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Abstract

Even if a species’ phenotype remains unchanged over evolutionary time, the underlying mechanism
may have changed, as distinct molecular pathways can realize identical phenotypes. Here we use quanti-
tative genetics and linear system theory to study how a gene network underlying a conserved phenotype
evolves, as the genetic drift of small mutational changes to these molecular pathways cause a popula-
tion to explore the set of mechanisms with identical phenotypes. To do this, we model an organism’s
internal state as a linear system of differential equations for which the environment provides input and
the phenotype is the output, in which context there exists an exact characterization of the set of all
mechanisms that give the same input–output relationship. This characterization implies that selectively
neutral directions in genotype space should be common and that the evolutionary exploration of these
distinct but equivalent mechanisms can lead to the reproductive incompatibility of independently evolv-
ing populations. This evolutionary exploration, or system drift, proceeds at a rate proportional to the
amount of intrapopulation genetic variation divided by the effective population size (Ne). At biologically
reasonable parameter values this process can lead to substantial interpopulation incompatibility, and
thus speciation, in fewer than Ne generations. This model also naturally predicts Haldane’s rule, thus
providing another possible explanation of why heterogametic hybrids tend to be disrupted more often
than homogametes during the early stages of speciation.

Introduction

It is an overarching goal of many biological subdisciplines to attain a general understanding of the function
and evolution of the complex molecular machinery that translates an organism’s genome into the charac-
teristics on which natural selection acts, the phenotype. For example, there is a growing body of data on
the evolutionary histories and molecular characterizations of particular gene regulatory networks [Jaeger,
2011, Davidson and Erwin, 2006, Israel et al., 2016], as well as thoughtful verbal and conceptual models
[True and Haag, 2001, Weiss and Fullerton, 2000, Edelman and Gally, 2001, Pavlicev and Wagner, 2012].
Mathematical models of both particular regulatory networks and the evolution of such systems in general
can provide guidance where intuition fails, and thus has the potential to discover general principles in the
organization of biological systems as well as provide concrete numerical predictions [Servedio et al., 2014].

The dynamics of the molecular machinery and its interactions with the environment can be mathemat-
ically described as a dynamical system [Jaeger et al., 2015]. Movement in this direction is ongoing, as
researchers have begun to study the evolution of both abstract [Wagner, 1994, 1996, Siegal and Bergman,
2002, Bergman and Siegal, 2003, Draghi and Whitlock, 2015] and empirically inspired computational and
mathematical models of gene regulatory networks, [e.g. Mjolsness et al., 1991, Jaeger et al., 2004, Kozlov
et al., 2012, 2015, 2014, Crombach et al., 2016, Wotton et al., 2015, Chertkova et al., 2017]. It is well known
that in many contexts mathematical models can fundamentally be nonidentifiable and/or indistinguishable –
meaning that there can be uncertainty about an inferred model’s parameters or even its claims about causal
structure, despite access to complete and perfect data [Bellman and Åström, 1970, Grewal and Glover, 1976,
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Walter et al., 1984]. Models with different parameter schemes, or even different mechanics can make equally
accurate predictions, but still not actually reflect the internal dynamics of the system being modelled. In
control theory, where electrical circuits and mechanical systems are often the focus, it is understood that
there can be an infinite number of “realizations”, or ways to reverse engineer the dynamics of a “black
box”, even if all possible input and output experiments on the “black box” are performed [Kalman, 1963,
Anderson et al., 1966, Zadeh and Deoser, 1976]. The fundamental nonidentifiability of chemical reaction
networks is sometimes referred to as “the fundamental dogma of chemical kinetics” [Craciun and Pantea,
2008]. In computer science, this is framed as the relationship among processes that simulate one another
[Van der Schaft, 2004]. Finally, the field of inverse problems studies those cases where, even if a one-to-one
mapping between model and behavior is possible in theory, even tiny amounts of noise can make inference
problems nonidentifiable in practice [Petrov and Sizikov, 2005].

Nonidentifiability is a major barrier to mechanistic understanding of real systems, but viewed from
another angle, this concept can provide a starting point for thinking about externally equivalent systems –
systems that evolution can explore, so long as the parameters and structures can be realized biologically.
These functional symmetries manifest in convergent and parallel evolution, as well as developmental system
drift : the observation that macroscopically identical phenotypes in even very closely related species can in
fact be divergent at the molecular and sequence level [Kimura, 1981, True and Haag, 2001, Tanay et al.,
2005, Tsong et al., 2006, Hare et al., 2008, Lavoie et al., 2010, Vierstra et al., 2014, Matsui et al., 2015,
Dalal et al., 2016, Dalal and Johnson, 2017]. Furthermore, theory shows that distinct genotypes encoding
identical phenotypes can even persist stably within a species [Phillips, 1996].

In this paper we outline a theoretical framework to study the evolution of biological systems, such as
gene regulatory networks. We study the evolution of an optimally adapted population subject to stabilizing
selection for phenotype. Even if the phenotype remains stable over evolutionary time, the underlying mech-
anism might not remain so, as many distinct (and mutationally connected) molecular pathways can realize
identical phenotypes. Below, we first apply results from system theory which give an analytical description
of the set of all linear gene network architectures that yield identical phenotypes. Since these phenotypi-
cally equivalent gene networks are not necessarily compatible with one another, system drift may result in
reproductive incompatibility between populations isolated for a sufficiently long period of time, even in the
absence of any sort of adaptive, selective, or environmental change. We then use quantitative genetic theory
to estimate how quickly reproductive incompatibility due to system drift will manifest

It is not a new observations that there is often more than one way to do the same thing, and that this may
lead to speciation. For instance, Tulchinsky et al. [2014] looked for hybrid incompatibility following regulatory
sequence drift, and Porter and Johnson [2002] studied speciation in populations expressing a simple regulatory
cascade. Both found rapid speciation following directional selection, but only equivocal support for speciation
under models of purely neutral drift. Our model differs from previous work in that we use linear systems
theory to both explore a much richer class of regulatory network models, and provide analytical expectations
in large populations with complex phenotypes that would be inaccessible to population simulations.

