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Abstract

Cell proliferation is the most important cellular-level mechanism responsible for reg-

ulating cell population dynamics in living tissues. Modern experimental procedures

show that the proliferation rates of individual cells can vary significantly within the

same cell line. However, in the mathematical biology literature, cell proliferation

is typically modelled using a classical logistic equation which neglects variations

in the proliferation rate. In this work, we consider a discrete mathematical model

of cell migration and cell proliferation, modulated by volume exclusion (crowding)

effects, with variable rates of proliferation across the total population. We refer to

this variability as heterogeneity. Constructing the continuum limit of the discrete

model leads to a generalisation of the classical logistic growth model. Comparing

numerical solutions of the model to averaged data from discrete simulations shows

that the new model captures the key features of the discrete process. Applying the

extended logistic model to simulate a proliferation assay using rates from recent ex-

perimental literature shows that neglecting the role of heterogeneity can, at times,

lead to misleading results.
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1 Introduction1

Cell proliferation is essential for regulating the dynamics of cell populations,2

and plays a vital role in collective cell spreading, cancer progression and tissue3

regeneration (Eladdadi and Isaacson, 2008; Evan and Vousden, 2001; Haridas4

et al., 2017; Pavlath et al., 1998). While it is clear that cells from different5

cell lines proliferate at different rates (Hayflick, 1965), recent experimental6

methods indicate that heterogeneity in cell proliferation arises even within7

the same cell line (Bajar et al., 2016; Guan et al., 2014; Sakaue-Sawano et al.,8

2008).9

Many different types of experiments are used to quantify cell proliferation10

(An et al., 2001; Azzarone and Macieira-Coelho, 1982; Haass et al., 2014;11

Hayflick, 1965; Jin et al., 2017; Kaneoka et al., 1983; Willaime et al., 2013). The12

complexity of these experiments varies from simple in vitro proliferation assays13

in which the net expansion of a population of cells is observed and measured,14

such as the experiment shown in Figure 1, to more sophisticated experiments15

that use fluorescent cell cycle indicators to measure the duration of different16

phases of the cell cycle for individual cells (Haass et al., 2014; Sakaue-Sawano17

et al., 2008; Vittadello et al., 2018). A standard measure of cell proliferation18

is the doubling time, which is a measure of the duration of time required for a19

population of cells, at low density, to double (Hayflick, 1965; Jin et al., 2016).20

The doubling time quantifies cell proliferation from the perspective of the21

entire population, and any kind of variability amongst individual cells in the22

population is neglected. Modern experimental approaches, such as individual-23

level fluorescent cell cycle indicators and micro collagen gel arrays, allow us24

to quantify variations in the cell cycle of individual cells (Guan et al., 2014;25

Haass et al., 2014). This individual-level data shows that proliferation rates26
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of individual cells can vary significantly within the same cell line (Guan et al.,27

2014; Haass et al., 2014).28
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(c)(b)(a)

t = 0 h t = 12 h t = 24 h¯¯¯

Fig. 1. In vitro cell proliferation assay. Population of PC-3 prostate cancer cells
in a square field of view, of side length 1440 µm. Images correspond to (a) t̄ = 0 h,
(b) 12 h, and (c) 24 h (Browning et al., 2018). Reproduced from Browning et al.
(2018) with permission.
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Mathematical models are often used to mimic cell biology experiments, and29

to quantify rates of cell proliferation (Cai et al., 2007; Jin et al., 2017; Nardini30

et al., 2016). One approach is to apply an individual-level, agent-based model31

(Frascoli et al, 2014). In this kind of model, agents represent individual cells,32

and these agents migrate and proliferate according to certain rules thought to33

be relevant to the application of interest (Treloar et al., 2014). Although agent-34

based models offer the capability to investigate individual-level details, most of35

these models adopt a conventional assumption that the rate of proliferation of36

individual cells in the population is taken to be a constant. This assumption,37

however, may not be applicable to real situations where the proliferation rate38

of individual cells in the population varies significantly.39

The most commonly-used continuum model of cell proliferation is the classical40

logistic growth model (Cai et al., 2007; Jin et al., 2016; Maini et al., 2004; Sen-41

gers et al., 2007; Sheardown and Cheng, 1996; Sherratt and Murray 1990; Vo42

et al., 2015; Warne et al. 2017). Although the classical logistic growth model43

is widely used to estimate the growth rate for populations of cells, there is an44

increasing awareness in the mathematical biology literature that cell popula-45

tions do not always grow logistically (e.g. Gerlee, 2013; Powell et al., 2017;46

Sarapata and de Pillis 2014; Sewalt et al. 2016; West et al. 2001; Neufeld47

et al. 2017), and generalisations of the logistic growth model have been pro-48

posed (Jolicoeur and Pontier, 1989; Tsoularis and Wallace, 2002). Other types49

of models, where population growth is explicitly coupled to external factors,50

such as light availability (Pozzobon and Perré, 2018) and interactions with51

other populations (Garćıa-Algarra et al., 2014), have also been developed for52

specific biological applications. However, a limitation in each of these mod-53

elling frameworks is that the cell proliferation rate is treated as a constant,54

which amounts to neglecting heterogeneity.55

In this work we consider a discrete modelling framework in which we deliber-56

ately introduce heterogeneity in the rates of migration and proliferation. The57
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continuum limit description of the discrete model leads to a complicated sys-58

tem of reaction-diffusion equations which simplifies to a generalisation of the59

