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Abstract

Cell proliferation is the most important cellular-level mechanism responsible for reg-
ulating cell population dynamics in living tissues. Modern experimental procedures
show that the proliferation rates of individual cells can vary significantly within the
same cell line. However, in the mathematical biology literature, cell proliferation
is typically modelled using a classical logistic equation which neglects variations
in the proliferation rate. In this work, we consider a discrete mathematical model
of cell migration and cell proliferation, modulated by volume exclusion (crowding)
effects, with variable rates of proliferation across the total population. We refer to
this variability as heterogeneity. Constructing the continuum limit of the discrete
model leads to a generalisation of the classical logistic growth model. Comparing
numerical solutions of the model to averaged data from discrete simulations shows
that the new model captures the key features of the discrete process. Applying the
extended logistic model to simulate a proliferation assay using rates from recent ex-
perimental literature shows that neglecting the role of heterogeneity can, at times,

lead to misleading results.

Key words: Cell proliferation, Heterogeneity, Population dynamics, Logistic

growth.

Preprint submitted to Journal of Theoretical Biology 13 February 2018


https://doi.org/10.1101/231100

bioRxiv preprint doi: https://doi.org/10.1101/231100; this version posted February 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 1 Introduction

> Cell proliferation is essential for regulating the dynamics of cell populations,
s and plays a vital role in collective cell spreading, cancer progression and tissue
s regeneration (Eladdadi and Isaacson, 2008; Evan and Vousden, 2001; Haridas
s et al., 2017; Pavlath et al., 1998). While it is clear that cells from different
6 cell lines proliferate at different rates (Hayflick, 1965), recent experimental
7 methods indicate that heterogeneity in cell proliferation arises even within
s the same cell line (Bajar et al., 2016; Guan et al., 2014; Sakaue-Sawano et al.,
o 2008).

10 Many different types of experiments are used to quantify cell proliferation
u (An et al., 2001; Azzarone and Macieira-Coelho, 1982; Haass et al., 2014;
12 Hayflick, 1965; Jin et al., 2017; Kaneoka et al., 1983; Willaime et al., 2013). The
13 complexity of these experiments varies from simple in vitro proliferation assays
1 in which the net expansion of a population of cells is observed and measured,
15 such as the experiment shown in Figure 1, to more sophisticated experiments
16 that use fluorescent cell cycle indicators to measure the duration of different
17 phases of the cell cycle for individual cells (Haass et al., 2014; Sakaue-Sawano
18 et al., 2008; Vittadello et al., 2018). A standard measure of cell proliferation
19 is the doubling time, which is a measure of the duration of time required for a
20 population of cells, at low density, to double (Hayflick, 1965; Jin et al., 2016).
a1 The doubling time quantifies cell proliferation from the perspective of the
2 entire population, and any kind of variability amongst individual cells in the
3 population is neglected. Modern experimental approaches, such as individual-
2 level fluorescent cell cycle indicators and micro collagen gel arrays, allow us
s to quantify variations in the cell cycle of individual cells (Guan et al., 2014;

s Haass et al., 2014). This individual-level data shows that proliferation rates
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2 of individual cells can vary significantly within the same cell line (Guan et al.,

22 2014; Haass et al., 2014).
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(b)

Fig. 1. In wvitro cell proliferation assay. Population of PC-3 prostate cancer cells
in a square field of view, of side length 1440 pum. Images correspond to (a) t = 0 h,

(b) 12 h, and (c) 24 h (Browning et al., 2018). Reproduced from Browning et al.
(2018) with permission.
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2 Mathematical models are often used to mimic cell biology experiments, and
w0 to quantify rates of cell proliferation (Cai et al., 2007; Jin et al., 2017; Nardini
a et al., 2016). One approach is to apply an individual-level, agent-based model
» (Frascoli et al, 2014). In this kind of model, agents represent individual cells,
;3 and these agents migrate and proliferate according to certain rules thought to
1 berelevant to the application of interest (Treloar et al., 2014). Although agent-
55 based models offer the capability to investigate individual-level details, most of
36 these models adopt a conventional assumption that the rate of proliferation of
37 individual cells in the population is taken to be a constant. This assumption,
;s however, may not be applicable to real situations where the proliferation rate

s of individual cells in the population varies significantly.

s The most commonly-used continuum model of cell proliferation is the classical
a logistic growth model (Cai et al., 2007; Jin et al., 2016; Maini et al., 2004; Sen-
2 gers et al., 2007; Sheardown and Cheng, 1996; Sherratt and Murray 1990; Vo
s et al., 2015; Warne et al. 2017). Although the classical logistic growth model
u is widely used to estimate the growth rate for populations of cells, there is an
55 increasing awareness in the mathematical biology literature that cell popula-
s tions do not always grow logistically (e.g. Gerlee, 2013; Powell et al., 2017;
s Sarapata and de Pillis 2014; Sewalt et al. 2016; West et al. 2001; Neufeld
s et al. 2017), and generalisations of the logistic growth model have been pro-
w posed (Jolicoeur and Pontier, 1989; Tsoularis and Wallace, 2002). Other types
so of models, where population growth is explicitly coupled to external factors,
st such as light availability (Pozzobon and Perré, 2018) and interactions with
2 other populations (Garcia-Algarra et al., 2014), have also been developed for
53 specific biological applications. However, a limitation in each of these mod-
s« elling frameworks is that the cell proliferation rate is treated as a constant,

ss which amounts to neglecting heterogeneity.