Results

We first describe the class of models we study, motivated by gene regulatory networks. The behavior (i.e.,
the temporal dynamics) of such a system is determined by a collection of n coregulating molecules – such
as transcription factors – as well as by external or environmental inputs. We write κ(t) for the vector of
n molecular concentrations at time t. The vector of m “inputs” determined exogenously to the system is
denoted u(t), and the vector of ` “outputs” is denoted φ(t). The output is merely a linear function of the
internal state: φi(t) =

∑
j Cijκj(t) for some matrix C. Since φ is what natural selection acts on, we refer

to it as the phenotype (meaning the “visible” aspects of the organism), and in contrast refer to κ as the
kryptotype, as it is “hidden” from direct selection. Although φ may depend on all entries of κ, it is usually
of lower dimension than κ, and we tend to think of it as the subset of molecules relevant for survival. The
dynamics are determined by the matrix of regulatory coefficients, A, a time-varying vector of inputs u(t),
and a matrix B that encodes the effect of each entry of u on the elements of the kryptotype. The rate at
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which the ith concentration changes is a weighted sum of the concentrations of the other concentrations as
well as the input:

κ̇(t) = Aκ(t) +Bu(t)

φ(t) = Cκ(t).
(1)

Furthermore, we always assume that κ(0) = 0, so that the kryptotype measures deviations from initial
concentrations. Here A can be any n × n matrix, B an n ×m, and C any ` × n dimensional matrix, with
usually ` and m less than n. We think of the system as the triple (A,B,C), which translates (time-varying)
m-dimensional input u(t) into the `-dimensional output φ(t). Under quite general assumptions, we can write
the phenotype as

φ(t) = CeAtκ(0) +

∫ t

0

CeA(t−s)Bu(s)ds, (2)

which is a convolution of the input u(t) with the system’s impulse response, which we denote as h(t) :=
CeAtB.

Although many different biological systems can be modeled with this approach, for clarity, we focus on
gene regulatory networks. In this interpretation, Aij determines how the jth transcription factor regulates
the ith transcription factor. If Aij > 0, then κj upregulates κi, while if Aij < 0, then κj downregulates κi.
The ith row of A is therefore determined by genetic features such as the strength of j-binding sites in the
promoter of gene i, factors affecting chromatin accessibility near gene i, or basal transcription machinery
activity. The form of B determines how the environment influences transcription factor expression levels,
and C might determine the rate of production of downstream enzymes.

Here we have assumed that the system is linear, and begins from the “zero” state (κ(0) = 0). Of course,
neither of these are necessarily true for real systems, but the dynamics of most nonlinear systems can be
approximated locally by a linear systems near most points. Furthermore, the ease of analyzing linear systems
makes this an attractive place to start. To demonstrate this approach, we apply it to construct a simple
gene network in Example 1 below.

Example 1 (An oscillator). For illustration, we consider an extremely simplified model of oscillating gene
transcription, as for instance is found in cell cycle control or the circadian rhythm. There are two genes,
whose transcript concentrations are given by κ1(t) and κ2(t), and gene-2 upregulates gene-1, while gene-1
downregulates gene-2 with equal strength. Only the dynamics of gene-1 are consequential to the oscillator
(perhaps the amount of gene-1 activates another downstream gene network). Lastly, both genes are equally
upregulated by an exogenous signal. The dynamics of the system are described by

κ̇1(t) = κ2(t) + u(t)

κ̇2(t) = −κ1(t) + u(t)

φ(t) = κ1(t).

In matrix form the system regulatory coefficients are given as, A=
[

0 1
−1 0

]
, B= [ 1

1 ], and C= [ 1 0 ]. Suppose
the input is an impulse at time zero (a delta function), and so its phenotype is equal to its impulse response,

φ(t) = h(t) = sin t+ cos t.

The system and its dynamics are referred to in Figure 1. We return to the evolution of such a system below.
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κ1 κ2

input (u)

output (φ)

−1

1

1 1

1

Figure 1: (Left) Diagram of the gene network in Example 1 , and (right) plot of the phenotype φ(t) against
time t .

Equivalent gene networks

As reviewed above, some systems with identical phenotypes are known to differ, sometimes substantially, at
the molecular level; systems with identical phenotypes do not necessarily have identical kryptotypes. How
many different mechanisms perform the same function?

Two systems are equivalent if they produce the same phenotype given the same input, i.e., have the same
input–output relationship. We say that the systems defined by (A,B,C) and (Ā, B̄, C̄) are phenotypically
equivalent if their impulse response functions are the same: h(t) = h̄(t) for all t ≥ 0. This implies that for
any acceptable input u(t), if (κu(t), φu(t)) and (κ̄u(t), φ̄u(t)) are the solutions to equation (1) of these two
systems, respectively, then

φu(t) = φ̄u(t) for all t ≥ 0.

In other words, phenotypically equivalent systems respond identically for any input.
One way to find other systems phenotypically equivalent to a given one is by change of coordinates: if V

is an invertible matrix, then the systems (A,B,C) and (V AV −1, V B,CV −1) are phenotypically equivalent
because their impulse response functions are equal:

h(t) = CeAtB = CV −1V eAtV −1V B

= CV −1eV AV
−1tV B = C̄eĀtB̄ = h̄(t).

(3)

However, not all phenotypically equivalent systems are of this form: systems can have identical impulse
responses without being coordinate changes of each other. In fact, systems with identical impulse responses
can involve interactions between different numbers of molecules, and thus have kryptotypes in different
dimensions altogether.

This implies that most systems have at least n2 degrees of freedom, where recall n is the number of
components of the kryptotype vector. This is because for an arbitrary n× n matrix Z, taking V to be the
identity matrix plus a small perturbation in the direction of Z above implies that moving A in the direction
of ZA − AZ while also moving B in the direction of ZB and C in the direction of −CZ will leave the
phenotype unchanged to second order in the size of the perturbation. If the columns of B and the rows of
C are not all eigenvectors of A, then any such Z will result in a different system.

It turns out that in general, there are more degrees of freedom, except if the system is minimal – meaning,
informally, that it uses the smallest possible number of components to achieve the desired dynamics. Results
in system theory show that any system can be realized in a particular minimal dimension (the dimension of
the kryptotype, nmin), and that any two phenotypically equivalent systems of dimension nmin are related by
a change of coordinates. Since gene networks can grow or shrink following gene duplications and deletions,
these additional degrees of freedom can apply in principle to any system.
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Even if the system is not minimal, results from systems theory explicitly describe the set of all pheno-
typically equivalent systems. We refer to N (A0, B0, C0) as the set of all systems phenotypically equivalent
to the system defined by (A0, B0, C0):

N (A0, B0, C0) =
{

(A,B,C) : CeAtB = C0e
A0tB0 for t ≥ 0

}
. (4)

These systems need not have the same kryptotypic dimension n, but must have the same input and output
dimensions (` and m, respectively).