classical logistic growth model when we apply the model to situations where60

there are, on average, no spatial variations in the agent density, such as the61

experimental image in Figure 1. We apply the extended logistic model to sim-62

ulate a proliferation assay using a distribution of heterogeneous proliferation63

rates that are estimated from the cell biology literature.64

We show that neglecting the role of heterogeneity can produce misleading re-65

sults when population dynamics are interpreted in a standard way by simply66

calibrating the solution of the classical logistic growth model to match the67

data. Comparing the results from the logistic growth model and the extended68

model illustrates that the logistic growth model does not perform well in some69

cases. As we show, in these cases where the standard approach fails to cap-70

ture the growth dynamics of heterogeneous populations, the new extended71

model performs very well. Unlike the classic logistic growth model, the ex-72

tended model does not have an exact solution. With this in mind, we provide73

analytical insight into the role of heterogeneity by constructing approximate74

perturbation solutions in the limit of small variation in the proliferation rate.75

Throughout this study we use a combination of dimensional and dimension-76

less parameters. Mathematical models, both discrete and continuum, are first77

presented using dimensional variables and dimensional parameters. All di-78

mensional quantities are indicated with an overbar. Later, when we apply the79

mathematical models to experimental data, and when we present some analy-80

sis of the mathematical models, we always work with dimensionless variables81

and parameters for which the overbar notation is dropped.82

2 Discrete model83
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We use a conceptually straightforward exclusion process on a hexagonal lattice84

to simulate cell migration and cell proliferation (Jin et al., 2017). We apply this85

model to simulate in vitro cell proliferation assays, such as the experimental86

image in Figure 1. For this kind of proliferation assay, a standard way to87

estimate the proliferation rate is to count individual cells, and to use this88

information to construct time evolution of the average density profile (Jin et89

al., 2016). With this averaged density profile, we could calibrate the solution90

of the classical logistic equation to provide an estimate of the proliferation rate91

(Tremel et al. 2009). However, this standard approach neglects any variation92

in the proliferation rate. Therefore, here we use our model and take a different93

approach.94

In our model, agents represent individual cells, and these agents are placed95

uniformly, at a specified initial density, on a hexagonal lattice. We use a lattice96

of size I×J lattice sites, with lattice spacing ∆̄. Here, ∆̄ can be thought of as97

a typical cell diameter, such as ∆̄ = 20 µm. To simulate crowding effects, each98

lattice site can be occupied by, at most, one agent. Each lattice site is indexed,99

s = (i, j), where i, j ∈ Z+, and each site is associated with a unique Cartesian100

coordinate. The total population of agents is composed of N ≥ 1, potentially101

distinct, subpopulations. Agents in each subpopulation are characterised by102

a potentially distinct migration probability per time step, P (n)
m ∈ [0, 1] for103

n = 1, 2, . . . , N . Furthermore, agents in each subpopulation are characterised104

by a potentially distinct proliferation probability per time step, P (n)
p ∈ [0, 1]105

for n = 1, 2, . . . , N . The total number of agents at time t is M(t̄).106

Cell migration and proliferation are modelled using a random sequential ran-107

dom update method (Chowdhury et al., 2005). To advance the discrete model108

from time t̄ to time t̄ + τ̄ , M(t̄) agents are selected at random, one at a109

time, with replacement. The selected agent attempts to move to one of the110

six nearest neighbour sites with probability P (n)
m . The attempted migration111

event will be successful if the randomly chosen nearest neighbour target site is112
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vacant. After M(t̄) potential migration events have been attempted, another113

M(t̄) agents are selected at random, one at a time, with replacement. The114

selected agent will attempt to place a daughter agent on one of the six nearest115

neighbour sites with probability P (n)
p . The attempted proliferation will only116

be successful if the randomly chosen nearest neighbour site is vacant. In the117

event that the potential proliferation event is successful, we make the simplest118

assumption that the daughter agent belongs to the same subpopulation as119

the mother agent. Once these potential motility and proliferation events have120

been attempted, we update M(t̄+ τ̄).121

Using a random sequential update algorithm means that during each time step122

some agents may attempt to migrate or proliferate multiple times, whereas123

other agents may not attempt to migrate or proliferate at all. However, when124

we simulate over a large number of time steps, on average each agent in the125

population will attempt to migrate and proliferate once per time step. The126

random sequential update algorithm is conceptually straightforward, easy to127

implement, and is known to provide a good approximation to the dynamics128

of these kinds of simulations where we consider populations of motile and129

proliferative agents (Treloar et al., 2014).130

3 Continuum limit description131

The continuum limit description of the discrete model can be derived using132

standard averaging arguments and a mean field approximation. These kinds133

of arguments and approximations are widely invoked throughout the mathe-134

matical biology literature where continuum limit descriptions are derived from135

underlying stochastic models (e.g. Callaghan et al., 2006; Deroulers et al. 2009;136