ss In this work we consider a discrete modelling framework in which we deliber-

sz ately introduce heterogeneity in the rates of migration and proliferation. The
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ss continuum limit description of the discrete model leads to a complicated sys-
5o tem of reaction-diffusion equations which simplifies to a generalisation of the
s classical logistic growth model when we apply the model to situations where
&1 there are, on average, no spatial variations in the agent density, such as the
2 experimental image in Figure 1. We apply the extended logistic model to sim-
s ulate a proliferation assay using a distribution of heterogeneous proliferation

s« rates that are estimated from the cell biology literature.

s We show that neglecting the role of heterogeneity can produce misleading re-
6 sults when population dynamics are interpreted in a standard way by simply
&7 calibrating the solution of the classical logistic growth model to match the
¢ data. Comparing the results from the logistic growth model and the extended
s model illustrates that the logistic growth model does not perform well in some
70 cases. As we show, in these cases where the standard approach fails to cap-
7 ture the growth dynamics of heterogeneous populations, the new extended
72 model performs very well. Unlike the classic logistic growth model, the ex-
7z tended model does not have an exact solution. With this in mind, we provide
72 analytical insight into the role of heterogeneity by constructing approximate

7 perturbation solutions in the limit of small variation in the proliferation rate.

7 Throughout this study we use a combination of dimensional and dimension-
77 less parameters. Mathematical models, both discrete and continuum, are first
7 presented using dimensional variables and dimensional parameters. All di-
7o mensional quantities are indicated with an overbar. Later, when we apply the
s mathematical models to experimental data, and when we present some analy-
g1 sis of the mathematical models, we always work with dimensionless variables

&2 and parameters for which the overbar notation is dropped.

3 2 Discrete model
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s We use a conceptually straightforward exclusion process on a hexagonal lattice
s to simulate cell migration and cell proliferation (Jin et al., 2017). We apply this
s model to simulate in wvitro cell proliferation assays, such as the experimental
&7 image in Figure 1. For this kind of proliferation assay, a standard way to
g8 estimate the proliferation rate is to count individual cells, and to use this
g0 information to construct time evolution of the average density profile (Jin et
o al., 2016). With this averaged density profile, we could calibrate the solution
a1 of the classical logistic equation to provide an estimate of the proliferation rate
2 (Tremel et al. 2009). However, this standard approach neglects any variation
o3 in the proliferation rate. Therefore, here we use our model and take a different

o approach.

s In our model, agents represent individual cells, and these agents are placed
o uniformly, at a specified initial density, on a hexagonal lattice. We use a lattice
o of size I x J lattice sites, with lattice spacing A. Here, A can be thought of as
o a typical cell diameter, such as A = 20 um. To simulate crowding effects, each
o lattice site can be occupied by, at most, one agent. Each lattice site is indexed,
w s = (i,7), where i,j € Z", and each site is associated with a unique Cartesian
w1 coordinate. The total population of agents is composed of N > 1, potentially
102 distinct, subpopulations. Agents in each subpopulation are characterised by
s a potentially distinct migration probability per time step, P™ ¢ [0,1] for
we n=1,2,..., N. Furthermore, agents in each subpopulation are characterised
s by a potentially distinct proliferation probability per time step, PIE") € [0,1]
ws for n=1,2,...,N. The total number of agents at time ¢ is M ().

17 Cell migration and proliferation are modelled using a random sequential ran-
s dom update method (Chowdhury et al., 2005). To advance the discrete model
0o from time ¢ to time ¢ + 7, M(t) agents are selected at random, one at a
o time, with replacement. The selected agent attempts to move to one of the
m six nearest neighbour sites with probability P(™. The attempted migration

n2  event will be successful if the randomly chosen nearest neighbour target site is
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us  vacant. After M (t) potential migration events have been attempted, another
s M(t) agents are selected at random, one at a time, with replacement. The
us  selected agent will attempt to place a daughter agent on one of the six nearest
ue neighbour sites with probability P;”). The attempted proliferation will only
7 be successful if the randomly chosen nearest neighbour site is vacant. In the
us event that the potential proliferation event is successful, we make the simplest
e assumption that the daughter agent belongs to the same subpopulation as
120 the mother agent. Once these potential motility and proliferation events have

121 been attempted, we update M (f + 7).

122 Using a random sequential update algorithm means that during each time step
123 some agents may attempt to migrate or proliferate multiple times, whereas
124 other agents may not attempt to migrate or proliferate at all. However, when
s we simulate over a large number of time steps, on average each agent in the
126 population will attempt to migrate and proliferate once per time step. The
12z random sequential update algorithm is conceptually straightforward, easy to
s implement, and is known to provide a good approximation to the dynamics
129 of these kinds of simulations where we consider populations of motile and

10 proliferative agents (Treloar et al., 2014).

131 3 Continuum limit description

12 The continuum limit description of the discrete model can be derived using
133 standard averaging arguments and a mean field approximation. These kinds
14 of arguments and approximations are widely invoked throughout the mathe-
135 matical biology literature where continuum limit descriptions are derived from
136 underlying stochastic models (e.g. Callaghan et al., 2006; Deroulers et al. 2009;
137 Dyson and Baker, 2015; Plank and Simpson, 2012). The mean field assumption
s involves treating the occupancy status of lattice sites as being independent.