The Kalman decomposition, which we now describe informally, elegantly characterizes this set [Kalman,
1963, Kalman et al., 1969, Anderson et al., 1966]. To motivate this, first note that the input u(t) only directly
pushes the system in certain directions (those lying in the span of the columns of B). As a result, different
combinations of input can move the system in any direction that lies in what is known as the reachable
subspace. Analogously, we can only observe motion of the system in certain directions (those lying in the
span of the rows of C), and so can only infer motion in what is known as the observable subspace. The
Kalman decomposition then classifies each direction in kryptotype space as either reachable or unreachable,
and as either observable or unobservable. Only the components that are both reachable and observable
determine the system’s phenotype – that is, components that both respond to an input and produce an
observable output.

Concretely, the Kalman decomposition of a system (A,B,C) gives a change of basis P such that the
transformed system (PAP−1, PB,CP−1) has the following form:

PAP−1 =


Arō Arō,ro Arō,r̄ō Arō,r̄o
0 Aro 0 Aro,r̄o
0 0 Ar̄ō Ar̄ō,r̄o
0 0 0 Ar̄o

 ,
and

PB =


Brō
Bro
0
0

 (CP−1)T =


0
CTro
0
CTr̄o

 .
The impulse response of the system is given by

h(t) = Croe
ArotBro,

and therefore, the system is phenotypically equivalent to the minimal system (Aro, Bro, Cro).
This decomposition is unique up to a change of basis that preserves the block structure. In particular,

the minimal subsystem obtained by the Kalman decomposition is unique up to a change of coordinates.
This implies that there is no equivalent system with a smaller number of kryptotypic dimensions than the
dimension of the minimal system. It is remarkable that the gene regulatory network architecture to achieve
a given input–output map is never unique – both the change of basis used to obtain the decomposition
and, once in this form, all submatrices other than Aro, Bro, and Cro can be changed without affecting the
phenotype, and so represent degrees of freedom. (However, some of these subspaces may affect how the
system deals with noise.)

Note on implementation: The reachable subspace, which we denote by R, is defined to be the closure of
span(B) under applying A, and the unobservable subspace, denoted Ō, is the largest A-invariant subspace
contained in the null space of C. The four subspaces, rō, ro, r̄ō, and r̄o are defined from these by intersections
and orthogonal complements – ro refers to the both reachable and observable subspace, while r̄ō refers to
the unreachable and unobservable subspace, and similarly for r̄o and rō.

For the remainder of the paper, we interpret N as the neutral set in the fitness landscape, along which a
large population will drift under environmental and selective stasis. Even if the phenotype is constrained and
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remains constant through evolutionary time, the molecular mechanism underpinning it is not constrained
and likely will not be conserved.

Finally, note that if B and C are held constant – i.e., if the relationships between environment, kryptotype,
and phenotype do not change – there are still usually degrees of freedom. The following example 2 gives the
set of minimal systems equivalent to the oscillator of Example 1, that all share common B and C matrices.
The oscillator can also be equivalently realized by a three-gene (or larger) network, and will have even more
evolutionary degrees of freedom available, as in Figure 3.

Example 2 (All phenotypically equivalent oscillators). The oscillator of example 1 is minimal, and so any
equivalent system is a change of coordinates by an invertible matrix V . If we further require B and C to be
invariant then we need V B = B and CV = C. Therefore the following one-parameter family (A(τ), B, C)
describes the set of all two-gene systems phenotypically equivalent to the oscillator:

A(τ) =
−1

τ + 1

[
−τ −1

2τ(τ + 1) + 1 τ

]
for τ 6= −1.

The resulting set of systems are depicted in Figure 2.

κ1 κ2

input (u)

output (φ)

−2τ − 1
τ+1

1
τ+1

1 1

1

τ
τ+1

−τ
τ+1

Figure 2: (Left) A(τ), the set of all phenotype-equivalent cell cycle control networks. (Right) Gene-1
dynamics (blue) for both systems A(0) and A(−2) are identical, however, A(0) gene-2 dynamics (orange)
differ from A(−2) (green).
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κ1

κ2

κ3input (u)

output (φ)

2
.2

2

−1

−
2.2

1

1

1

1

1

−
1

Figure 3: A possible non-minimal three-gene oscillator, phenotypically equivalent to A(τ), the systems in
Examples 1 and 2.

Sexual reproduction and recombination Parents with phenotypically equivalent yet differently wired
gene networks may produce offspring with dramatically different phenotypes. If the phenotypes are signifi-
cantly divergent then the offspring may be inviable or otherwise dysfunctional, despite both parents being
well adapted. If this is consistent for the entire population, we would consider them to be separate species,
in accord with the biological species concept [Mayr, 2000].

First, we must specify how sexual reproduction acts on these systems. Suppose that each of a diploid
organisms’ two genomes encodes a set of system coefficients. We assume that a diploid which has inherited
systems (A′, B′, C ′) and (A′′, B′′, C ′′) from its two parents has phenotype determined by the system that
averages these two, ((A′ +A′′)/2, (B′ +B′′)/2, (C ′ + C ′′)/2).

Each genome an organism inherits is generated by meiosis, in which both of its diploid parents recombine
their two genomes, and so an F1 offspring carries one system copy from each parent, and an F2 is an offspring
of two independently formed F1s. If the parents are from distinct populations, these are simply first– and
second–generation hybrids, respectively.

Exactly how the coefficients (i.e., entries of A, B or C) of a haploid system inherited by an offspring
from her diploid parent are determined by the parent’s two systems depends on the genetic basis of any
variation in the coefficients. Thanks to the randomness of meiotic segregation, the result is random to
the extent that each parent is heterozygous for alleles that affect the coefficients. Since the ith row of A
summarizes how each gene regulates gene i, and hence is determined by the promoter region of gene i, the
elements of a row of A to tend to be inherited together, which will create covariance between entries of the
same row. It is, however, a quite general observation that the variation seen among recombinant systems is
proportional to the difference between the two parental systems. This is certainly true if each coefficient is
determined by a single nonrecombining locus, so that each coefficient in the system produced by meiosis is
an independent random choice between the two parental coefficients. On the other hand, if a coefficient is
determined by additive contributions of independently segregating loci, then the law of total variance applied
after conditioning on the parental origin of each allele implies that the variance is equal to one-quarter of
the squared difference between parental coefficients.

Offspring formed from two phenotypically identical systems do not necessarily exhibit the same phenotype
as both of its parents – in other words N , the set of all systems phenotypically equivalent to a given one,
is not, in general, closed under averaging or recombination. If sexual recombination among systems drawn
from N yields systems with divergent phenotypes, populations containing significant diversity in N can carry
genetic load, and isolated populations may fail to produce hybrids with viable phenotypes.
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Figure 4: A conceptual figure of the fitness consequences of hybridization: axes represent system coefficients
(i.e., entries of A); the line of optimal system coefficients is down in black; dotted lines give phenotypic
distances to the optimum. A pair of parental populations are shown in black, along the optimum; a hy-
pothetical population of F1s are shown in red, and the distribution of one type of F2 is shown in purple
(other types of F2 are not shown; some would be a similar distance to the other side of the optimal set).
The distribution of F2 hybrids is appropriate for mixed homozygotes if both traits have a simple, one-locus
genetic basis, but there is variation within each population at that locus.