Dyson and Baker, 2015; Plank and Simpson, 2012). The mean field assumption137

involves treating the occupancy status of lattice sites as being independent.138

While this assumption is questionable for any particular single realisation of139
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the stochastic model, it turns out to be remarkably accurate when we consider140

an ensemble of stochastic simulations, as we will show later. Furthermore, this141

approximation is known to be accurate for a range of problems involving in-142

teractions between multiple subpopulations of agents (Simpson et al, 2009),143

and for other problems involving single populations of motile and proliferative144

agents (Simpson et al. 2010).145

We denote the probability of finding an agent from subpopulation n at site146

s = (i, j) as C(n)
s ∈ [0, 1], for n = 1, 2, . . . , N . This probability can be thought147

of as corresponding to averaging the occupancy of site s over many identically148

prepared realisations of the stochastic model. Therefore, the probability of149

site s being vacant is 1−
N∑
n=1

C(n)
s . In the discrete model, migration events can150

act to either increase or decrease the occupancy of site s, whereas prolifera-151

tion events can only act to increase the occupancy of site s. Accounting for152

these possibilities, the change in average occupancy at site s for agents from153

subpopulation n, from time t̄ to time t̄+ τ̄ can be written as,154

δC(n)
s =

increase in occupancy due to migration into site s︷ ︸︸ ︷
P (n)
m

6

(
1−

N∑
n=1

C(n)
s

) ∑
s′∈N{s}

C
(n)
s′

−

decrease in occupancy due to migration out of site s︷ ︸︸ ︷
P (n)
m

6
C(n)

s

∑
s′∈N{s}

(
1−

N∑
n=1

C
(n)
s′

)

+

increase in occupancy due to proliferation into site s︷ ︸︸ ︷
P (n)
p

6

(
1−

N∑
n=1

C(n)
s

) ∑
s′∈N{s}

C
(n)
s′ , (1)

where N{s} denotes the set of six nearest-neighbour sites around site s. In155

Equation (1) we implicitly make the standard assumption that the average oc-156

cupancy of each lattice site is independent. This is the mean field assumption.157

We expand each term in Equation (1) about site s using Taylor series, and158

neglect terms of O(∆̄3). This process leads to the cancellation of many terms.159

Here, we omit showing these intermediate steps as they have been outlined160
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for similar models in our previous work (Jin et al., 2016; Simpson et al., 2009;161

Simpson et al., 2010). Dividing both sides of the resulting expression by τ̄ ,162

and taking the limit as ∆̄→ 0 and τ̄ → 0 jointly, with ∆̄2/τ̄ held constant we163

obtain,164

∂Cn(x̄, ȳ, t̄)

∂t̄
=

unbiased motility mechanism with exclusion︷ ︸︸ ︷(
P (n)
m ∆̄2

4τ̄

)
∇ ·

[
(1− S(x̄, ȳ, t̄))∇Cn(x̄, ȳ, t̄) + Cn(x̄, ȳ, t̄)∇S(x̄, ȳ, t̄)

]

+

unbiased proliferation mechanism with exclusion︷ ︸︸ ︷(
P (n)
p

τ̄

)
Cn(x̄, ȳ, t̄)

[
1− S(x̄, ȳ, t̄)

]
, (2)

for n = 1, 2, . . . , N . Cn(x̄, ȳ, t̄) is the density of nth subpopulation, and x̄ and ȳ165

are the horizontal and vertical coordinates, respectively. The total population166

density is given by S(x̄, ȳ, t̄) =
N∑
n=1

Cn(x̄, ȳ, t̄).167

In cell proliferation experiments, cells are placed uniformly on a two-dimensional168

substrate (Browning et al. 2018; Jin et al., 2017). Therefore, this kind of ini-169

tialisation means that there are, on average, no spatial gradients in cell density170

provided we view the experiment at a sufficiently large spatial scale, such as171

in Figure 1. Under these conditions Equation (2) simplifies to172

dCn(t̄)

dt̄
= r̄nCn(t̄)

[
1− S(t̄)

]
, (3)

where r̄n = P (n)
p /τ̄ , for n = 1, 2, 3, . . . , N . The total cell density S(t̄) then can173

be obtained by summing over the governing equations of N subpopulations to174

give,175

dS(t̄)

dt̄
=

(
N∑
n=1

r̄nCn(t̄)

) [
1− S(t̄)

]
. (4)

In this work we always deal with initial conditions without any spatial gradi-176

ents, which corresponds to the experimental images shown in Figure 1. This177

implies that we are working with a system of ordinary differential equations178
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(ODEs) instead of a system of partial differential equations. If we were to179

consider a different initial condition, such as a scratch assay or a barrier as-180

say where there experiments are intentionally initialised with some spatial181

gradients present, then we would have to work with Equation (2) instead of182

Equation (3).183

Without loss of generality, when we apply Equation (3) we adopt the conven-184

tion that r̄1 ≥ r̄2 ≥ r̄3 ≥ . . . ≥ r̄N , so that r̄1 is the proliferation rate of the185

fastest-proliferating subpopulation, r̄2 is the proliferation rate of the second186

fastest-proliferating subpopulation, and so on. We note that in the special case187

where we consider all the proliferation rates to be equal, r̄1 = r̄2 = . . . = r̄N ,188

we are dealing with a homogeneous population with a constant proliferation189

rate, λ̄. The continuum limit description simplifies to,190

dC(t̄)

dt̄
= λ̄C(t̄)

[
1− C(t̄)

]
, (5)

which is the classical logistic growth model (Murray, 2002), whose solution is191

given by,192

C(t̄) =
C(0)[

1− C(0)
]
e−λ̄t̄ + C(0)

. (6)

This exact solution is a sigmoid curve that monotonically increases from C(0),193

and approaches unity as t̄→∞, provided that C(0) < 1. Since our system of194

ODEs, given by Equation (3), simplifies to the classical logistic model when all195

the proliferation rates are identical, we refer to Equation (3) as the extended196

logistic growth model.197

To simplify our work we nondimensionalise time using the fastest proliferation198

rate, t = r̄1t̄. Therefore Equation (3) becomes199

dC1(t)

dt
=C1(t)