130 While this assumption is questionable for any particular single realisation of
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1o the stochastic model, it turns out to be remarkably accurate when we consider
11 an ensemble of stochastic simulations, as we will show later. Furthermore, this
12 approximation is known to be accurate for a range of problems involving in-
13 teractions between multiple subpopulations of agents (Simpson et al, 2009),
s and for other problems involving single populations of motile and proliferative

s agents (Simpson et al. 2010).

us  We denote the probability of finding an agent from subpopulation n at site
w s =(i,7) as C™ € [0,1], for n = 1,2,..., N. This probability can be thought
us of as corresponding to averaging the occupancy of site s over many identically

1o prepared realisations of the stochastic model. Therefore, the probability of
N

150 site s being vacant is 1 — Z C’S(”). In the discrete model, migration events can
n=1
151 act to either increase or decrease the occupancy of site s, whereas prolifera-

12 tion events can only act to increase the occupancy of site s. Accounting for
153 these possibilities, the change in average occupancy at site s for agents from

15+ subpopulation n, from time ¢ to time ¢ + 7 can be written as,

increase in occupancy due to migration into site s

(n) Py o () (n)
5O = 1-Ycm) 3
6 n=1 s’eN{s}

decrease in occupancy due to migration out of site s

(n) N
- Py v (1-xa)
6 s’eN{s} n=1

increase in occupancy due to proliferation into site s

P(n) N
+ 5 (1—Zc§”>) > oo (1)

=1 s’eN{s}

155 where N'{s} denotes the set of six nearest-neighbour sites around site s. In
155 Equation (1) we implicitly make the standard assumption that the average oc-
157 cupancy of each lattice site is independent. This is the mean field assumption.
158 We expand each term in Equation (1) about site s using Taylor series, and
150 neglect terms of O(A3). This process leads to the cancellation of many terms.

1o Here, we omit showing these intermediate steps as they have been outlined
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161 for similar models in our previous work (Jin et al., 2016; Simpson et al., 2009;
12 Simpson et al., 2010). Dividing both sides of the resulting expression by T,
s and taking the limit as A — 0 and 7 — 0 jointly, with A2 /7 held constant we

164 Obtain,

unbiased motility mechanism with exclusion

9C,(z,7,1) (PWA?

ot 77:17—_ )V [(1—S(i'7@,£)) VC’n(f,;g,f)—f—Cn(f,gj,f)VS(f,g,t_)}

unbiased proliferation mechanism with exclusion

(n)
+ <P173__ )Cn(fagaa[l_s(jag7a] ) (2>

s forn =1,2,...,N.Cy,(Z,7,1) is the density of n'" subpopulation, and z and ¥
16 are the horizontal and vertical coordinates respectively. The total population

17 density is given by S(Z,7,t) = Z Co(Z,7,1).

s In cell proliferation experiments, cells are placed uniformly on a two-dimensional
160 substrate (Browning et al. 2018; Jin et al., 2017). Therefore, this kind of ini-
o tialisation means that there are, on average, no spatial gradients in cell density
1 provided we view the experiment at a sufficiently large spatial scale, such as

12 in Figure 1. Under these conditions Equation (2) simplifies to

G0 5 1 - s0) @

73 where 7,, = PIS”)/T', forn=1,2,3,..., N. The total cell density S(¢) then can
s be obtained by summing over the governing equations of N subpopulations to

175 give,

B0~ (L) [1- s, (W

e In this work we always deal with initial conditions without any spatial gradi-
177 ents, which corresponds to the experimental images shown in Figure 1. This

s implies that we are working with a system of ordinary differential equations

10
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s (ODEs) instead of a system of partial differential equations. If we were to
1o consider a different initial condition, such as a scratch assay or a barrier as-
11 say where there experiments are intentionally initialised with some spatial
1.2 gradients present, then we would have to work with Equation (2) instead of

183 Equation (3) .

18 Without loss of generality, when we apply Equation (3) we adopt the conven-
15 tion that 71 > 79 > 73 > ... > Ty, so that 7| is the proliferation rate of the
186 fastest-proliferating subpopulation, 75 is the proliferation rate of the second
187 fastest-proliferating subpopulation, and so on. We note that in the special case
188 where we consider all the proliferation rates to be equal, 7y =79 = ... =y,
189 we are dealing with a homogeneous population with a constant proliferation

wo rate, . The continuum limit description simplifies to,

O _sewmh - co). (5)

1 which is the classical logistic growth model (Murray, 2002), whose solution is

192 given by,
c(0)

C(t) = [1 _ 0(0)]e4t’+ C(0) ©)

103 This exact solution is a sigmoid curve that monotonically increases from C(0),
10s - and approaches unity as ¢ — oo, provided that C(0) < 1. Since our system of
s ODEs, given by Equation (3), simplifies to the classical logistic model when all
105 the proliferation rates are identical, we refer to Equation (3) as the extended

w7 logistic growth model.