Hybrid incompatibility

Two parents with the optimal phenotype can produce offspring whose phenotype is suboptimal if the parents
have different underlying systems. How quickly do hybrid phenotypes break down as genetic distance between
parents increases? We will quantify how far a system’s phenotype is from optimal using a weighted difference
between impulse response functions. Suppose that ρ(t) is a nonnegative, smooth, square-integrable weighting
function, h0(t) is the optimal impulse response function and define the “distance to optimum” of another
impulse response function to be

D(h) =

(∫ ∞
0

ρ(t)‖h(t)− h0(t)‖2dt
)1/2

. (5)

Consider reproduction between a parent with system (A,B,C) and another displaced by distance ε in the
direction (X,Y, Z), i.e., having system (A+ εX,B + εY, C + εZ). We assume both are “perfectly adapted”
systems, i.e., having impulse response function h0(t), and their offspring has impulse response function hε(t).
A Taylor expansion of D(hε) in ε shows that the phenotype of an F1 hybrid between these two is at distance
proportional to ε2 from optimal, while F2 hybrids are at distance proportional to ε. This is because an F1

hybrid has one copy of each parental system, and therefore lies directly between the parental systems (see
Figure 4) – the parents both lie in N , which is the valley defined by D, and so their midpoint only differs
from optimal due to curvature of N . In contrast, an F2 hybrid may be homozygous for one parental type in
some coefficients and homozygous for the other parental type in others; this means that each coefficient of
an F2 may be equal to either one of the parents, or intermediate between the two; this means that possible
F2 systems may be as far from the optimal set, N , as the distance between the parents. The precise rate
at which the phenotype of a hybrid diverges depends on the geometry of the optimal set N relative to
segregating genetic variation.
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Example 3 (Hybrid Incompatibility in the Oscillator). Offspring of two equivalent systems from Example 2
can easily fail to oscillate. For instance, the F1 offspring between homozygous parents at τ = 0 and τ = −2
has phenotype φF1

(t) = et, rather than φ(t) = sin t + cos t. However, the coefficients of these two parental
systems differ substantially, probably more than would be observed between diverging populations. In figure 5
we compare the phenotypes for F1 and F2 hybrids between more similar parents, and see increasingly divergent
phenotypes as the difference between the parental systems increases. (In this example, the coefficients of A(ε)
differ from those of A(0) by an average factor of 1 + ε/2; such small differences could plausibly be caused by
changes to promoter sequences.) This divergence is quantified in Figure 6, which shows that mean distance
to optimum phenotype of the F1 and F2 hybrid offspring between A(0) and A(ε) increases with ε2 and ε,
respectively.
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Figure 5: (left) Phenotypes of F1 hybrids between an A(0) parent and, top-to-bottom, an A(1/100), an
A(1/10), and A(1/2) parent; parental coefficients differ by around 0.5%, 5%, and 25% respectively. Parental
phenotypes (sin t+cos t) are shown in solid black, and hybrid phenotypes in dashed blue. (right) Phenotypes
of all possible F2 hybrids between the same set of parents, with parental phenotype again in black. Different
colored lines correspond to different F2 hybrids; note that some completely fail to oscillate.
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Figure 6: Mean hybrid phenotypic distance from optimum computed with equation 5, using ρ(t) =
exp(−t/4π) for F1 (black) and F2 (blue) hybrids between A(0) and A(ε) parent oscillators. Genetic dis-

tance is computed as
√∑

ij(Aij(0)−Aij(ε))2 .

Haldane’s rule This model naturally predicts Haldane’s rule, the observation that if only one hybrid sex
is sterile or inviable it is likely the heterogametic sex (e.g., the male in XY sex determination systems) [Hal-
dane, 1922]. For example, consider an XY species with a two-gene network where the first gene resides on an
autosome and the second gene on the X chromosome. A male whose pair of haplotypes is

(
[A1 A2
· · ] ,

[
A1 A2

X1 X2

])
has phenotype determined by A =

[
A1 A2

X1 X2

]
, if dosage compensation upregulates heterogametes by a fac-

tor of 2 relative to homogametes, while a female homozygous for the haplotype
[
Ā1 Ā2

X̄1 X̄2

]
, has phenotype

determined by A =
[
Ā1 Ā2

X̄1 X̄2

]
. An F1 male offspring of these two will have its phenotype determined by[

(A1+Ā1)/2 (A2+Ā2)/2

X̄1 X̄2

]
. If both genes resided on the autosomes this system would only be possible in an

F2 cross. More generally, if the regulatory coefficients for a system are shared between the sex and one or
more autosomal chromosomes, F1 males are effectively equivalent to purely autosomal-system F2 hybrids. In
this setting, Haldane’s rule is mechanistically similar to hybrid breakdown, the observation that F2 hybrids
will often be less fit than F1 hybrid crosses, in the early stages of speciation. This mechanism relies on the
genetic variation of a system being shared across the sex chromosomes and the autosomes, and appears to
be distinct from the “dominance”, “faster-X”, and “faster-male” theories [Orr, 1997, Coyne and Orr, 1998,
Turelli and Orr, 1995] usually suggested to explain Haldane’s rule.

System drift and the accumulation of incompatibilities

Thus far we have seen that many distinct molecular mechanisms can realize identical phenotypes and that
these mechanisms may fail to produce viable hybrids. This leads to the question: does evolution shift
molecular mechanisms fast enough to be a significant driver of speciation? To approach this question, we
explore a general quantitative genetic model in which a population drifts stochastically near a set of equivalent
and optimal systems due to the action of recombination, mutation, and demographic noise. Although this is
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motivated by the results on linear systems above, the quantitative genetics calculations are more general, and
only depend on the presence of genetic variation and a continuous set of phenotypically equivalent systems.

We will suppose that each organism’s phenotype is determined by its vector of coefficients, denoted by
x = (x1, x2, . . . , xp), and that the corresponding fitness is determined by the distance of its phenotype to
optimum. The optimum phenotype is unique, but is realized by many distinct x – those falling in the
“optimal set” N . The phenotypic distance to optimum of an organism with coefficients x is denoted D(x).
In the results above, x = (A,B,C) and D(x) is given by equation (5). The fitness of an organism with
coefficients x will be exp(−D(x)2). We assume that in the region of interest, the map D is smooth and that
we can locally approximate the optimal set N as a quadratic surface. As above, an individual’s coefficients
are given by averaging its parentally inherited coefficients and adding random noise due to segregation and
possibly new mutation. Concretely, we use the infinitesimal model for reproduction [Barton et al., 2016]
– the offspring of parents at x and x′ will have coefficients (x + x′)/2 + ε, where ε is a random Gaussian
displacement due to random assortment of parental alleles.

