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ABSTRACT 1 

The mitochondrial and nuclear-encoded genes responsible for cellular respiration are 2 

expected to experience relatively intense purifying selection, meaning that variation in 3 

these genes will often decrease fitness. Still, extensive variation for mitochondrial 4 

haplotype and function persists in natural populations. We integrated physiological, 5 

cellular, and behavioral approaches to quantify phenotypes relevant to mitochondrial 6 

function across a diverse sample of Potamopyrgus antipodarum, a New Zealand snail 7 

characterized by frequent coexistence between otherwise similar sexual and asexual 8 

individuals. We found extensive across-lake variation in organismal oxygen 9 

consumption and behavioral response to heat stress coupled with elevated 10 

mitochondrial membrane potential in males vs. females. These data set the stage for 11 

applying this important model system for sex, host-parasite interactions, invasion 12 

biology, and ecotoxicology to novel tests of the relationships between mitochondrial 13 

variation and performance in natural populations.  14 

  15 
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INTRODUCTION 16 

Mitochondrial function is a critical component of eukaryotic function and fitness [1]. 17 

Despite its importance, genes underlying oxidative phosphorylation are often 18 

polymorphic within species [1], which has important consequences for phenomena from 19 

mitonuclear incompatibilities [2] to DNA barcoding [3]. Indeed, extensive variation for 20 

mitochondrial function has been observed in a diverse array of species [4]. Although 21 

some variation in metabolic and mitochondrial traits has been linked to specific 22 

environmental correlates (e.g., altitude – [5], temperature – [6], energy source – [7]), we 23 

lack a systematic understanding of the distribution of this variation across biogeographic 24 

space.  25 

Maternal transmission of mitochondrial genomes is expected to influence the 26 

distribution of phenotypic variation because only female-derived mutations are 27 

transmitted. This phenomenon has two primary consequences: 1) ~50% reduction in Ne 28 

relative to biparentally inherited genomes, and 2) sexually antagonistic mutations only 29 

experience effective natural selection in females [8]. This latter phenomenon, the so-30 

called “Mother’s Curse”, is predicted to result in the accumulation of mutations that are 31 

neutral or beneficial in females, but deleterious in males [9]. The lack of widespread 32 

evidence for Mother’s Curse (but see [10]) may point to mechanisms that prevent the 33 

spread of male-specific deleterious mutations in mitochondrial genomes [11, 12]. The 34 

extent to which Mother’s Curse shapes patterns of variation in mitochondrial function 35 

therefore represents yet another important unanswered question in evolutionary biology. 36 

Because mitochondrial function requires compatibility between nuclear and 37 

mitochondrial gene products [13], reproductive mode can also dramatically impact the 38 
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evolution of variation in mitochondrial function because only sexual reproduction allows 39 

for the regular movement of mitochondrial genomes across diverse nuclear genomic 40 

backgrounds. Sexual reproduction between distantly related parents can give rise to 41 

hybrid offspring harboring mitonuclear incompatibilities [14]. On the other hand, 42 

inbreeding and asexual reproduction can reduce the efficacy of selection on 43 

mitochondrial genomes [15, 16]. While reduced mitochondrial function and organismal 44 

fitness in hybrid lineages is well documented [2], there are few empirical tests of 45 

whether and how inbreeding or asexuality affects mitochondrial function, leaving an 46 

important gap in our understanding of the evolutionary consequences of changes in 47 

reproductive mode. Surveys of mitochondrial genomes of asexual lineages [17, 18] 48 

have revealed elevated rates of accumulation of nonsynonymous mutations in 49 

mitochondrial genomes compared to sexual lineages. Determining whether these 50 

mutations actually result in reduced function will have profound implications for our 51 

understanding of the maintenance of sex. 52 

 Potamopyrgus antipodarum, a New Zealand freshwater snail [19], is ideally 53 

suited to answer these outstanding questions regarding mitochondrial function. There 54 

is both extensive mtDNA population structure in their native range [20] and evidence for 55 

local adaptation of snails to their source lakes [21, 22]. Temperature in particular 56 

appears to be a primary determinant of the geographical distribution of P. antipodarum 57 

within New Zealand [23]. Because asexuality has arisen multiple times within P. 58 

antipodarum [20, 24], and because sexual and asexual lineages frequently coexist in 59 

nature [24], asexual lineages can be treated as repeated “natural experiments” into the 60 

evolutionary consequences of asexuality.  61 
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Here, we tested whether lake of origin, reproductive mode, or sex affect 62 

mitochondrial and behavioral function under laboratory conditions in field-collected P. 63 

antipodarum.  64 

 65 

MATERIALS AND METHODS 66 

Because definitive determination of reproductive mode requires snail sacrifice, we 67 

sampled field-collected snails from lakes known to harbor sexual and asexual 68 

individuals, with populations at least ~10% male [24]. Upon arrival at the University of 69 