[
1− S(t)

]
,

dCn(t)

dt
=rnCn(t)

[
1− S(t)

]
,

(7)
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where rn = r̄n/r1, for n = 2, 3, . . . , N . Therefore, we now have a system of200

ODEs with non-dimensional proliferation rates of: unity, r2, r3, . . . , rN , with201

1 ≥ r2 ≥ r3 ≥ . . . ≥ rN . This non-dimensionalisation allows us to compare202

the solutions of the model for different systems that are characterised by very203

different proliferation rates. In the non-dimensional format, Equation (4) be-204

comes205

dS(t)

dt
=

(
C1(t) +

N∑
n=2

rnCn(t)

) [
1− S(t)

]
. (8)

To be consistent, if we non-dimensionalise Equation (6) with t = λ̄t̄, we obtain206

C(t) =
C(0)[

1− C(0)
]
e−t + C(0)

. (9)

Unlike the classical logistic model, Equation (7) does not have an exact so-207

lution. Therefore, we present numerical solutions that are obtained using a208

backward Euler approximation. In all cases we use a constant time step of209

δt = 0.01, and Picard iteration with convergence tolerance ε = 1 × 10−5.210

These choices of δt and ε are sufficient to produce grid-independent numerical211

solutions of the model.212

4 Results213

4.1 Continuum-discrete match214

All discrete results are presented in a non-dimensional format, on a lattice215

with unit lattice spacing and with time steps of unit duration, ∆ = τ = 1.216

Note that ∆ and τ can be re-scaled to correspond to any particular choices217

of dimensional ∆̄ and τ̄ . This means that we can re-scale any of these dimen-218

sionless simulations to correspond to a population of cells with arbitrary cell219
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diameter, and arbitrary characteristic proliferation rate. Since we are focus-220

ing on the role of heterogeneity in cell proliferation, in all simulations we set221

∆ = P (n)
m = 1, for n = 1, 2, . . . , N , and τ = P (1)

p = 0.01. In addition, we choose222

I = 101 and J = 117, so that the size of the simulation domain is 100× 100.223

Periodic boundary conditions are applied to all simulations.224

To explore the role of heterogeneity in population growth, we first consider225

simulations involving up to three subpopulations: subpopulation 1 has the226

fastest proliferation rate; subpopulation 2 has an intermediate proliferation227

rate; and subpopulation 3 has the slowest proliferation rate. We first perform228

three different types of discrete simulations initialised with different combina-229

tions of these three subpopulations. Each simulation is initialised so that the230

total number of agents occupies just 10% of the total number of lattice sites.231

In the first simulation we consider a homogeneous population that is com-232

posed entirely of agents from subpopulation 1, N = 1. The second simulation233

involves a heterogeneous population that is composed of equal proportions of234

agents from subpopulations 1 and 2, N = 2. The third simulation involves235

a heterogeneous population that is composed of equal proportions of agents236

from subpopulations 1, 2 and 3, N = 3. Snapshots from the discrete simu-237

lations are shown in Figure 2. A qualitative comparison of these snapshots238

shows that the growth dynamics are very different in the homogeneous and239

heterogeneous populations. Both the dynamics of the overall total population,240

and the dynamics of the various subpopulations depends on the details of the241

heterogeneity present in the system.242
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Fig. 2. Discrete and continuum simulations of heterogeneous proliferation. Snapshots are shown at t = 0, 5, and 10 for: (a)-(c)
a homogeneous population, N = 1; (e)-(g) a heterogeneous population, N = 2; and (i)-(k) a heterogeneous population, N = 3. In each
case, 10% of lattice sites are initially randomly occupied, with equal proportions of the various subpopulations. (d), (h), (l) show the
corresponding continuum-discrete matches. The solid lines are solutions of the extended logistic model, dashed lines are averaged discrete
results, obtained by considering 50 identically prepared realisations. In all plots red represents the fastest-proliferating subpopulation
(subpopulation 1); green represents the intermediate subpopulation (subpopulation 2); and blue represents the slowest-proliferating

subpopulation (subpopulation 3). All simulations correspond to P
(1)
p = 0.01, P

(2)
p = 0.005, P

(3)
p = 0.0025, r2 = 0.5 and r3 = 0.25.
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To quantify the population growth, we plot the time evolution of the total243

averaged agent density, and superimpose the corresponding solution of Equa-244

tion (7). For the homogeneous population in Figure 2(d), the continuum limit245

simplifies to the classical logistic growth model, while for the heterogeneous246

populations in Figure 2(h) and (l), the extended logistic model applies. Over-247

all we see that the quality of the match between the solution of the continuum248

model and averaged data from the discrete simulations is excellent. Therefore,249

this comparison indicates that the continuum limit description is a useful and250

accurate mathematical tool that can be used to study the proliferation of het-251

erogeneous populations without relying on repeated stochastic simulations.252

4.2 Comparison of the classical logistic growth model and the extended logistic253

model254

As mentioned in the Introduction, although the classical logistic growth model255

is widely used when interpreting data from cell biology experiments (Cai et256

al., 2007; Jin et al., 2016; Maini et al., 2004; Sengers et al., 2007; Sheardown257

and Cheng, 1996; Sherratt and Murray 1990; Vo et al., 2015; Warne et al.258

2017), this standard approach neglects any heterogeneity in cell proliferation259