System drift We work with a randomly mating population of effective size Ne. If the population variation
has standard deviation σ in a particular direction, since subsequent generations resample from this diversity,
the population mean coefficient will move a random distance of size σ/

√
Ne per generation, simply because

this is the standard deviation of the mean of a random sample [Lande, 1981]. Selection will tend to restrain
this motion, but movement along the optimal set N is unconstrained, and so we expect the population mean
to drift along the optimal set like a particle diffusing. The amount of variance in particular directions in
coefficient space depends on constraints imposed by selection and correlations between the genetic variation
underlying different coefficients (the G matrix [Arnold et al., 2008]). It therefore seems reasonable to coarsely
model the time evolution of population variation in regulatory coefficients as a “cloud” of width σ about the
population mean, which moves as an unbiased Brownian motion through the set of network coefficients that
give the optimal phenotype.

Next, we calculate with some simplifying assumptions to give the general idea; multivariate derivations
appear in Appendix A. There will in general be different amounts of variation in different directions; to keep
the discussion intuitive, we only discuss σN , the amount of variation in “neutral” directions (i.e., directions
along N ), and σS , the amount of variation in “selected” directions (perpendicular to N ). The other relevant
scale we denote by γ, which the scale on which distance to phenotypic optimum changes as x moves away
from the optimal set, N . Concretely, γ is 1/( d

duD(x+uz)) where x is optimal and z is a “selected” direction
perpendicular to N . With these parameters, a typical individual will have a fitness of around exp(−(σS/γ)2).
Of course, there are in general many possible neutral and selected directions; we take γ to be an appropriate
average over possible directions.

Hybridization The means of two allopatric populations each of effective size Ne separated for T gener-
ations will be a distance roughly of order 2σN

√
T/Ne apart along X . (Consult figure 4 for a conceptual

diagram.) A population of F1 hybrids has one haploid genome from each, whose coefficients are averaged,
and so will have mean system coefficients at the midpoint between their means. The distribution of F2

hybrids will have mean at the average of the two populations, but will have higher variance. The variance
of F2 hybrids can be shown to increase linearly with the square of the distance between parental popu-
lation means under models of both simple and polygenic traits. This is suggested by figure 4 and shown
in Appendix B. Concretely, we expect the population of F1s to have variance σ2

S in the selected direction
(the same as within each parental population), but the population of F2 hybrids will have variance of order
σ2
S + 4ωσ2

NT/Ne, where ω is a factor that depends on the genetic basis of the coefficients. If the optimal set
N has dimension q, using the polygenic model of appendix B, ω is proportional to the number of degrees of
freedom: ω = (p− q)/8. If each trait is controlled by a single locus, as in figure 4, the value is similar.

What are the fitness consequences? A population of F2 hybrids will begin to be substantially less fit
than the parentals once they differ from the optimum by a distance of order γ, i.e., once

√
4ωT/Ne ≈ γ/σN .

This implies that hybrid incompatibility among F2 hybrids should appear much slower – on a time scale of
Ne(γ/σN )2/(4ω) generations. The F1s will not suffer fitness consequences until the hybrid mean is further
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than γ from the optimum; as suggested by figure 4, Taylor expanding D2 along the optimal set implies
that this deviation of the mean from optimum grows with the square of the distance between the parental
populations, and so we expect fitness costs in F1s to appear on a time scale of N2

e generations.
For a more concrete prediction, suppose that the distribution among hybrids is Gaussian. A population

whose trait distribution is Gaussian with mean µ and variance σ, has mean fitness∫ ∞
−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 e
− x2

2γ2 dx =

√
1

1 + σ2/γ2
exp

{
−µ

2

γ2

(
1

1 + σ2/γ2

)}
. (6)

This assumes a single trait, for simplicity. A population of F2 hybrids will have, as above, variance σ2 =
σ2
S + 4ωσ2

NT/Ne. The mean diverges with the square of the distance between the parentals, so we set
µ = cµγT/Ne, where cµ is a constant depending on the local geometry of the optimal set. The mean fitness
in parental populations is as in equation 6 with µ = 0 and σ = σS . This implies that if we define F2(T ) to
be the mean relative fitness among F2 hybrids between two populations separated by T generations, (i.e.,
the mean fitness divided by the mean fitness of the parents) then

F2(T ) =

(
1 +

4ω(σN/γ)2

(1 + (σS/γ)2)

T

Ne

)−1/2

exp

{
−
(
cµ

T

Ne

)2(
1

1 + (σS/γ)2 + 4ω(σN/γ)2T/Ne

)}
. (7)

If each of the q selected directions acts independently, the drop in fitness will be F2(T )q; the expression for
the correlated, multivariate case is given in Appendix A.1. We discuss the implications of this expression in
the next section.

Speciation rates under neutrality Equation (7) describes how fast hybrids become inviable as the
time that the parental populations are isolated increases; what does this tell us about speciation rates
under neutrality? From equation (7) we observe that time is always scaled in units of Ne generations,
the population standard deviations are always scaled by γ, and the most important term is the rate of
accumulation of segregation variance, 4ω(σN/γ)2. All else being equal, this process will lead to speciation
more quickly in smaller populations and in populations with more neutral genetic variation (larger σN ).
These parameters are related – larger populations generally have more genetic variation – but since these
details depend on the situation, we leave these separate.

How does this prediction depend on the system size and constraint? If there are p trait dimensions,
constrained in q dimensions, and if ω is proportional to p− q, then the rate that F2 fitness drops is, roughly,
(1 + 4(p − q)KT/Ne)

−q/2 ∝ q(p − q), where K is a constant. Both degree of constraint and number
of available neutral directions affect the speed of accumulation of incompatibilities – more unconstrained
directions allows faster system drift, but more constrained directions implies greater fitness consequences of
hybridization. However, note that in real systems, it is likely that γ also depends on p and q.

Now we will interpret equation (7) in three situations plausible for different species, depicting how hybrid
fitness drops as a function of T/Ne in Figure 7. In all cases, the fitness drop for F1 hybrids is much smaller
than that of F2 hybrids, so we work only with the first (square-root) term in equation (7).