Iowa, snails were housed at 16ºC on a 18hr light/6 hr dark schedule, and fed Spirulina 70 

algae 3x per week, as described in [25]. We arbitrarily selected adult snails from each 71 

lake collection and isolated each snail in a 0.5 L glass container with 300ml carbon-72 

filtered H2O. Water was changed weekly. Assay sampling details (sample size, etc.) are 73 

summarized in Table 1. Reproductive mode was determined after assay completion, 74 

following the flow cytometry protocol outlined in [24]. 75 

We measured oxygen consumption as described in [25] for 57 wild-caught snails 76 

from each of six lakes at three different water temperatures: 16ºC (not stressful, and 77 

similar to New Zealand lake temperatures), 22ºC (moderately stressful), and 30ºC 78 

(stressful) [25]. At each temperature, we assayed snails in a randomly determined order, 79 

and only snails that completed all temperature trials were included in analyses. Mean 80 

wet mass for each individual was calculated from the three separate temperature trials. 81 

Righting behavior [25] and time to emergence following a startling stimulus (M 82 

Neiman pers. obs.) increase with temperature in P. antipodarum, indicating that both 83 

assays are effective proxies for heat stress. We quantified righting and emergence 84 
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times under each of the same three temperature treatments as for oxygen consumption 85 

in 46 wild-caught P. antipodarum.  86 

JC-1 is a small, positively charged molecule that diffuses down the 87 

electrochemical gradient of the inner mitochondrial membrane and fluoresces green 88 

when dispersed and red when aggregated inside the mitochondrial matrix [26]. 89 

Therefore, the ratio of red: green fluorescence in freshly isolated mitochondria can 90 

serve as a proxy for mitochondrial membrane potential. We measured red: green ratios 91 

in JC-1-treated mitochondrial extracts from 46 wild-caught P. antipodarum as described 92 

in [25] using a Becton Dickenson LSR II flow cytometer. 93 

 We used a mixed-effects model framework to quantify the relationships between 94 

oxygen consumption and behavioral metrics with categorical variables for temperature 95 

(16º C, 22º C, 30º C), lake of origin (n = 3-6 depending on the analysis), reproductive 96 

mode (asexual, sexual), sex (male, female; only fit in models pertaining to behavior 97 

assays), and a continuous variable for mass (g; only fit in model pertaining to oxygen 98 

consumption). We modeled a term for snail identity as a random intercept to account for 99 

repeated measures on individuals across temperatures. Finally, we modeled 100 

mitochondrial membrane potential, measured as the ratio of red: green fluorescence, as 101 

a function of lake, reproductive mode, and sex using analysis of variance (ANOVA).   102 

We developed final models using backwards selection until only predictors with 103 

p-values less than 0.05 remained. To test assumptions of normality and heteroscedacity 104 

of errors, we graphically inspected residuals and log- or square-root-transformed 105 

response variables when necessary. We performed all statistical analyses in R [27], 106 

fitting fixed-effect models with the lm function, fitting mixed-effects models using the 107 
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lme4 package [28], and estimating degrees of freedom for mixed-effect models using 108 

Satterthwaite’s approximation via the lmerTest package [29].  109 

 110 

RESULTS 111 

All model-fitting results are detailed in Table 2. We found that temperature (p < 0.0001), 112 

mass (p = 0.00154), and lake of origin (p = 0.0072), but not reproductive mode, were 113 

significantly associated with the rate of oxygen consumption (Figure 1a). Temperature 114 

was a significant predictor of both righting ability (p < 0.0001, Figure 1b) and emergence 115 

time (p < 0.0001, Figure 1c). Lake of origin was a significant predictor of righting ability 116 

(p = 0.0155), but not of emergence time. Neither reproductive mode nor sex were 117 

significantly associated with behavioral responses to heat stress. Sex, but not lake of 118 

origin or reproductive mode, was a significant predictor of mitochondrial membrane 119 

potential (p = 0.0070, Figure 2), with higher mitochondrial membrane potential in males 120 

vs. females.  121 

 122 

DISCUSSION 123 

Here, we report the first evidence of population-structured variation for mitochondrial 124 

and behavioral function in P. antipodarum. Combined with population structure in 125 

mitochondrial genes [18, 20], this result suggests that mitochondrial function could be 126 

locally tuned in P. antipodarum. We also find that males have higher mitochondrial 127 

membrane potential than females. This result suggests that male P. antipodarum do not 128 

suffer from Mother’s Curse, at least with respect to their ability to generate a proton 129 

motive force. 130 
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 These data set the stage for future studies addressing multiple important 131 

evolutionary questions, including invasiveness, response to parasite infection, 132 

ecotoxicology, and the evolutionary maintenance of sex. Chief among these questions 133 

is whether and how asexuality might influence mitonuclear coevolution. While asexuality 134 

should reduce the efficacy of natural selection in both nuclear [30] and mitochondrial 135 

genomes [16, 31], stable transmission of mitonuclear genotypes may also facilitate 136 

rapid mitonuclear coadaptation and thereby local adaptation [32]. Importantly, the strong 137 

lake effect implies that extensive intrapopulation sampling is necessary for evaluating 138 

mitochondrial function in P. antipodarum. 139 

 140 
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 163 

Table 1. Summary of source populations of Potamopyrgus antipodarum. 

