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ABSTRACT 

Pathology archives with linked clinical data are an invaluable resource for translational 

research, with the limitation that most cancer samples are formalin-fixed paraffin-

embedded (FFPE) tissues. Therefore, FFPE tissues are an important resource for 

genomic profiling studies but are under-utilised due to the low amount and quality of 

extracted nucleic acids.  We profiled the copy number landscape of 356 breast cancer 

patients using DNA extracted FFPE tissues by shallow whole genome sequencing. We 

generated a total of 491 sequencing libraries from 2 kits and obtained data from 98.4% 

of libraries with 86.4% being of good quality.  We generated libraries from as low as 

3.8ng of input DNA and found that the success was independent of input DNA amount 

and quality, processing site and age of the fixed tissues. Since copy number alterations 

(CNA) play a major role in breast cancer, it is imperative that we are able to use FFPE 

archives and we have shown in this study that sWGS is a robust method to do such 

profiling. 

 

Keywords: Formalin-fixed paraffin-embedded (FFPE), shallow whole genome 

sequencing (sWGS), copy number (CN) and breast cancer.    
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 Comparative Genomic Hybridisation (CGH) 1 has had a significant impact in 

the study of cancer genomes. Chromosomal regions gained or lost in the tumour could 

be easily visualised by hybridization onto normal human metaphase spreads, allowing 

characterisation of genome-wide copy number alterations (CNA) in tumours 1.  

Microarrays with DNA probes (cloned DNA or oligonucleotides) spotted onto glass 

slides representing the entire genome soon replaced normal chromosomes 2 making it 

faster and easier to profile.   The importance of characterizing somatic CNAs in cancer 

is now well established, with a recent TCGA pan-cancer analysis showing that human 

tumours can be classified into mutation driven (M-class) or copy-number driven (C-

class) subtypes.  Breast cancer is a C-class cancer type 3 and we have previously shown 

that CNAs are the main determinants of the expression architecture of breast cancers. 

Using gene expression driven in cis by CNAs, we have generated a new molecular 

taxonomy of breast cancer with 10 genomic driver-based subtypes termed Integrative 

Clusters. The samples used in this analysis were derived from the METABRIC cohort, 

which encompassed a large biobank of fresh frozen tumour samples collected across 

five major teaching hospitals in the UK and Canada 4. 

Formalin-fixed paraffin-embedded (FFPE) tissue samples are more routinely 

collected and hence more representative of cancer in the general population. These 

FFPE archives are a valuable resource for molecular profiling in cancer research.  

Whilst the fixation process is essential to protect cellular morphology and protein 

expression, it is detrimental to nucleic acids and results in their chemical modification 

and degradation.  As a result, extraction of DNA from FFPE tissues results in lower 

yields when compared to extraction from fresh frozen tissues.  DNA extracted from 

FFPE works well for downstream applications using polymerase chain reaction (PCR), 

particularly for small size amplicons (less than 300 base pairs), but for other 

applications, including microarray based CGH, where efficient labelling of the DNA is 

dependent on its integrity, its use is more challenging.   There have been several studies 

describing different methods for DNA extraction 5, quality control 6,7, labelling 8 and 

other optimisation protocols 9 to improve the performance of FFPE DNA on 

microarrays.  In the past, we have tried to profile CNAs using FFPE DNA on 

microarrays with limited success.  Only Illumina Infinium and Molecular Inversion 

Probe (MIP, Affymetrix) arrays yielded good results but these required good quality 

and at least 200ng of DNA 10.     

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231480doi: bioRxiv preprint 

https://doi.org/10.1101/231480


4 

 

Next generation sequencing has revolutionised cancer genomics. It is now 

relatively easy and inexpensive to sequence an entire genome. However, as with 

microarrays, the robustness of the results obtained are dependent on the quality of the 

input DNA.  Two recent studies have demonstrated the feasibility of doing shallow 

whole-genome sequencing (sWGS) for CNA profiling using DNA extracted from FFPE 

tissue material 11,12.  The first report used 250ng of DNA from FFPE tissues and a 

breast cancer cell line to produce libraries and developed an analytical method for 

sWGS.  The second study compared several sequencing library production kits and 

reported generating successful sequencing libraries with low input DNA in a small 

number of FFPE samples.   

Here we present extensive sWGS data generated from DNA extracted from 

FFPE breast cancer samples to describe steps to ensure successful libraries.  

 

Materials 

Specimen collection  

FFPE tissue samples from invasive breast cancer patients diagnosed between 

1997 and 2014 were obtained from several tumour repositories: Addenbrooke’s 

Hospital in Cambridge (n=62), a consortium of hospitals participating in clinical trials 

(GEICAM) in Spain (n=172), and Samsung Medical Center in South Korea (n=122). In 

some cases, we extracted DNA from adjacent normal (n=15) and DCIS (n=115) 

samples. Some of the clinical trials samples were biopsies taken at diagnosis (n=107) 

and/or surgery (n=106) where 41 are paired. All tumour samples were collected with 

informed patient consent and their use for genomics profiling had ethics approval from 

the institutional review board for each of the biobanks (Cambridge: REC ref 

07/H0308/161; South Korea: 2014-10-041; Spain: NCT00432172 & NCT00841828).  

Detailed information on the sample cohort is collated in Table 1.   