Suppose in a large, genetically diverse population, the amount of heritable variation in the neutral and
selected directions are roughly equal (σN ≈ σS) but the overall amount of variation is (weakly) constrained
by selection (σN ≈ γ). If so, then the first term of equation (7) is 1/

√
1 + 2ωT/Ne ≈ 1 − ωT/Ne. If also

ω = 1, then, for instance, after 0.1Ne generations the average F2 fitness has dropped by 10% relative to the
parentals.

Consider instead a much smaller, isolated population whose genetic variation is primarily constrained
by genetic drift, so that σN ≈ σS � γ. Setting a = (σN/γ)2 to be small, the fitness of F2 hybrids is
F2 ≤ 1/

√
1 + 4ωaT/Ne ≈ 1 − 2ωaT/Ne. Hybrid fitness seems to drop more slowly in this case in figure

7, but since time is scaled by Ne, so speciation may occur faster than in a large population. However, at
least in some models [Lynch and Hill, 1986], in small populations at mutation-drift equilibrium the amount
of genetic variance (σ2

N ) is proportional to Ne, which would compensate for this difference, perhaps even
predicting the rate of decrease of hybrid fitness to be independent of population size for small populations.
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In the other direction, consider large metapopulations (or a “species complex”) among which heritable
variation is strongly constrained by selection (i.e., there is substantial recombination load), so that σS ≈ γ
but σN/γ is large. Then the fitness of F2 hybrids is F2 ≤ 1/

√
1 + 2ωaT/Ne ≈ 1 − ωaT/Ne, and could be

extremely rapid if a is large.
For instance, between two populations of one million organisms that has 10 generations per year (a

drosophilid species, perhaps) under the “large population” scenario of Figure 7A, system drift would lead
to a substantial fitness drop of around 10% in F2 hybrids in only 10,000 years. This drop may be enough to
induce evolutionary reinforcement of reproductive isolation. If one thousand of these organisms is isolated
(perhaps on an island, as in Figure 7B), then a similar drop could occur in around 120 years. On the other
hand, if the population is one of several of similar size that have recently come into secondary contact after
population re-expansion, the situation may be similar to that of Figure 7C with Ne = 106, and so the same
drop could occur after 1,100 years. (However, hyperdiverse populations of this last type may not be stable
on these time scales.)
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Figure 7: Mean drop of F1 and F2 fitness relative to parental species, with ω = 1 and (A) σ2
N = σ2

S = γ2

(B) σ2
N = σ2

S = 0.1γ2 (C) 0.1σ2
N = σ2

S = γ2. The F2 fitness is from equation (7), and the F1 fitness is
determined only by the exponential term of that equation. is small relative to that of increased variance.

Genetic variation in empirical regulatory systems

What is known about the key quantity above, the amount of heritable variation in real regulatory networks?
The coefficient Aij from the system (1) measures how much the rate of net production of i changes per
change in concentration of j. It is generally thought that regulatory sequence change contributes much more
to inter- and intraspecific variation than does coding sequence change affecting molecular structure [Schmidt
et al., 2010]. In the context of transcription factor networks this may be affected not only by the binding
strength of molecule j to the promoter region of gene i but also the effects of other transcription factors
(e.g., cooperativity) and local chromatin accessibility [Stefflova et al., 2013]. For this reason, the mutational
target size for variation in Aij may be much larger than the dozens of base pairs typically implicated in the
handful of binding sites for transcription factor j of a typical promoter region, and single variants may affect
many entries of N simultaneously.

Variation in binding site occupancy may overestimate variation in A, since it does not capture buffering
effects (if for instance only one site of many needs to be occupied for transcription to begin), and variation
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in expression level measures changes in steady-state concentration (our κi) rather than the rate of change.
Nonetheless, these measures likely give us an idea of the scale of variability. Kasowski et al. [2010] found
differential occupancy in 7.5% of binding sites of a transcription factor (p65) between human individuals.
Verlaan et al. [2009] showed that cis-regulatory variation accounts for around 2–6% of expression variation
in human blood-derived primary cells, while Lappalainen et al. [2013] found that human population varia-
tion explained about 3% of expression variation. Allele-specific expression is indicative of standing genetic
cis-regulatory variation; Wang et al. [2017] found allele-specific expression in 7.2–8.5% of transcripts of a
flycatcher species, while Tung et al. [2015] observed allele-specific expression in 23.4% of genes studied in
a baboon species. Taken together, this suggests that variation in the entries of A may be on the order of
at least a few percent between individuals of a population – doubtless varying substantially between species
and between genes.

Discussion

Above we synthesize concepts and tools from molecular and evolutionary biology with tools from control
theory to study the evolution of a mechanistic model of the molecular genotype-phenotype map under stabi-
lizing selection. This model allows us to analytically describe the processes discussed verbally as phenogenetic
drift [Weiss and Fullerton, 2000] and developmental system drift [True and Haag, 2001]. In this context,
the Kalman decomposition [Kalman, 1963] gives an analytical description of all phenotypically equivalent
gene networks. It also implies that nearly all systems are nonidentifiable, and hence the general existence
of axes of genetic variation that are not constrained by selection. The independent movement of separated
populations along these axes can lead to reduction in hybrid viability, and hence speciation, at a speed
that depends on effective population size and amount of genetic variation. In this model, at biologically
reasonable parameter values, system drift is a significant – and possibly rapid – driver of speciation. This
may at first be surprising because hybrid inviability appears as a consequence of recombining different, yet
functionally equivalent, mechanisms.

Consistent with empirical observation of hybrid breakdown [e.g. Plötner et al., 2017], we see that the
fitnesses of F2 hybrids drop at a much faster rate than those of F1s. Another natural consequence of the
model is Haldane’s rule, that if only one F1 hybrid sex is inviable or sterile it is likely to be the heterogametic
sex. This occurs because if the genes underlying a regulatory network are distributed among both autosomes
and the sex chromosome, then heterogametic F1s show variation similar to that seen in F2 hybrids.

Is there evidence that this is actually occurring? System drift and network rewiring has been inferred
across the tree of life [Wotton et al., 2015, Crombach et al., 2016, Dalal and Johnson, 2017, Johnson, 2017,
Ali et al., 2017], and there is often significant regulatory variation segregating within populations. Transcrip-
tion in hybrids between closely related species with conserved transcriptional patterns can also be divergent
[Haerty and Singh, 2006, Maheshwari and Barbash, 2012, Coolon et al., 2014, Michalak and Noor, 2004,
Mack and Nachman, 2016], and hybrid incompatibilities have been attributed to cryptic molecular diver-
gence underlying conserved body plans [Gavin-Smyth and Matute, 2013]. Furthermore, in cryptic species
complexes (e.g., sun skinks [Barley et al., 2013]), genetically distinct species may be nearly morphologically
indistinguishable.