108 To simplify our work we nondimensionalise time using the fastest proliferation

wo rate, t = 71t. Therefore Equation (3) becomes

11
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20 where 1, = 7,/rq, for n = 2,3,..., N. Therefore, we now have a system of
201 ODEs with non-dimensional proliferation rates of: unity, ro,73,..., 7y, with
200 1 > 19 > 13 > ... > ry. This non-dimensionalisation allows us to compare
203 the solutions of the model for different systems that are characterised by very
200 different proliferation rates. In the non-dimensional format, Equation (4) be-

205 COInes

50 _ (clm 5 rncnm) 1-50)]. (5)

26 To be consistent, if we non-dimensionalise Equation (6) with t = M, we obtain

C(0)
[1-C(0)]et +C(0)

C(t) = (9)

20 Unlike the classical logistic model, Equation (7) does not have an exact so-
28 lution. Therefore, we present numerical solutions that are obtained using a
200 backward Euler approximation. In all cases we use a constant time step of
20 0t = 0.01, and Picard iteration with convergence tolerance ¢ = 1 x 107°.
a1 These choices of 0t and € are sufficient to produce grid-independent numerical

212 solutions of the model.

213 4 Results

aa 4.1 Continuum-discrete match

25 All discrete results are presented in a non-dimensional format, on a lattice
216 with unit lattice spacing and with time steps of unit duration, A = 7 = 1.
27 Note that A and 7 can be re-scaled to correspond to any particular choices
2s of dimensional A and 7. This means that we can re-scale any of these dimen-

219 sionless simulations to correspond to a population of cells with arbitrary cell

12
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20 diameter, and arbitrary characteristic proliferation rate. Since we are focus-
21 ing on the role of heterogeneity in cell proliferation, in all simulations we set
2 A=PM=1"forn=12,...,N,and 7 = Plgl) = 0.01. In addition, we choose
223 I =101 and J = 117, so that the size of the simulation domain is 100 x 100.

24 Periodic boundary conditions are applied to all simulations.

25 'To explore the role of heterogeneity in population growth, we first consider
26 simulations involving up to three subpopulations: subpopulation 1 has the
27 fastest proliferation rate; subpopulation 2 has an intermediate proliferation
28 rate; and subpopulation 3 has the slowest proliferation rate. We first perform
29 three different types of discrete simulations initialised with different combina-
230 tions of these three subpopulations. Each simulation is initialised so that the
2n  total number of agents occupies just 10% of the total number of lattice sites.
22 In the first simulation we consider a homogeneous population that is com-
233 posed entirely of agents from subpopulation 1, N = 1. The second simulation
24 involves a heterogeneous population that is composed of equal proportions of
235 agents from subpopulations 1 and 2, N = 2. The third simulation involves
23 a heterogeneous population that is composed of equal proportions of agents
23 from subpopulations 1, 2 and 3, N = 3. Snapshots from the discrete simu-
238 lations are shown in Figure 2. A qualitative comparison of these snapshots
230 shows that the growth dynamics are very different in the homogeneous and
20 heterogeneous populations. Both the dynamics of the overall total population,
2 and the dynamics of the various subpopulations depends on the details of the

22 heterogeneity present in the system.

13
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a3 To quantify the population growth, we plot the time evolution of the total
a4 averaged agent density, and superimpose the corresponding solution of Equa-
25 tion (7). For the homogeneous population in Figure 2(d), the continuum limit
as  simplifies to the classical logistic growth model, while for the heterogeneous
27 populations in Figure 2(h) and (1), the extended logistic model applies. Over-
xs  all we see that the quality of the match between the solution of the continuum
29 model and averaged data from the discrete simulations is excellent. Therefore,
0 this comparison indicates that the continuum limit description is a useful and
1 accurate mathematical tool that can be used to study the proliferation of het-

2 erogeneous populations without relying on repeated stochastic simulations.

3 4.2  Comparison of the classical logistic growth model and the extended logistic

254 model

s As mentioned in the Introduction, although the classical logistic growth model
26 1 widely used when interpreting data from cell biology experiments (Cai et
57 al., 2007; Jin et al., 2016; Maini et al., 2004; Sengers et al., 2007; Sheardown
s and Cheng, 1996; Sherratt and Murray 1990; Vo et al., 2015; Warne et al.
250 2017), this standard approach neglects any heterogeneity in cell proliferation
20 rate. To provide insight into how well the classical logistic growth model is
1 able to predict and describe the growth of heterogeneous populations, we now
x2 calibrate the solution of the classical logistic growth model in an attempt to
%3 match the solution of the extended logistic model which explicitly accounts

ss  for heterogeneous growth.

25 We consider two different initial conditions for a population that is composed
x6 Of three different subpopulations, N = 3. Again, we refer to these subpopula-
»%7 tions as subpopulations 1, 2, and 3. For both initial conditions we consider, we
xs distribute the total population uniformly across the domain so that the ini-

0 tial total density is 10% of the carrying capacity density. In the first case we

15
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a0 choose the initial condition so that the total population is initially composed
an of 75% of agents from subpopulation 1, 20% of agents from subpopulation
o2 2, and 5% of agents from subpopulation 3, as shown in Figure 3(a). In the
13 second case we choose the initial condition so that the total population is
24 initially composed of 5% of agents from subpopulation 1, 20% of agents from
s subpopulation 2, and 75% of agents from subpopulation 3, as shown in Figure
26 3(b). These choices of initial condition mean that the first case is composed of
27 a small proportion of relatively quiescent agents (di Fagagna et al., 2003), and
s the second case corresponds to a population that contains a small proportion
a9 of rapidly proliferating agents, such as is thought to be relevant to cancer
20 progression (Davis et al., 2017). The solution of the extended logistic growth
251 model for these two scenarios of heterogeneous growth are shown in Figure

22 3(b) and (d), respectively.