rate. To provide insight into how well the classical logistic growth model is260

able to predict and describe the growth of heterogeneous populations, we now261

calibrate the solution of the classical logistic growth model in an attempt to262

match the solution of the extended logistic model which explicitly accounts263

for heterogeneous growth.264

We consider two different initial conditions for a population that is composed265

of three different subpopulations, N = 3. Again, we refer to these subpopula-266

tions as subpopulations 1, 2, and 3. For both initial conditions we consider, we267

distribute the total population uniformly across the domain so that the ini-268

tial total density is 10% of the carrying capacity density. In the first case we269
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choose the initial condition so that the total population is initially composed270

of 75% of agents from subpopulation 1, 20% of agents from subpopulation271

2, and 5% of agents from subpopulation 3, as shown in Figure 3(a). In the272

second case we choose the initial condition so that the total population is273

initially composed of 5% of agents from subpopulation 1, 20% of agents from274

subpopulation 2, and 75% of agents from subpopulation 3, as shown in Figure275

3(b). These choices of initial condition mean that the first case is composed of276

a small proportion of relatively quiescent agents (di Fagagna et al., 2003), and277

the second case corresponds to a population that contains a small proportion278

of rapidly proliferating agents, such as is thought to be relevant to cancer279

progression (Davis et al., 2017). The solution of the extended logistic growth280

model for these two scenarios of heterogeneous growth are shown in Figure281

3(b) and (d), respectively.282
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Fig. 3. Comparison of the classical logistic growth model to the extended
model for heterogenous growth. (a) and (c) Initial distribution of proliferation
rate for the two heterogenous populations. (a) corresponds to a population com-
posed of a small proportion of relatively quiescent cells, and (c) corresponds to a
population containing a small proportion of rapidly proliferating cells. In all cases,
red represents the fastest-proliferating subpopulation (subpopulation 1); green rep-
resents the intermediate subpopulation (subpopulation 2); and blue represents the
slowest-proliferating subpopulation (subpopulation 3). In each case, the time evolu-
tion of the total density from the extended model, together with the best-fit classical
logistic growth curve, is plotted in (b) and (d).
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Again, we recall that standard approaches to interpreting cell proliferation283

assays is to calibrate the solution of the classical logistic growth model to284

match the experimental data, and to provide an estimate of the proliferation285

rate (Cai et al., 2007; Jin et al., 2016; Maini et al., 2004; Sengers et al.,286

2007; Sheardown and Cheng, 1996; Sherratt and Murray 1990; Vo et al., 2015;287

Warne et al. 2017). This standard approach implicitly neglects the role of288

heterogeneity, so it is of interest for us to take the population growth curves289

for these heterogeneous populations in Figure 3(b) and (d), and to calibrate290

the solution of the classical logistic growth model to match this data. We291

calibrate the solution of the classical logistic growth model to the density292

data in Figure 3(b) and (d) using MATLAB’s lsqcurvefit function, and show293

the best match in Figure 3(b) and (d). This calibration provides an estimate of294

λ that is associated with the best fit of the standard model to the total density295

data. We are also interested in understanding the quality of match between the296

best fit solution of the classical logistic growth model and the heterogeneous297

density data. To quantify the quality of match we use a least-squares measure,298

E =
1000∑
l=1

[C(tl)− S(tl)]
2 , (10)

where C(t) is the best fit solution of the classical logistic growth model, and299

S(t) is the total density associated with the extended logistic growth model.300

Here we measure E in the interval 0 ≤ t ≤ 10, by evaluating both C(t) and301

S(t) at 1000 equally-spaced time points, tl for tl = 0, 0.01, 0.02, . . . , 10. We302

denote the minimum least–squares error as Emin.303

A simple visual comparison of the best fit classical logistic growth model and304

the solution of the extended model in Figure 3(b) shows that the standard305

approach of neglecting heterogeneity leads to an excellent match. However, re-306

sults in Figure 3(d) indicate that the best fit classical logistic model matches307

the heterogeneous growth curve poorly. This qualitative assessment of the308

quality of match is confirmed quantitatively by our estimates of E, as re-309
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ported in Figure 3. Overall, we see that the standard approach of neglecting310

heterogeneity can sometimes lead to reasonable outcomes, whereas in other311

cases the neglect of heterogeneity is unsatisfactory. We anticipate that the ini-312

tial distribution of proliferation rates across the initial subpopulations plays313

an important role in determining the suitability of this standard approach.314

We now investigate this question further by applying our extended model to315

some data from the literature316

5 Case study317

We will now compare the performance of the classical logistic growth model318

and the extended logistic growth model by simulating proliferation assays in319

which the distributions of heterogeneous proliferation rates are taken from320

recent experimental measurements. In particular, we work with data from two321

human melanoma cell lines (Haass et al., 2014): (i) the 1205Lu cell line, which322

we refer to as cell line 1, and (ii) the WM983C cell line, which we refer to as cell323

line 2. The data we use to characterise the distribution of proliferation rates324

comes directly from Haass et al. (2014) where they use a specialised fluorescent325

technique to characterise the cell cycle of individual melanoma cells. Data from326