On the origin of species not by means of natural selection? Although, as classically formulated,
the Dobzhansky-Muller model of hybrid incompatibility is agnostic to the relative importance of neutral
versus selective genetic substitutions [Coyne and Orr, 1998], and plausible mechanisms for the origin of
Dobzhansky–Muller incompatibilities by neutral genetic drift have been proposed [Lynch and Force, 2000]
and under stabilizing selection [Fierst and Hansen, 2009], previous authors have argued that neutral processes
are likely too slow to be a significant driver of speciation [Nei et al., 1983, Seehausen et al., 2014]. (Also note
that the mechanism underlying hybrid inviability here resembles the Dobzhansky-Muller model, but is more
similar to the “pathway model” of Lindtke and Buerkle [2015].) Using simulations, Porter and Johnson [2002]
demonstrated the accumulation of hybrid incompatibilities under directional, but not stabilizing selection,
and Palmer and Feldman [2009] observed the appearance of incompatibilities in populations evolving in a
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constant environment, only if the populations were suboptimally adapted. This, in light of the few known
incompatibilities, has lead some to conclude that hybrid incompatibility is typically a byproduct of positive
selection [Orr et al., 2004, Schluter, 2009] or a consequence of genetic conflict [Presgraves, 2010, Crespi and
Nosil, 2013]. In contrast, the model we develop here suggests that even under strictly neutral conditions,
system drift can lead to speciation, at a rate fast enough to play a substantial role in species formation across
the tree of life. Our results show that hybrids, under neutral processes, break down as a function of genetic
distance, and so may, in part, explain broad patterns such as the relationship between molecular divergence
and genetic isolation seen by Roux et al. [2016], and the clocklike speciation patterns observed by Hedges
et al. [2015].

All of these forces – adaptive shifts, conflict, and network drift – are plausible drivers of speciation, and
may even interact. For instance, reinforcement due to local adaptation could in some situations provide a
selective pressure that speeds up system drift. It remains to be seen how the relative strengths of these forces
compare. Furthermore, while the fitness consequences of incompatibility in any one given network may be
small, the cumulative impact of system drift across the many different networks an organism relies on may
be substantial.

Of course the basic assumptions of this model will be violated in practice (constant selective pressures,
etc.), however, this model can function as a “neutral null” description of gene network evolution (a strategy
advocated for by Lynch [2007], Fay and Wittkopp [2008], Koonin [2016]). If this model succeeds in describing
actual system evolution, it can be inferred that the mechanism underlying species formation does not require
the inclusion of adaptation or changes in selection to explain the emergence of hybrid incompatibility.

Population isolates and genetic load Above we have mostly discussed the case of two separated pop-
ulations of equal size. In contrast, consider a small subset of a large population that is suddenly isolated. It
will have a large amount of genetic variance, thanks to its history, but a small population size – and so can
drift quite quickly until it exhausts its genetic variation. By this point, it could have accumulated substantial
incompatibility with the parental population. Similarly, in a species with substantial isolation by distance,
geographically local systems drift might lead to genetic load due only to recombination, much as in [Phillips,
1996].

Nonlinearity and model assumptions Of course, real regulatory networks are not linear dynamical
systems. Most notably, physiological limits put upper bounds on expression levels, implying saturating
response curves. It remains to be seen how well these results carry over into real systems, but the fact that
most nonlinear systems can be locally approximated by a linear one suggests our qualitative results may
hold more generally. Furthermore, nonidentifiability (which implies the existence of neutral directions) is
often found in practice in moderately complex models of biological systems [Gutenkunst et al., 2007, Piazza
et al., 2008].

This simple quantitative genetics model we use above has been shown to produce good predictions in
many situations, even when the substantial number of simplifying assumptions are violated [Bürger and
Lande, 1994, Turelli and Barton, 1994]. The calculations above should be fairly robust even to substantial
deviations from normality. A larger effect on these predictions seems likely due to correlations due to
molecular constraint, genetic linkage, population structure, historical contingency and so forth. Although
such considerations would not change the qualitative predictions of this model, their combined effects could
substantially change the predicted rate of accumulation of incompatibilities.

Finally, despite our model’s precise separation of phenotype and kryptotype, this relationship in nature
may be far more complicated as aspects of the kryptotype may be less “hidden” than we currently assume.
For instance, attributes excluded from the phenotype as modelled here, ignore the potential energy costs
associated with excessively large (non-minimal) kryptotypes, as well as the relationship between a specific
network architecture and robustness to mutational, transcriptional, or environmental noise. More precise
modeling will require better mechanistic understanding not only of biological systems, but also the nature
of selective pressures and genetic variation in these systems.
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A Genetic drift with a multivariate trait

For completeness, we provide a brief exposition of how a population evolves due to genetic drift with a
quantitative genetics model, as in Lande [1981] or Hansen and Martins [1996]. These do not directly model
underlying genetic basis, but developing a more accurate model is beyond the scope of this paper.

Suppose that the population is distributed in trait space as a Gaussian with covariance matrix Σ and mean
µ, whose density we write as f(·; Σ, µ). Selection has the effect of multiplying this density by the fitness
function and renormalizing, so that if expected fitness of x is proportional to exp(−‖Lx‖2/2), then the
distribution post-selection has density at x proportional to f(x; Σ, µ) exp(−‖Lx‖2/2). By the computation
below (“Completing the square”), the result is a Gaussian distribution with covariance matrix (Σ−1+LTL)−1

and mean (Σ−1 + LTL)−1Σ−1µ.
After selection, we have reproduction: suppose this occurs as in the infinitesimal model [Barton et al.,

2016], so that each offspring of parents with traits x and y is drawn independently from a Gaussian distri-
bution with mean (x+ y)/2 and covariance matrix R. Here, R is the contribution of “segregation variance”,

i.e., random choices of parental alleles. If Σ̃ = (Σ−1 + LTL)−1 is the covariance matrix of the parents post-
selection, then the distribution of offspring will again be Gaussian, with mean equal to that of the parents
and covariance matrix Σ̃/2 +R.

In summary, a generation under this model modifies the mean (µ) and covariance matrix (Σ) of a
population as follows:

µ 7→ µ′ = (Σ−1 + LTL)−1Σ−1µ

Σ 7→ Σ′ =
1

2
(Σ−1 + LTL)−1 +R.

What measures are stable under this transformation? The condition µ = µ′ reduces to ΣLTLµ = 0; if we
assume R and therefore Σ are of full rank, then this happens if and only if µ is in the null space of L,
i.e., if µ lies in a neutral direction. The condition Σ′ = Σ can also be solved, at least numerically. After
rearrangement, it reduces to ΣLTLΣ + (I/2−RLTL)Σ = R. Importantly, the mean µ does not affect either
how the covariance matrix moves, or its stable shape.