16
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Fig. 3. Comparison of the classical logistic growth model to the extended
model for heterogenous growth. (a) and (c¢) Initial distribution of proliferation
rate for the two heterogenous populations. (a) corresponds to a population com-
posed of a small proportion of relatively quiescent cells, and (c) corresponds to a
population containing a small proportion of rapidly proliferating cells. In all cases,
red represents the fastest-proliferating subpopulation (subpopulation 1); green rep-
resents the intermediate subpopulation (subpopulation 2); and blue represents the
slowest-proliferating subpopulation (subpopulation 3). In each case, the time evolu-
tion of the total density from the extended model, together with the best-fit classical
logistic growth curve, is plotted in (b) and (d).
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23 Again, we recall that standard approaches to interpreting cell proliferation
284 assays is to calibrate the solution of the classical logistic growth model to
s match the experimental data, and to provide an estimate of the proliferation
26 rate (Cai et al., 2007; Jin et al., 2016; Maini et al., 2004; Sengers et al.,
257 2007; Sheardown and Cheng, 1996; Sherratt and Murray 1990; Vo et al., 2015;
28 Warne et al. 2017). This standard approach implicitly neglects the role of
280 heterogeneity, so it is of interest for us to take the population growth curves
20 for these heterogeneous populations in Figure 3(b) and (d), and to calibrate
21 the solution of the classical logistic growth model to match this data. We
202 calibrate the solution of the classical logistic growth model to the density
203 data in Figure 3(b) and (d) using MATLAB’s Isqcurvefit function, and show
20¢  the best match in Figure 3(b) and (d). This calibration provides an estimate of
205 A that is associated with the best fit of the standard model to the total density
26 data. We are also interested in understanding the quality of match between the
207 best fit solution of the classical logistic growth model and the heterogeneous

208 density data. To quantify the quality of match we use a least-squares measure,

E=Y"[CMt)-Su), (10)

20 where C/(t) is the best fit solution of the classical logistic growth model, and
w0 S(t) is the total density associated with the extended logistic growth model.
sn  Here we measure E in the interval 0 < ¢ < 10, by evaluating both C(t) and
2 S(t) at 1000 equally-spaced time points, ¢; for ¢, = 0,0.01,0.02,...,10. We

53 denote the minimum least—squares error as Eip.

54 A simple visual comparison of the best fit classical logistic growth model and
s the solution of the extended model in Figure 3(b) shows that the standard
s6  approach of neglecting heterogeneity leads to an excellent match. However, re-
27 sults in Figure 3(d) indicate that the best fit classical logistic model matches
we  the heterogeneous growth curve poorly. This qualitative assessment of the

30 quality of match is confirmed quantitatively by our estimates of E, as re-
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s ported in Figure 3. Overall, we see that the standard approach of neglecting
sn heterogeneity can sometimes lead to reasonable outcomes, whereas in other
;12 cases the neglect of heterogeneity is unsatisfactory. We anticipate that the ini-
a3 tial distribution of proliferation rates across the initial subpopulations plays
sie an important role in determining the suitability of this standard approach.
a5 We now investigate this question further by applying our extended model to

a6 some data from the literature

a7 B Case study

s We will now compare the performance of the classical logistic growth model
a9 and the extended logistic growth model by simulating proliferation assays in
20 which the distributions of heterogeneous proliferation rates are taken from
s21 recent experimental measurements. In particular, we work with data from two
322 human melanoma cell lines (Haass et al., 2014): (i) the 1205Lu cell line, which
23 we refer to as cell line 1, and (ii) the WM983C cell line, which we refer to as cell
;24 line 2. The data we use to characterise the distribution of proliferation rates
»s comes directly from Haass et al. (2014) where they use a specialised fluorescent
16 technique to characterise the cell cycle of individual melanoma cells. Data from
27 Haass et al. (2014) reports the duration of time spent in the S/G2/M phase of
28 the cell cycle for groups of at least 20 individual cells from multiple melanoma
29 cell lines. Since the S/G2/M cell cycle phase is closely related to the process
;0 of cell division, we treat the heterogeneity in these measurements as being

s representative of the heterogeneity present in the entire cell cycle.

s Haass’ data reports the duration of time that at least 20 individual cells spend
333 in the S/G2/M cell cycle phase (Haass et al., 2014). We group these individual
;¢ measurements of duration into three subgroups. We choose the subgroups so
15 that each column in the histogram of this data has approximately the same