Haass et al. (2014) reports the duration of time spent in the S/G2/M phase of327

the cell cycle for groups of at least 20 individual cells from multiple melanoma328

cell lines. Since the S/G2/M cell cycle phase is closely related to the process329

of cell division, we treat the heterogeneity in these measurements as being330

representative of the heterogeneity present in the entire cell cycle.331

Haass’ data reports the duration of time that at least 20 individual cells spend332

in the S/G2/M cell cycle phase (Haass et al., 2014). We group these individual333

measurements of duration into three subgroups. We choose the subgroups so334

that each column in the histogram of this data has approximately the same335

width, as shown in Figure 4(a)-(b). Since Haass’ data is reported in terms of a336
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duration of time spent in the cell cycle, we convert these durations into rates337

by dividing loge(2) by the reported durations. Here, the loge(2) term comes338

from making the simple assumption that cells are growing exponentially. The339

details of the raw experimental data are given in the Supplementary Material340

document. Presenting the dimensional rates in Figure 4(c)-(d) indicates that341

the distribution of proliferation rate in cell line 1 is approximately symmetric,342

whereas the distribution of rates for cell line 2 is positively skewed.343
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Fig. 4. Experimental data from Haass et al. (2014). (a)-(b) Histograms show-
ing the distribution of the time scale associated with the S/G2/M cell cycle for
cell lines 1 and 2, respectively. (c)-(d) Histograms showing the distribution of rates
associates with the S/G2/M cell cycle for cell lines 1 and 2, respectively. The time
scales are converted to rates by dividing loge(2) by the time scale. For both cell
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indicates the intermediate subpopulation (subpopulation 2); and blue indicates the
slowest-proliferating subpopulation (subpopulation 3).
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To apply our models using the heterogeneous proliferation rate data in Fig-344

ure 4, we non-dimensionalise the proliferation rate data by dividing each rate345

by the fastest-proliferation rate for each cell line. This data, presented as346

histograms in Figure 5(a)-(e), shows the distribution of non-dimensional pro-347

liferation rates for both cell lines. We now use these histograms to specify348

both the initial proliferation rates, and the initial distribution of the three349

subpopulations in the discrete model and the corresponding extended logistic350

continuum model.351
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Fig. 5. Comparison of the classical logistic growth model to the extended model for experimental cell lines 1 and 2. (a)
and (e) Initial distribution of proliferation rate for cell lines 1 and 2, respectively. (b) and (f) Snapshots of simulations at t = 0, 5, and
10 for both experimental cell lines. (c) and (g) The continuum-discrete match of the time evolution of the densities for experimental
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superimposed with the total density profile computed using the extended model. For both of experimental cell lines, red represents
the fastest-proliferating subpopulation (subpopulation 1); green represents the intermediate subpopulation (subpopulation 2); and blue

represents the slowest-proliferating subpopulation (subpopulation 3). For cell line 1, P
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We first model the heterogeneous population growth for cell line 1 and 2 using352

the discrete model. For each cell line, agents are initially distributed uniformly353

on the lattice so that 10% of lattice sites are occupied. We are also careful to354

ensure that the initial proportions of subpopulation 1, 2 and 3 correspond to355

the proportions of the three subpopulations in the histograms in Figure 5(a)356

and (e). Snapshots of the growing cell populations for both cell lines are given357

in Figure 5(b) and (f). These snapshots immediately reveal some interesting358

features. For cell line 1, the distribution of the three subpopulations remains359

similar over time, as there appears to be roughly equal proportions of red,360

green and blue agents at t = 10 as there are initially, at t = 0. However, we361

observe very different behaviour for cell line 2, as the relative abundance of the362

three subpopulations changes dramatically over time. For example, at t = 0,363

we see that subpopulation 1 is the least abundant subpopulation. However,364

by the end of the growth process, at t = 10, subpopulation 1 is the most365

abundant subpopulation. These qualitative trends are also clear in Figure 5(c)366

and (g) where we compare averaged discrete data from repeated simulations of367

the stochastic model and the solution of the corresponding continuum model.368

In addition to quantifying the behaviour we see in the discrete snapshots,369

the solution of the continuum model in Figure 5(c) and (g) confirm that the370

continuum model is an accurate approximation of the discrete model.371

To examine the implications of taking a standard approach and neglecting372

the role of heterogeneity, we also calibrate the solution of the classical logistic373

model to the total density data in Figure 5(c) and (g). Following the same374

approach described in Section 4.2, results in Figure 5(d) and (h) show the evo-375

lution of the total cell density profile superimposed with the best-fit classical376

logistic growth curves for cell line 1 and 2, respectively. Interestingly, the qual-377

ity of match between the classical logistic growth model and the heterogenous378

population growth curve is relatively good for cell line 1, whereas the quality379

of match for cell line 2 is poor.380
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These results show that the consequences of neglecting the role of hetero-381

geneity is subtle. In particular, under some circumstances it is possible to382

accurately predict the growth of a heterogeneous cell population using the383

classical logistic growth model, whereas in other circumstances the classical384

logistic growth model provides a poor match.385

6 Analytical insight for two subpopulations, N = 2386

To support our numerical solutions of the continuum model developed in Sec-387

tion 3, we now provide some simple analysis. This analysis provides both math-388

ematical insight into the extended logistic growth model, as well as providing389

biological insight into the effects of heterogeneity. For brevity we concentrate390

on the case in which there are two subpopulations present, with densities C1(t)391

and C2(t). In this case the extended model, Equation (7), simplifies to392

dC1(t)

dt
= C1(t)

[
1− S(t)

]
,

dC2(t)

dt
= r2C2(t)

[
1− S(t)

]
,

(11)

where r2 ≤ 1. The governing equation for the evolution of the total density is393

dS(t)

dt
=
[
C1(t) + r2C2(t)

][
1− S(t)

]
. (12)