Above we have described the expected motion of the mean and covariance. However, random resampling
will introduce noise. Suppose that a population of N individuals behaves approximately as described above.
By the above, we may expect that the covariance matrix stays close to a constant value Σ, computed from
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R and L as above, so that we need only consider motion of the mean, µ. Since we take a sample of size N to
construct the next generation, the next generation’s mean is drawn from a Gaussian distribution with mean
µ′ and covariance matrix Σ/N . Defining Γ = (I − (I + ΣLTL)−1), this can be written as

µ′ − µ = Γµ+ ε/
√
N,

where ε is a multivariate Gaussian with mean zero and covariance matrix Σ. Let µ(k) denote the mean in the
kth generation, and suppose that µ differs from optimal by something of order 1/

√
N : if ν(t) =

√
Nµ(t

√
N)

is the rescaled process, then the previous equation implies that as N → ∞, in the limit ν solves the Itô
equation

dν(t) = Γν(t)dt+ Σ1/2dW (t),

where now W (t) is a multivariate white noise. This has an explicit solution as a multivariate Ornstein-
Uhlenbeck process:

ν(t) = e−tΓν(0) +

∫ t

0

e−(t−s)ΓΣ1/2dW (s).

The asymptotic variance of this process in the direction z is

lim
t→∞

Var[ν(t) · z] =

∫ ∞
0

zT e−sΓΣe−sΓzds, (8)

which is infinite if and only if Γz = 0, which occurs if and only if Lz = 0. This implies that at equilibrium,
population mean trait values lie away from the optimal set by a Gaussian displacement of order 1/

√
N with

a covariance matrix given by equation (8).

Completing the square First note that if A is symmetric,

(x− y)TA(x− y) = xTA (x− 2y) + yTAy,

and so if B is also symmetric and A+B is invertible,

(x− y)TA(x− y) + xTBx = xT (A+B)
(
x− 2(A+B)−1Ay

)
+ yTAy

=
(
x− (A+B)−1Ay

)T
(A+B)

(
x− (A+B)−1Ay

)
+ yTAy − yTAT (A+B)−1Ay.

Therefore, by substituting A = Σ−1 and B = LTL,

f(x; Σ, y) exp(−xTLTLx/2)∫
f(z; Σ, y) exp(−zTLTLz/2)dz

= f(x; (Σ−1 + LTL)−1, (Σ−1 + LTL)−1Σ−1y).

A.1 Gaussian load

Suppose that a population has a Gaussian distribution in d-dimensional trait space with mean µ and co-
variance matrix Σ, and that fitness of an individual at x is exp(−‖Lx‖2/2). Then, completing the square as
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above with A = Σ−1, y = µ, and B = LTL, and defining Q = (Σ−1 + LTL)−1,

1
√

2π
n

det(Σ)1/2

∫
e−

1
2x
TΣ−1xe−

1
2x
TLTLxdx

=
1

√
2π

n
det(Σ)1/2

∫
e−

1
2 (x−QΣ−1µ)TQ−1(x−QΣ−1µ)dx

× eµ
T (I−Σ−1Q)Σ−1µ

=

√
det(Q)

det(Σ)
exp

{
µT
(
I − Σ−1Q

)
Σ−1µ

}
=

√
1

det(Σ) det(Σ−1 + LTL)
exp

{
µT
(
I − (I + LTLΣ)−1

)
Σ−1µ

}

Now suppose that Σ = σ2I and L = I/γ. Then,√
1

det(Σ) det(Σ−1 + LTL)
=

√
1

σ2d(1/σ2 + 1/γ2)d

=
1

(1 + (σ/γ)
2
)d/2

.

Also, (
I − (I + LTLΣ)−1

)
Σ−1 =

1

σ2

(
1− (1 + (σ/γ)2)−1

)
I

=
1

γ2

1

(1 + (σ/γ)2)
I

B Evolution of segregation covariance

The description above does not describe how two diverging populations interact, since the amount of segre-
gation variance, quantified by R, will not stay constant. To get an idea of how this might change, suppose
that a trait is determined by L unlinked, biallelic loci, and that the ith locus has two alleles with additive
effects ±xi, so that being homozygous for the + allele contributes +2xi to the trait. For simplicity, we will
neglect the effects of selection. If the + allele at locus i is at frequency pi in a population, then the mean
and genetic variance of the trait in a diploid population with random mating is

m = 2
∑
i

(2pi − 1)xi

s2 = 4
∑
i

pi(1− pi)x2
i .

Segregation variance between two parents depends on the loci at which either are heterozygous, and each
locus contributes independently since alleles are additive. If the alleles are at Hardy-Weinberg proportions,
then since segregation acts like a fair coin flip, a heterozygous locus contributes x2

i /4 to the variance, and
so the mean segregation variance, averaging across parents, is

R0(p) =
∑
i

pi(1− pi)x2
i .
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On the other hand, if the second parent came from a distinct population with frequencies qi (an F1

hybrid), this would be

R1(p, q) =
1

2

∑
i

p2
i (1− pi)2x2

i +
1

2

∑
i

q2
i (1− qi)2x2

i

= (R0(p) +R0(q))/2.

If we assume that the populations are at equilibrium, R0(p) ≈ R0(q), and so R1(p, q) ≈ R0(p).
Now consider an F2 hybrid, where both parents are F1 and so each heterozygous at locus i with probability

pi(1− qi) + (1− pi)qi. Then

R2(p, q) =
1

2

∑
i

(pi(1− qi) + (1− pi)qi)x2
i .

Suppose that the two populations are slightly drifted from each other, with frequency difference pi−qi = 2εi.
Then,

p(1− q) + p(1− q) = (u+ ε)(1− u+ ε) + (u− ε)(1− u− ε)
= 2u(1− u) + 2ε2.

If the frequencies have evolved neutrally in unconnected, Wright-Fisher populations of effective size N for
t generations from a common ancestor with allele frequency u, then ε has mean zero and variance roughly
2u(1 − u)t/N . Still assuming the populations are at stationarity, so that R0 is constant between the two,
and taking the frequencies pi as a proxy for the ancestral frequencies ui, this implies that we expect

R2 ≈ R0 + 2
∑
i

pi(1− pi)x2
i t/N

=

(
1 +

2t

N

)
R0.

On the other hand, the expected squared difference in trait means between two such populations is

8
∑
i

pi(1− pi)x2
i t/N = 8R0t/N. (9)

This implies that under this model, segregation variance in F2 hybrids between two populations is roughly
increased by a factor of 1/8 of the difference between their means.
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