.3904 genome sequence is 

still incomplete, and thus, its incomplete proteome was used here for predictions. 

Experimentally identified secreted proteins 

We performed an extensive literature search to compile 46 published high-throughput 

experimental studies27-73 which have characterized the secretome of 6 Aspergillus species studied 

here (Supplementary Table S1). Note that protein identifiers in these experimental studies for the 
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reference strain or other strains of the same Aspergillus species were mapped to standard 

identifiers in the reference sequence using OrthoMCL84 (http://orthomcl.org/orthomcl/) with 

inflation option set at 1.5. In addition to high-throughput studies, experimentally verified 

secreted or cell membrane proteins in Aspergillus species were retrieved from UniProt19 

(http://www.uniprot.org/) by filtering proteins with subcellular localization as extracellular or 

cell membrane, respectively, with evidence code of ECO:0000269. Note that ECO:0000269 

corresponds to manually curated information with published experimental evidence. Similarly, 

experimentally verified secreted proteins in all other fungal species were retrieved from 

UniProt19 by filtering proteins with subcellular localization as extracellular with evidence code of 

ECO:0000269. OrthoMCL84 with inflation option set at 1.5 was used to identify orthologs of 

experimentally verified secreted proteins in other fungi in Aspergillus species. 

Bioinformatic-based predictions 

The following computational tools were employed to predict protein-based features in 

our secretome prediction pipeline. The presence of a signal peptide in the N-terminus was 

predicted using SignalP 4.1106 (http://www.cbs.dtu.dk/services/SignalP/) and Phobius107 

(http://phobius.sbc.su.se/). The presence of GPI anchor was predicted using PredGPI108 

(http://gpcr.biocomp.unibo.it/predgpi/) and big-PI109 

(http://mendel.imp.ac.at/gpi/fungi_server.html). The presence of TM domain was predicted using 

TMHMM 2.0110 (http://www.cbs.dtu.dk/services/TMHMM/) and Phobius107. Note that TM 

domain predictions by TMHMM within the last 70 amino acid residues of the N-terminus of a 

protein sequence were not considered as the tool can sometimes predict signal peptides as false-

positive TM domains. The presence of ER retention signal was predicted using PS SCAN111 with 

PROSITE (https://prosite.expasy.org/) pattern  PS00014112. The subcellular localization of 

proteins was predicted using WoLF PSORT 0.2113 (https://psort.hgc.jp/), TargetP 1.1114 

(http://www.cbs.dtu.dk/services/TargetP/) and ProtComp 9115 

(http://www.softberry.com/berry.phtml?topic=protcomp&group=help&subgroup=proloc). 

Importantly, UniProt19 annotations with published experimental evidence (ECO:0000269) for the 

protein-based features were also retrieved for Aspergillus proteins. UniProt identifiers for 

Aspergillus proteins were mapped to reference sequence identifiers using pre-existing maps from 

AspGD103, UniProt19, and in-house python scripts..  
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While combining information from different sources to decide on the presence of signal 

peptide or GPI anchor or TM domain, a decision is made based on tool predictions using an 

inclusive rule if UniProt annotation is not available, else decision is made only on UniProt 

annotation by overriding tool predictions. While combining information from different sources to 

decide on subcellular localization, the decision is made based on tool predictions using a 

majority rule if UniProt annotation is not available, else decision is made only on UniProt 

annotation by overriding tool predictions. Thus, our pipeline gives precedence to published 

experimental evidence over bioinformatic-based predictions. Supplementary Table S2 contains 

tool-based predictions and UniProt annotations for secreted and cell membrane proteins in 

Aspergillus species.  

Functional annotation of secreted proteins 

The predicted secretomes in Aspergillus species were annotated with information on 

protein family from Pfam116 database (http://pfam.xfam.org/) and carbohydrate-binding modules 

from CAZy117 (http://www.cazy.org/)117 and dbCAN v5.0118  (http://csbl.bmb.uga.edu/dbCAN/) 

databases using hmmpress and hmmscan utilities in HMMER3 (http://hmmer.org/) with profile-

specific GA (gathering) thresholds. Furthermore, the predicted secretomes in Aspergillus species 

were annotated with protein family and domain information from TIGRFAM119 

(http://www.jcvi.org/cgi-bin/tigrfams/index.cgi), SFLD120 (http://sfld.rbvi.ucsf.edu/django/), 

SMART121 (http://smart.embl-heidelberg.de/), CDD122(https://www.ncbi.nlm.nih.gov/cdd), 