1 width, as shown in Figure 4(a)-(b). Since Haass’ data is reported in terms of a
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;37 duration of time spent in the cell cycle, we convert these durations into rates
1 by dividing log,(2) by the reported durations. Here, the log,(2) term comes
39 from making the simple assumption that cells are growing exponentially. The
a0 details of the raw experimental data are given in the Supplementary Material
s document. Presenting the dimensional rates in Figure 4(c)-(d) indicates that
sz the distribution of proliferation rate in cell line 1 is approximately symmetric,

sz whereas the distribution of rates for cell line 2 is positively skewed.
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Fig. 4. Experimental data from Haass et al. (2014). (a)-(b) Histograms show-
ing the distribution of the time scale associated with the S/G2/M cell cycle for
cell lines 1 and 2, respectively. (c)-(d) Histograms showing the distribution of rates
associates with the S/G2/M cell cycle for cell lines 1 and 2, respectively. The time
scales are converted to rates by dividing log,(2) by the time scale. For both cell
lines: red indicates the fastest-proliferating subpopulation (subpopulation 1); green
indicates the intermediate subpopulation (subpopulation 2); and blue indicates the
slowest-proliferating subpopulation (subpopulation 3).
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s To apply our models using the heterogeneous proliferation rate data in Fig-
us ure 4, we non-dimensionalise the proliferation rate data by dividing each rate
us by the fastest-proliferation rate for each cell line. This data, presented as
w7 histograms in Figure 5(a)-(e), shows the distribution of non-dimensional pro-
us liferation rates for both cell lines. We now use these histograms to specify
s both the initial proliferation rates, and the initial distribution of the three
0 subpopulations in the discrete model and the corresponding extended logistic

51 continuum model.
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and (e) Initial distribution of proliferation rate for cell lines 1 and 2, respectively. (b) and (f) Snapshots of simulations at ¢t = 0,5, and
10 for both experimental cell lines. (¢) and (g) The continuum-discrete match of the time evolution of the densities for experimental
cell lines 1 and 2, respectively. Solid lines represent the numerical solutions of the extended model, and the dashed lines represent the
averaged simulation data over 50 identically prepared realisations. (d) and (h) Calibrated solution of the classical logistic growth model
superimposed with the total density profile computed using the extended model. For both of experimental cell lines, red represents
the fastest-proliferating subpopulation (subpopulation 1); green represents the intermediate subpopulation (subpopulation 2); and blue

represents the slowest-proliferating subpopulation (subpopulation 3). For cell line 1, Pzgl) = 0.01, PZ§2) = 0.0067, and PIS3) = 0.0032. For
cell line 2, P = 0.01, P{? = 0.0046, and P{*) = 0.0026.
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2 We first model the heterogeneous population growth for cell line 1 and 2 using
13 the discrete model. For each cell line, agents are initially distributed uniformly
s« on the lattice so that 10% of lattice sites are occupied. We are also careful to
55 ensure that the initial proportions of subpopulation 1, 2 and 3 correspond to
16 the proportions of the three subpopulations in the histograms in Figure 5(a)
37 and (e). Snapshots of the growing cell populations for both cell lines are given
3ss in Figure 5(b) and (f). These snapshots immediately reveal some interesting
30 features. For cell line 1, the distribution of the three subpopulations remains
w0 similar over time, as there appears to be roughly equal proportions of red,
1 green and blue agents at ¢ = 10 as there are initially, at ¢ = 0. However, we
w2 observe very different behaviour for cell line 2, as the relative abundance of the
3 three subpopulations changes dramatically over time. For example, at ¢t = 0,
s we see that subpopulation 1 is the least abundant subpopulation. However,
s by the end of the growth process, at ¢ = 10, subpopulation 1 is the most
36 abundant subpopulation. These qualitative trends are also clear in Figure 5(c)
37 and (g) where we compare averaged discrete data from repeated simulations of
w8 the stochastic model and the solution of the corresponding continuum model.
w0 In addition to quantifying the behaviour we see in the discrete snapshots,
w0 the solution of the continuum model in Figure 5(c) and (g) confirm that the

sn - continuum model is an accurate approximation of the discrete model.

sz 'To examine the implications of taking a standard approach and neglecting
sz the role of heterogeneity, we also calibrate the solution of the classical logistic
s model to the total density data in Figure 5(c) and (g). Following the same
w5 approach described in Section 4.2, results in Figure 5(d) and (h) show the evo-
ars  lution of the total cell density profile superimposed with the best-fit classical
sir logistic growth curves for cell line 1 and 2, respectively. Interestingly, the qual-
s ity of match between the classical logistic growth model and the heterogenous
sro  population growth curve is relatively good for cell line 1, whereas the quality

0 of match for cell line 2 is poor.
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;1 These results show that the consequences of neglecting the role of hetero-
2 geneity is subtle. In particular, under some circumstances it is possible to
3 accurately predict the growth of a heterogeneous cell population using the
ssa  classical logistic growth model, whereas in other circumstances the classical

;s logistic growth model provides a poor match.

s 6 Analytical insight for two subpopulations, N = 2

ss7 'To support our numerical solutions of the continuum model developed in Sec-
s tion 3, we now provide some simple analysis. This analysis provides both math-
;0 ematical insight into the extended logistic growth model, as well as providing
;0 biological insight into the effects of heterogeneity. For brevity we concentrate
;1 on the case in which there are two subpopulations present, with densities C ()

32 and Cy(t). In this case the extended model, Equation (7), simplifies to

dCy(t) (11)

53 where ry < 1. The governing equation for the evolution of the total density is

B _ e + raca][1 - 500)] (12)

3¢ The solutions for both C(t) and Cy(t) are sigmoid curves that monotonically
ws increase from the initial densities, C1(0) and C5(0), provided that Cy(0) +
1 C2(0) < 1. In the long time limit the solution of Equation (11) reaches a
37 steady state solution, where S(t) — 1 as t — oo. To analyse this long time

s behaviour we denote the steady state densities as,

Cl = tlirgz Cl (t), C2 = tli%g Cz(t), (13)
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300 5o that we have C; +Cy = 1.