The solutions for both C1(t) and C2(t) are sigmoid curves that monotonically394

increase from the initial densities, C1(0) and C2(0), provided that C1(0) +395

C2(0) < 1. In the long time limit the solution of Equation (11) reaches a396

steady state solution, where S(t) → 1 as t → ∞. To analyse this long time397

behaviour we denote the steady state densities as,398

C1 = lim
t→∞

C1(t), C2 = lim
t→∞

C2(t), (13)
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so that we have C1 + C2 = 1.399

6.1 Exact steady state concentrations400

It is not immediately clear what the steady state values C1 and C2 are from401

Equation (11) without first solving the transient model for the long time be-402

haviour (Simpson et al., 2007). Furthermore, it is unclear how these steady403

state densities depend on the initial condition, C1(0) and C2(0), or on the404

proliferation rate r2. To provide insight into this question, we can solve for405

C1 and C2 directly by first dividing one of the equations in (11) by the other,406

separating variables, and integrating to give407

C2(t) =
C2(0)[
C1(0)

]r2 [C1(t)
]r2
. (14)

This relationship holds for all t. By substituting Equation (14) into Equation408

(11), we eliminate C2(t) to give409

dC1(t)

dt
= r1C1(t)

1− C1(t)− C2(0)[
C1(0)

]r2 [C1(t)
]r2 . (15)

This equation is a now a direct analogue of the classical logistic growth model.410

For general values of r2 < 1, Equation (15) has no exact solution. However,411

in this form it is easy to read off the steady-state value by setting the time412

derivative to zero, resulting in413

1− C1 −
C2(0)[
C1(0)

]r2 (C1)r2 = 0. (16)

Equation (16) is a simple algebraic equation which can be solved using any414

iterative numerical method, such as MATLAB’s fsolve function. The value of415

C2 is then given by C2 = 1− C1.416
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Results in Figure 6(a)-(b) show two examples where we have used this ap-417

proach to directly calculate C1 and C2. These predictions are superimposed on418

the associated transient solutions of Equation (11), showing that the direct419

method provides a simple and accurate way to calculate the long-time steady420

solution, without needing to use numerical integration to evaluate the long421

time limit of the transient solution.422
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populations, N = 2. (a)-(b) Steady state results (dashed) compared to the full
transient numerical solutions (solid). Here, the first subpopulation is shown in or-
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plotted in green and the two-term O(ε) perturbation solution is plotted in red.
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6.2 Approximate results for small heterogeneity423

Although the extended logistic growth model given by Equation (11) does424

not have an exact solution, we can obtain approximate results in the limit of425

small heterogeneity. To explore this we consider r2 = 1− ε, where ε� 1, and426

propose the perturbation solution (Murray, 2012)427

C1(t) = C
(0)
1 (t) + εC

(1)
1 (t) +O(ε2),

C2(t) = C
(0)
2 (t) + εC

(1)
2 (t) +O(ε2),

(17)

where the superscripts (0) and (1) represent the leading order and first cor-428

rection terms, respectively. The asymptotic solution for the total population429

is obtained by summing over the solutions for the two subpopulations:430

S(t) = S(0)(t) + εS(1)(t) +O(ε2). (18)

Substituting Equation (17) into the extended logistic model, given by Equation431

(11), gives the system432

dC
(0)
1 (t)

dt
= C

(0)
1 (t)

[
1− S(0)(t)

]
,

dC
(0)
2 (t)

dt
= C

(0)
2 (t)

[
1− S(0)(t)

]
,

(19)

with C
(0)
1 (0) = C1(0), C

(0)
2 (0) = C2(0). Correspondingly, the O(1) equation433

for the total population is434

dS(0)(t)

dt
= S(0)(t)

[
1− S(0)(t)

]
, (20)

with S(0)(0) = S(0). Equation (20) is the standard logistic growth model with435
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the explicit solution (Murray, 2002)436

S(0)(t) =
S(0)[

1− S(0)
]
e−t + S(0)

. (21)

This is to be expected since our leading order problem holds for ε = 0, in437

which case both populations have the same proliferation rate, so effectively438

there is one population. Solving for the individual subpopulations gives the439

leading order solutions440

C
(0)
1 (t) =

C1(0)[
1− S(0)

]
e−t + S(0)

,

C
(0)
2 (t) =

C2(0)[
1− S(0)

]
e−t + S(0)

.

(22)

For ε� 1, we proceed to solve for the correction terms. The governing equa-441

tions for the individual populations are442

dC
(1)
1 (t)

dt
= C

(1)
1 (t)

[
1− S(0)(t)

]
− C(0)

1 (t)S(1)(t),

dC
(1)
2 (t)

dt
=
[
C

(1)
2 (t)− C(0)

2 (t)
][

1− S(0)(t)
]
− C(0)

2 (t)S(1)(t),

(23)

while the corresponding equation for the total density is443

dS(1)(t)

dt
= S(1)(t)

[
1− 2S(0)(t)

]
− C(0)

2 (t)
[
1− S(0)(t)

]
. (24)

Equation (24) has an explicit solution444

S(1)(t) =
C2(0)

[
S(0)− 1

]
te−t{

− e−t
[
1− S(0)

]
− S(0)

}2 . (25)

Neglecting higher order terms we obtain the two-term perturbation solution445
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for the total density446

S(t) =
S(0)[

1− S(0)
]
e−t + S(0)

+ ε
C2(0)

[
S(0)− 1

]
te−t{

− e−t
[
1− S(0)

]
− S(0)

}2 +O(ε2). (26)