PROSITE112, SUPERFAMILY123 (http://supfam.org/SUPERFAMILY/), PRINTS124 

(http://130.88.97.239/PRINTS/index.php), PANTHER125 (http://www.pantherdb.org/), COILS126 

(https://embnet.vital-it.ch/software/COILS_form.html) and MobiDB-lite127 

(http://protein.bio.unipd.it/mobidblite/) accessed through InterPro version 64.0 

(https://www.ebi.ac.uk/interpro/) using InterProScan 5128,129. In addition, the secreted proteins in 

Aspergillus species were annotated with GO terms using FungiFun2130 (https://elbe.hki-

jena.de/fungifun/fungifun.php). Supplementary Table S3 contains detailed annotations for 

secreted and cell membrane proteins in Aspergillus species.  

Identification of small secreted and effector-like proteins 

In the predicted secretomes of Aspergillus species, SSPs were defined as those with 

sequence length less than or equal to 300 amino acid residues21,82,131. The SSPs were then 
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evaluated for effector-like properties based on their EffectorP81 (http://effectorp.csiro.au/) 

predictions or cysteine-richness. For identifying effector-like SSPs, cysteine-rich sequences are 

those which contain at least 4 cysteine residues and have greater than 5% of their total amino 

acid residues as cysteines20,132. The predicted SSPs in the secretomes of Aspergillus species were 

also scanned for known fungal or oomycetes effector motifs80 (DEER, RXLR, RXLX[EDQ], 

[KRHQSA][DENQ]EL, [YW]XC and RSIVEQD) using the FIMO package in MEME program 

suite133 with E-value cut-off of ≤ 1e-4 (Supplementary Table S4). 

Antigenicity of secreted proteins 

Antigenic regions in Aspergillus proteins were predicted using Kolaskar-Tongaonkar90 

method implemented in EMBOSS package134 with a threshold of 1.0 and BepiPred 2.091 

(http://www.cbs.dtu.dk/services/BepiPred/index.php) with the default threshold of 0.5. Note that 

only predicted antigenic regions with a length ≥ 6 amino acids were accounted in the later 

analysis. For each protein in Aspergillus species, the AAR value was computed following the 

method proposed by Gomez et al24. The AAR value of a given protein is computed by dividing 

the length of its amino acid sequence by the number of predicted antigenic regions. The average 

AAR value was computed for the set of secreted and cell membrane proteins, respectively, in 

each of the Aspergillus species considered here (Figure 6). To test whether the computed average 

AAR values for the set of secreted and cell membrane proteins, respectively, were significantly 

different from the average AAR value for the whole proteome of the same species, a p-value was 

computed by comparing against the average AAR values for 1000 equally-sized sets of randomly 

drawn proteins from the complete proteome of the organism. To test whether the average AAR 

value for the set of secreted proteins is significantly different from that of the set of cell 

membrane proteins of an Aspergillus species, Wilcoxon rank-sum test was performed to compare 

the two sets of different sizes (Figure 6).  

Identification of candidate drug targets in secreted proteins 

A microarray dataset for A. fumigatus Af293 from infected murine lungs26 was obtained 

from Array Express (Accession number E-TABM-327). The microarray dataset from infected 

murine lungs26 gave a reliable signal for 9121 genes in A. fumigatus Af293 which covers more 

than 90% of the secretome and 88% of the cell membrane proteins in the fungus. Gene 

expression data26 for A. fumigatus Af293 was next analyzed within the context of the predicted 
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secreted and cell membrane proteins to identify differentially expressed proteins with over 2-fold 

upregulation in each fraction during pathogenesis for further analysis. Thereafter, secreted and 

cell membrane proteins in A. fumigatus Af293 with over 2-fold upregulation during pathogenesis 

and sequence similarity with known drug target proteins from DrugBank25 database were 

identified using BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with E-value cut-off of ≤ 1e-5 

(as specified by DrugBank database).  