wo 0.1 FExact steady state concentrations

w1 It is not immediately clear what the steady state values C; and Cy are from
w2 Equation (11) without first solving the transient model for the long time be-
w03 haviour (Simpson et al., 2007). Furthermore, it is unclear how these steady
ws state densities depend on the initial condition, C1(0) and C3(0), or on the
ws proliferation rate ro. To provide insight into this question, we can solve for
ws Cy and Cy directly by first dividing one of the equations in (11) by the other,

w7 separating variables, and integrating to give

CQ(O) T2
Ooft) = 20 1oy )™, (14)
[C1(0)] )
ws This relationship holds for all ¢. By substituting Equation (14) into Equation
w0 (11), we eliminate Cy(t) to give

dCy(¢)

_ B B Cz(O) T2
T - 1C1(t) (1 Ci(1) 4[01(0)}7'2 [01@)} ) (15)

a0 This equation is a now a direct analogue of the classical logistic growth model.
a1 For general values of ro < 1, Equation (15) has no exact solution. However,
a2 in this form it is easy to read off the steady-state value by setting the time

a3 derivative to zero, resulting in

1 - 20 ey g (16)

(0]

as  Equation (16) is a simple algebraic equation which can be solved using any
ss iterative numerical method, such as MATLAB’s fsolve function. The value of

ss  Co is then given by Co =1 — Cy.
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a7 Results in Figure 6(a)-(b) show two examples where we have used this ap-
ss  proach to directly calculate C; and C,. These predictions are superimposed on
ao the associated transient solutions of Equation (11), showing that the direct
20 method provides a simple and accurate way to calculate the long-time steady
21 solution, without needing to use numerical integration to evaluate the long

a2 time limit of the transient solution.
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Fig. 6. Analytical insight into the extended logistic model with two sub-
populations, N = 2. (a)-(b) Steady state results (dashed) compared to the full
transient numerical solutions (solid). Here, the first subpopulation is shown in or-
ange, and the second subpopulation is shown in blue. (c¢)-(d) Comparison of the
transient numerical solutions of total density (black) with the two-term perturba-
tion solutions in the limit of small heterogeneity. The O(1) perturbation solution is
plotted in green and the two-term O(e) perturbation solution is plotted in red.
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w3 6.2  Approximate results for small heterogeneity

2¢  Although the extended logistic growth model given by Equation (11) does
s not have an exact solution, we can obtain approximate results in the limit of
w6 small heterogeneity. To explore this we consider ro = 1 — ¢, where € < 1, and

a7 propose the perturbation solution (Murray, 2012)

(1) = CO) + eCV () + O(?),

(17)
Cy(t) = O (t) + eCHV (t) + O(<?),

w8 where the superscripts (0) and (1) represent the leading order and first cor-
w0 rection terms, respectively. The asymptotic solution for the total population

a0 is obtained by summing over the solutions for the two subpopulations:

S(t) = SO ) + SV (1) + O(e?). (18)

s Substituting Equation (17) into the extended logistic model, given by Equation
2 (11), gives the system

dC’1(0>(t) _ C{O)(t) [1 B S(O)(t)},
i 09
20— - 590),

a3 with C’fo)(O) = C1(0), 2(0)(0) = (5(0). Correspondingly, the O(1) equation

s for the total population is

ds©(t)
dt

= 5O@)[1-59()], (20)
w5 with S©(0) = S(0). Equation (20) is the standard logistic growth model with
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s the explicit solution (Murray, 2002)

5(0)

(0) _
ST = 1= 5(0)]e~t + S(0)

(21)

s This is to be expected since our leading order problem holds for € = 0, in
18 which case both populations have the same proliferation rate, so effectively
130 there is one population. Solving for the individual subpopulations gives the

mo leading order solutions

' [1-S(0)]et+5(0)’
(22)
= — 0
1= 5(0)]e~ + 5(0)

wm  For e < 1, we proceed to solve for the correction terms. The governing equa-

s2  tions for the individual populations are

dO(l(ilt) W _ etm[1 - s0)] - 0 @)s),
dcsd(t) v

S = [ - W) [1 - 5Om)] - A0S @),

w3 while the corresponding equation for the total density is

dSM(t)
dt

= 8O(1)[1 - 250(t)] — () [1 - SO(t)]. (24)

1e  Equation (24) has an explicit solution

S — Co(0)[S(0) — 1]te | 5)

[—et[1-50)] - 50)})

us  Neglecting higher order terms we obtain the two-term perturbation solution
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us  for the total density

5(0) L Co(0)[S(0) — 1]te

S =
=50+ 50 {—et[1-5(0)] - 50}

5+ O(?). (26)

w7 To demonstrate the effectiveness of this approximation, the O(1) and O(¢)
s perturbation solutions for the total density are plotted in Figure 6(c)-(d). The
mo corresponding full numerical solution is also presented. For a small amount
0 of heterogeneity in the population (¢ = 0.1, Figure 6(c)), the leading order
i1 term (solid green) provides a reasonably good approximation of the numerical
2 solution (dashed black). However, for larger heterogeneity (¢ = 0.4, Figure
i3 6(d)), we see that the leading order term is no longer close to the numerical
s+ solution, and instead the full two-term perturbation solution Equation (26)
w5 (solid red) is required to provide a good approximation. These plots provide
s6 further evidence that when the population is almost homogenous, then the
ss7 classical logistic model provides a good approximation. However, as hetero-
s geneity becomes more pronounced, then our extended logistic growth model
0 does a much better job at describing the dynamics. Furthermore, provided the
w0 heterogeneity is not too great, our two-term perturbation solution acts as a

w1 very good analytical approximation.