Oxygen consumption assay 
Lake Latitude, Longitude Sexual Asexual Male Female 

Alexandrina -43.900476, 170.453978 14 2 - 16 
Clearwater -43.602131, 171.043917 - 4 - 4 

Kaniere -42.832886, 171.14759 16 - - 16 
Paringa -43.713068, 169.411348 5 - - 5 
Rotoroa -41.855414, 172.637882 - 17 - 17 

Selfe -43.237765, 171.520449 - 3 - 3 

Behavior and mitochondrial membrane potential assays1 
Lake Latitude, Longitude Sexual Asexual Male Female 

Alexandrina -43.900476, 170.453978 3 - 3 - 
Ellery -44.046898, 168.654261 2 3 - 5 

Kaniere -42.832886, 171.14759 5 1 4 2 
Mapourika -43.315212, 170.204061 8 2 6 4 
Rotoroa -41.855414, 172.637882 4 1 - 5 

Selfe -43.237765, 171.520449 9 8 9 8 
1 – Same individual snails were used in behavioral and mitochondrial membrane 
potential assays 

  164 
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Table 2. Linear and mixed-effects models of select predictors on oxygen consumption, righting 
time, emergence time, and mitochondrial membrane potential. 
Oxygen consumption1 

 
Factor χ

2 df p Non-significant predictors* 
Intercept 2.700 1    0.1004 

Reproductive Mode 
Temperature 39.038 2 < 0.0001 

Mass 11.061 1    0.0009 
Lake of Origin 15.280 5    0.0092 

 
Factor§ χ

2 df p Non-significant predictors* 
Intercept 2.164 1  0.141 

Reproductive Mode Temperature 27.336 2 < 0.0001 
Mass 4.365 1    0.0367 

 
Righting time2 

 
Factor χ

2 df p Non-significant predictors* 
Intercept 59.205 1 < 0.0001 

Reproductive Mode, Sex Temperature 73.661 2 < 0.0001 
Lake of Origin 14.020 5    0.0155 

 
Factor§ χ

2 df p Non-significant predictors* 
Intercept 94.767 1 < 0.0001 

Reproductive Mode, Sex Temperature 69.655 2 < 0.0001 
Lake of Origin 13.429 4    0.0094 

 
Factor† χ

2 df p Non-significant predictors* 
Intercept 364.550 1 < 0.0001 Reproductive Mode, Sex,  

Lake of Origin Temperature 52.370 2 < 0.0001 
 
Emergence Time3 

 
Factor χ

2 df p Non-significant predictors* 
Intercept 448.891 1 < 0.0001 Reproductive Mode,  

Sex, Lake of Origin Temperature 46.646 2 < 0.0001 
 

Factor§ χ
2 df p Non-significant predictors* 

Intercept 363.860 1 < 0.0001 Sex, Reproductive Mode,  
Lake of Origin Temperature 34.608 2 < 0.0001 

 
Factor† χ

2 df p Non-significant predictors* 
Intercept 59.205 1 < 0.0001 

Reproductive Mode, Sex Temperature 73.661 2 < 0.0001 
Lake of Origin 14.020 5    0.0155 

 
 
Mitochondrial membrane potential4 

 
Factor Sum of Squares df F p Non-significant predictors* 

Intercept 55.876 1 305.1038 < 0.0001 
Reproductive Mode,  

Lake of Origin Sex 1.466 1 8.0035    0.0070 
Residuals 8.058 44   
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Factor§ Sum of Squares df F p Non-significant predictors* 
Intercept 55.876 1 329.344 < 0.0001 

Reproductive Mode,  
Lake of Origin Sex 1.026 1 6.046    0.0183 

Residuals 6.956 41   
 

Factor† Sum of Squares df F p Non-significant predictors* 
Intercept 96.564 1 482.37 < 0.0001 Reproductive Mode, Lake of 

Origin, Sex Residuals 6.406 32   
1 – Type III Repeated-Measures Analysis of Deviance χ2 Test of O2 consumption per hour 
2 – Type III Repeated-Measures Analysis of Deviance χ2 Test of log-transformed righting times 
3 – Type III Repeated-Measures Analysis of Deviance χ2 Test of square-root-transformed emergence  

times 
4 – Type III Analysis of Variance F Test of log-transformed ratios of red: green in mitochondrial extracts 
* – Non-significant predictors listed in order of elimination from the model 
§ – Model fit only included lakes from which both sexual and asexual snails were assayed 
† – Model fit only included lakes from which both male and female snails were assayed 
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FIGURE LEGENDS 166 

Figure 1. Physiological responses to heat stress for P. antipodarum across 167 

source lakes. a) Oxygen consumption/hour/gram. b) Righting time. c) Emergence time  168 

 169 

Figure 2. Mitochondrial membrane potential in field-collected P. antipodarum. 170 

Ratios of red: green fluorescence of JC-1-treated mitochondrial extracts for a) snails 171 

from all six New Zealand lakes, b) male vs. female snails from all lakes, and c) male vs. 172 

female snails from three New Zealand lakes with replication for sex. 173 

  174 
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