To further ascertain the similarity between the filtered set of A. fumigatus proteins in 

secretome and cell membrane fraction with over 2-fold upregulation during pathogenesis and 

with sequence similarity with known drug target proteins from DrugBank25, the structural 

similarity between filtered proteins and their sequence-based homologs among known drug 

targets was assessed. Structure of proteins from x-ray diffraction experiments were retrieved 

from PDB95 (https://www.rcsb.org/pdb/home/home.do). However, experimentally identified 

protein structures are not available for most of the filtered set of secreted and cell membrane 

proteins in A. fumigatus Af293, and in such cases, the protein structures modelled using close 

homologs (>40% sequence identity) from ModBase96 

(https://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi) and SWISS-MODEL97 

(https://swissmodel.expasy.org/) were used to evaluate structural similarity. The modelled 

structures of filtered proteins in A. fumigatus Af293 were compared to the structure of their 

corresponding sequence-based homolog among the known drug target proteins in DrugBank25 

based on TM score computed using TM Align135 (https://zhanglab.ccmb.med.umich.edu/TM-

align/) and root-mean-square deviation (RMSD) value between locally aligned atoms computed 

using PyMOL (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). 

Filtered proteins in A. fumigatus Af293 with significant structural similarity to known drug target 

proteins were subsequently tested for binding by the respective drug.  

The ligand binding pockets in the protein structure model for the filtered proteins in A. 

fumigatus Af293 were predicted using metaPocket 2.0101 (http://projects.biotec.tu-

dresden.de/metapocket/). For docking drugs to the predicted protein pockets, both protein and 

drug molecule were prepared by adding explicit hydrogen atoms and cleaned up using python 

scripts136, prepare_receptor4.py and prepare_ligand4.py, with the default option. AutoDock 

Vina102 (http://vina.scripps.edu/) was used for docking the drug against the predicted pockets in 

proteins with the option for exhaustiveness set at 24 to obtain consistent results137. Lastly, the 
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binding affinity results obtained by docking drugs to the protein pockets from AutoDock Vina102 

were tabulated (Table 2). 

Data availability 

All data generated or analyzed during this study is included in this article and its 

supplementary information. 
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Figure captions 

Figure 1: Flowchart of the computational prediction pipeline for identifying secreted 

extracellular proteins (secretome) and cell membrane proteins in Aspergillus species. Note that 

this prediction pipeline can be employed to identify secretome and cell membrane proteins in any 

fungi with sequenced genome. 

Figure 2: Number of proteins in the complete proteome, set of cell membrane proteins, set of 

secreted extracellular proteins, set of small secreted proteins (SSPs) and set of effector-like SSPs 

identified by our computational pipeline in Aspergillus species considered here.  

Figure 3: Gene ontology (GO) enrichment analysis for (a) cell membrane proteins and (b) 

secreted extracellular proteins in A. fumigatus Af293. In each case, the top 10 significantly 

enriched biological processes are shown along with p-value computed using Benjamini-

Hochberg procedure. The GO enrichment analysis was performed using FungiFun2130 webserver 

(Methods).  

Figure 4: Conservation of (a) complete proteome, (b) the set of cell membrane proteins, and (c) 

the set of secreted extracellular proteins across the nine Aspergillus species considered here. The 

fraction of proteins that are unique to a specific Aspergillus species is shaded in orange at the 

bottom of the stacked bar chart while the fraction of proteins conserved across all nine 

Aspergillus species are shaded in dark violet at the top of the stacked bar chart.  

Figure 5: Fraction of the complete proteome, set of cell membrane proteins and set of secreted 

extracellular proteins in Aspergillus species without a close sequence homolog in human 

proteome.  

Figure 6: Distribution of Abundance of Antigenic Regions (AAR) values for the set of cell 

membrane proteins and secreted extracellular proteins in Aspergillus species considered here. 

AAR values were computed using two different methods: (a) Kolaskar-Tongaonkar90 method 

and (b) BepiPred 2.091. In each box plot, the lower end of the box represents the first quartile, 

black line inside the box is the median, brown line is the mean and the upper end of the box 

represents the third quartile of the distribution. In this figure, we also report the p-value from the 

comparison of the distributions of AAR values in the set of cell membrane proteins and in the set 

of secreted proteins for each Aspergillus species performed using Wilcoxon rank-sum test.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230953doi: bioRxiv preprint 

https://doi.org/10.1101/230953
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Tables 

Table 1: Evaluation of the structural similarity of secreted and cell 

membrane proteins upregulated in the transcriptome of Aspergillus 

fumigatus Af293 with their close sequence homologs among known drug 

target proteins in DrugBank25. Note that the A. fumigatus proteins shaded 

in gray are not structurally similar to their close sequence homologs 

among known drug target proteins. 