w2 Results in Figure 6(c)-(d) correspond to one particular choice of initial con-
w3 dition, C1(0) and C5(0). Additional results (Supplementary Material, Figure
we  S3) show that Equation (26) also provides a good approximation when we

w5 vary the initial condition, provided that e is sufficiently small.

w6 7 Conclusions

s7 In this study we develop discrete and continuum models of cell migration and

ss cell proliferation that allow us to explicitly investigate the role of heterogeneity,
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w0 with a particular emphasis on the role of heterogeneity in the proliferation rate.
a0 Despite the fact that heterogeneity is commonly observed in cell populations,
s and is thought to play an important role in disease progression and tissue
a2 repair (Evan and Vousden, 2001; Haridas et al., 2017; Pavlath et al., 1998),
a3 standard mathematical models of cell migration and cell proliferation neglect
s to account for heterogeneity. Indeed, most standard mathematical models of

a5 cell proliferation simply treat the proliferation rate as a constant.

s 'To explore the role of heterogeneity, we start by developing a discrete mod-
a7 elling framework to simulate cell migration and cell proliferation, modulated
as by crowding effects. The key point of the model is to deliberately introduce
a0 heterogeneity in the individuals within the population. The continuum limit
0 description of the discrete model leads to a system of coupled, nonlinear ODEs.
i1 It is of interest to note that in the simplest case where the proliferation rates
2 of each subpopulation are identical, the system of ODEs simplifies to the clas-
3 sical logistic growth model. Therefore, we call the new model the extended
s logistic growth model. Averaged data obtained from repeated simulations of
s the discrete model compare very well with the solution of the extended logistic

s growth model.

w7 'To explore the consequences of applying the logistic growth model and neglect-
s ing the role of heterogeneity, we perform a set of in silico experiments and
s generate density profiles describing the growth of a heterogeneous population
w0 of cells. We calibrate the solution of the classical logistic equation to match
w1 that data. Interestingly, while the classical logistic growth model can provide
w2 an accurate prediction of the growth of some kinds of heterogeneous popula-
w03 tions, we also find that in some circumstances the classical approach can not
ss  make accurate predictions. We also generate in silico data by parameterising
w5 the extended logistic growth model with a set of heterogeneous proliferation
w6 rates from recent experimental measurements. Again, we find that the classi-

w7 cal logistic model performs very well under some conditions, but it performs
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w8 poorly for others. Overall, we find that when the heterogeneous population
w0 contains a small proportion of relatively fast proliferating cells, the classical
so0 logistic equation performs poorly. Therefore, we suggest that care ought to be
so0 exercised when modelling the growth of certain cell populations. For example,
sc - when modelling a population of cells that might involve mutations that act
s3 to increase the proliferation rate in a small subpopulation (e.g. Davis et al.,
soe 2017), the extended logistic growth model might be more accurate than the

sos classical logistic equation.

so Unlike the classical logistic equation, the extended logistic growth model does
sov  not have an exact solution. Therefore, in general, we have to rely on numeri-
sos cal solutions. However, we also show how to provide some further insight by
so0 Obtaining analytical solutions in the case where there are just two subpopu-
si0  lations present, N = 2. We obtain exact expressions for the long-time steady
s state solution, and show that these exact expressions can be solved numeri-
sz cally to predict the steady state solution without using numerical integration
s13 to solve the full transient model. Furthermore, we also obtain approximate
sie insight by constructing perturbation solutions in the limit that the degree
si5. of heterogeneity is small. The perturbation solutions are insightful since the
sis (O(1) perturbation solution for the total cell density is the classical logistic
sz equation. The O(e) perturbation solution provides a correction term that is
si8 accurate even when we consider a relatively large degree of heterogeneity in

s the system.

s20 Although we have focused here on the question of developing mathematical
s21 tools and mathematical insight into the role of heterogeneity in population
s22  dynamics associated with populations of cells, it seems likely that the ideas
23 explored here will have consequences beyond the cell biology literature. For
s« example, classical logistic models, with constant growth rates, are also com-
s monly used in mathematical ecology (e.g. Chan and Kim, 2013), and there is

s also an awareness in the ecology literature that ecological populations do not
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sr always grow logistically (e.g. Taylor and Hastings, 2005). Therefore, perhaps
s28 some of the ideas developed here might also play a role in our understanding of
s20 ecological population dynamics. Another feature of our work is that we have
s30 focused exclusively on heterogeneity in cell proliferation rates. However, we
s note that there is also considerable interest in developing quantitative, predic-
s tive mathematical models which incorporate heterogeneity in cell migration
s13 (e.g. Read et al., 2016). Again, it seems likely that the kind of approach taken
s3a here would also be of interest in the context of exploring heterogeneity in cell

s migration. These open questions could be considered in future studies.
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