To demonstrate the effectiveness of this approximation, the O(1) and O(ε)447

perturbation solutions for the total density are plotted in Figure 6(c)-(d). The448

corresponding full numerical solution is also presented. For a small amount449

of heterogeneity in the population (ε = 0.1, Figure 6(c)), the leading order450

term (solid green) provides a reasonably good approximation of the numerical451

solution (dashed black). However, for larger heterogeneity (ε = 0.4, Figure452

6(d)), we see that the leading order term is no longer close to the numerical453

solution, and instead the full two-term perturbation solution Equation (26)454

(solid red) is required to provide a good approximation. These plots provide455

further evidence that when the population is almost homogenous, then the456

classical logistic model provides a good approximation. However, as hetero-457

geneity becomes more pronounced, then our extended logistic growth model458

does a much better job at describing the dynamics. Furthermore, provided the459

heterogeneity is not too great, our two-term perturbation solution acts as a460

very good analytical approximation.461

Results in Figure 6(c)-(d) correspond to one particular choice of initial con-462

dition, C1(0) and C2(0). Additional results (Supplementary Material, Figure463

S3) show that Equation (26) also provides a good approximation when we464

vary the initial condition, provided that ε is sufficiently small.465

7 Conclusions466

In this study we develop discrete and continuum models of cell migration and467

cell proliferation that allow us to explicitly investigate the role of heterogeneity,468
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with a particular emphasis on the role of heterogeneity in the proliferation rate.469

Despite the fact that heterogeneity is commonly observed in cell populations,470

and is thought to play an important role in disease progression and tissue471

repair (Evan and Vousden, 2001; Haridas et al., 2017; Pavlath et al., 1998),472

standard mathematical models of cell migration and cell proliferation neglect473

to account for heterogeneity. Indeed, most standard mathematical models of474

cell proliferation simply treat the proliferation rate as a constant.475

To explore the role of heterogeneity, we start by developing a discrete mod-476

elling framework to simulate cell migration and cell proliferation, modulated477

by crowding effects. The key point of the model is to deliberately introduce478

heterogeneity in the individuals within the population. The continuum limit479

description of the discrete model leads to a system of coupled, nonlinear ODEs.480

It is of interest to note that in the simplest case where the proliferation rates481

of each subpopulation are identical, the system of ODEs simplifies to the clas-482

sical logistic growth model. Therefore, we call the new model the extended483

logistic growth model. Averaged data obtained from repeated simulations of484

the discrete model compare very well with the solution of the extended logistic485

growth model.486

To explore the consequences of applying the logistic growth model and neglect-487

ing the role of heterogeneity, we perform a set of in silico experiments and488

generate density profiles describing the growth of a heterogeneous population489

of cells. We calibrate the solution of the classical logistic equation to match490

that data. Interestingly, while the classical logistic growth model can provide491

an accurate prediction of the growth of some kinds of heterogeneous popula-492

tions, we also find that in some circumstances the classical approach can not493

make accurate predictions. We also generate in silico data by parameterising494

the extended logistic growth model with a set of heterogeneous proliferation495

rates from recent experimental measurements. Again, we find that the classi-496

cal logistic model performs very well under some conditions, but it performs497
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poorly for others. Overall, we find that when the heterogeneous population498

contains a small proportion of relatively fast proliferating cells, the classical499

logistic equation performs poorly. Therefore, we suggest that care ought to be500

exercised when modelling the growth of certain cell populations. For example,501

when modelling a population of cells that might involve mutations that act502

to increase the proliferation rate in a small subpopulation (e.g. Davis et al.,503

2017), the extended logistic growth model might be more accurate than the504

classical logistic equation.505

Unlike the classical logistic equation, the extended logistic growth model does506

not have an exact solution. Therefore, in general, we have to rely on numeri-507

cal solutions. However, we also show how to provide some further insight by508

obtaining analytical solutions in the case where there are just two subpopu-509

lations present, N = 2. We obtain exact expressions for the long-time steady510

state solution, and show that these exact expressions can be solved numeri-511

cally to predict the steady state solution without using numerical integration512

to solve the full transient model. Furthermore, we also obtain approximate513

insight by constructing perturbation solutions in the limit that the degree514

of heterogeneity is small. The perturbation solutions are insightful since the515

O(1) perturbation solution for the total cell density is the classical logistic516

equation. The O(ε) perturbation solution provides a correction term that is517

accurate even when we consider a relatively large degree of heterogeneity in518

the system.519

Although we have focused here on the question of developing mathematical520

tools and mathematical insight into the role of heterogeneity in population521

dynamics associated with populations of cells, it seems likely that the ideas522

explored here will have consequences beyond the cell biology literature. For523

example, classical logistic models, with constant growth rates, are also com-524

monly used in mathematical ecology (e.g. Chan and Kim, 2013), and there is525

also an awareness in the ecology literature that ecological populations do not526
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always grow logistically (e.g. Taylor and Hastings, 2005). Therefore, perhaps527

some of the ideas developed here might also play a role in our understanding of528

ecological population dynamics. Another feature of our work is that we have529

focused exclusively on heterogeneity in cell proliferation rates. However, we530

note that there is also considerable interest in developing quantitative, predic-531

tive mathematical models which incorporate heterogeneity in cell migration532

(e.g. Read et al., 2016). Again, it seems likely that the kind of approach taken533

here would also be of interest in the context of exploring heterogeneity in cell534

migration. These open questions could be considered in future studies.535
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