Protein 

identifier 

Log2 fold change 

in transcriptome 

Drug target 

protein identifier 
TM score RMSD (Å2) 

Afu5g14380 1.4 Q8VVD2 0.98 0.19 

Afu8g01670 2.3 
Q939D2 0.99 0.28 

P9WIE5 0.97 0.72 

Afu1g09900 1.1 Q9XBQ3 0.91 0.99 

Afu6g09740 1.3 P66010 0.86 2.68 

Afu7g06140 7.2 P40406 0.73 4.05 

Afu6g03570 1.3 P40406 0.72 3.29 

Afu3g00610 1.2 
P05618 0.26 15.24 

P26827 0.25 19.25 
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Table 2: Binding affinity of potential drugs against predicted pockets of the four candidate proteins in 

Aspergillus fumigatus. Note that the drug candidates were identified based on sequence and structural 

similarity of the four upregulated proteins in A. fumigatus with known drug target proteins in 

DrugBank25 database. The ligand binding pockets were predicted using metaPocket 2.0101 webserver and 

binding affinities of drugs to proteins were computed using AutoDock Vina102 (Methods).  

Protein 

identifier 

Protein 

identifier 

of drug 

target 

protein 

Drug 

identifier 

in 

DrugBank 

Drug name Drug class 

Mean binding affinity (kcal/mol) 

First pocket 
Second 

pocket 

Third 

pocket 

Afu8g01670 

P9WIE5 
DB00609 Ethionamide Approved -5.9 ± 0.0 -5.9 ± 0.0 -5 ± 0.0 

DB00951 Isoniazid Approved -5.53 ± 0.015 -5.91 ± 0.01 -5.3 ± 0.0 

Q939D2 DB08638 

2-Amino-3-(1-

hydroperoxy-1H-

indol-3-yl)propan-

1-ol 

Experimental -7.6 ± 0.033 -7.6 ± 0.0 
-5.87 ± 

0.015 

Afu5g14380 Q8VVD2 

DB03156 D-Glucuronic Acid Experimental -5.1 ± 0.0 -6.5 ± 0.0 -5.6 ± 0.0 

DB04303 
4-O-methyl-alpha-

D-glucuronic acid 
Experimental -5 ± 0.0 -6.3 ± 0.0 -5.3 ± 0.0 

DB02722 
4-O-methyl-beta-

D-glucuronic acid 
Experimental -5 ± 0.0 -5.8 ± 0.0 -5.11 ± 0.01 

Afu6g09740 P66010 DB00548 Azelaic Acid Approved -5.53 ± 0.026 
-5.52 ± 

0.065 

-5.21 ± 

0.031 

Afu1g09900 Q9XBQ3 

DB03196 4-Nitrophenyl-Ara Experimental -6.3 ± 0.0 -6 ± 0.0 
-5.54 ± 

0.031 

DB03870 
Ara-Alpha(1,3)-

Xyl 
Experimental -5.51 ± 0.023 

-5.54 ± 

0.016 

-5.62 ± 

0.029 
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Supplementary Information 

Supplementary Table S1: Complied list of experimentally determined secreted proteins in 

different Aspergillus species from high-throughput proteomic studies. 

Supplementary Table S2: Experimentally identified and computationally predicted 

secreted extracellular proteins and cell membrane proteins in different Aspergillus species. 

In this table, we have also included information on UniProt annotations with published 

experimental evidence, predictions from different computational tools, and Abundance of 

Antigenic Regions (AAR) score for each protein. 

Supplementary Table S3: Functional annotation of identified secreted proteins and cell 

membrane proteins in different Aspergillus species.  

Supplementary Table S4: Small secreted proteins (SSPs) among the secretomes of 

different Aspergillus species.  

Supplementary Table S5: List of secreted and cell membrane proteins in Aspergillus 

species without sequence similarity to human proteins but with sequence similarity to 

known drug targets in other organisms. In this table, we have also compiled the drugs 

associated with each target protein from the DrugBank database. In the first sheet, we list 

the number of secreted and cell membrane proteins across Aspergillus species which have 

sequence similarity to known drug targets from DrugBank database. 

Supplementary Table S6: Comparison of secretome predictions from our computational 

pipeline in Aspergillus species with predictions from earlier work. In the first sheet, we list 

the subset of Aspergillus species considered here for which FSD and FunSecKB2 have 

predictions in their database. In the second sheet, we compare the bioinformatic tools 

employed in our prediction pipeline with those in FSD, FunSecKB2 and SECRETOOL. In 

the third sheet, we compare predictions from our pipeline with those from FSD. In the fourth 

sheet, we compare predictions from our pipeline with those from FunSecKB2. In the fifth 

sheet, we compare predictions from our pipeline with those from SECRETOOL.  
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