DNA extraction and quality control 

DNA was extracted from either one mm cores punched from tissue blocks or 

from 10 x 30 micron sections (Cambridge and Korea), or 4-6x10 micron sections 

(Spain) from FFPE blocks, using Qiagen QIAmp DNeasy Kits (Qiagen, Germany) 

according to the manufacturer’s instructions. All DNA samples were quantified 

fluorometrically using the Qubit dsDNA High Sensitivity Quantification Reagent 
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(ThermoFisher, USA). The DNA quality was assessed using Illumina’s FFPE QC kit, a 

quantitative PCR (q-PCR) assay.  All test DNAs and the template control provided in 

the kit (ACD1) were diluted to 0.25ng/μl and PCR reactions set up in triplicate as per 

manufacturer’s instructions.  DNA quality was quantified as the difference between the 

Ct (cycle threshold) value of the test FFPE-extracted DNA against the Ct value of the 

control DNA template. 

DNA Fragmentation 

DNA samples of different concentrations (4-500ng) were diluted in water to a final 

volume of 15μl in Covaris microTUBE-15 8 strip tubes (Covaris, USA) and fragmented 

to an average size distribution of 150-180bp with Covaris LE220 Focused 

Ultrasonicator with Adaptive Focused Acoustics technology. The following parameters 

were used for shearing: Peak Incident Power: 180W; Duty Factor: 30%; Cycles per 

Burst: 50; with the fragmentation time: 250s for DNA with ΔCt <10, and 200s for DNA 

with ΔCt ≥10. 

Sequencing library generation 

Sequencing libraries were generated using either the beta testing version of the Illumina 

FFPE TruSEQ kit (ILMN, libraries=45) or the Rubicon Genomics Thruplex DNASeq 

(RGT, libraries=446), as per manufacturer’s instructions. For four samples, we 

generated sequencing libraries using both kits to compare their performance 

(Supplementary Figure 1a-b).  The sample metrics for both kits are presented in 

Supplementary Table 1.  

The ILMN libraries were generated manually whilst RGT libraries were generated 

either on the Agilent Bravo (n=228) or manually (Spain, n=218).   Final libraries were 

purified using magnetic beads (Agencourt SPRI beads, Becton Dickinson, USA) and 

eluted libraries were quantified using Kapa Library Quantification kit (Roche Life 

Technologies, USA).  Fragment size distributions were analysed utilising a 2100 

Bioanalyzer with a DNA High Sensitivity kit (Agilent Technologies, USA).  Two 

nanomoles (nM) of each library were prepared and 48 samples were pooled in one lane 

for sequencing on a HiSeq4000 (Illumina, USA).  The pools were re-quantified and 

normalised to 10 nM. Single end sequencing was conducted for 50 cycles, generating 

on average 4.3x108 reads per lane.  
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Bioinformatics 

Alignment against the GRCh 37 assembly of the human genome was performed using 

BWA ver. 0.7.913 or NovoAlign ver. 3.2.13 (NovoCraft, Malaysia).  PCR and optical 

duplicates were identified using Picard tools (https://broadinstitute.github.io/picard) or 

Novosort (NovoCraft, Malaysia). Circular binary segmentation on the aligned files was 

performed in 100kb windows using the QDNAseq R package available on 

Bioconductor, which corrects for mappability and GC content 11. All statistical analyses 

were performed in R using the functions lm() for fitting linear models and t.test() for 

Welch two-sample t-test. 

 

Results  

The majority of the FFPE samples available were core biopsies collected as part 

of a neoadjuvant clinical trial (GEICAM/2006-03, n=107) yielding low amounts of 

DNA (range=4 - 61ng, median 30ng). Therefore, to successfully generate libraries for 

CNA profiling using limited input DNA, we needed to understand how different 

variables could influence the quality of libraries and steps that can be taken to ensure 

good sequencing results (Figure 1). 

Assessment of the copy number plots 

We examined the copy number plots by manual inspection and categorised them 

based on the variance in the CN data for each case into categories: “Very Good”, 

“Good”, “Intermediate” and “Poor” (Figure 2a).  We also used QDNAseq 11 which 

calculates the expected (estimated from read depth) and measured (using read depth and 

influenced by DNA quality) standard deviation of the summarised reads, as a measure 

of variance.  Both measures increased as the quality of library decreased and validated 

our categorisation of library quality (measured standard deviation shown in Figure 2b).    

Assessment of different sequencing kits 

We tested two kits (Illumina FFPE TruSEQ kit and Rubicon Genomics 

Thruplex DNASeq) using four FFPE samples to generate sequencing libraries and 

found comparable results (Supplementary Figure 1a-b).  The CNA profiles obtained 

using DNA processed with the ILMN kit had less variance (noise) than those processed 

using the RGT kit however the ILMN libraries were generated using more input DNA 
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(200-500ng (ILMN) versus 50ng (RGT)) and were sequenced deeper (average coverage 

0.9X (ILMN) versus 0.08X (RGT)).  For a more comparable evaluation, we down-

sampled ILMN sequencing data to a similar read depth as RGT; this showed 

comparable copy number profile qualities between the two library preparation 

technologies. 

In theory, increasing the sequencing depth should improve the copy number 

results by reducing the variance. We examined this by increasing the sequencing depth 

of 23 RGT kit libraries which had less reads (from 0.08X up to 0.15X) and found 

improvement in the data quality in 20 out of 23 libraries (examples shown in 

Supplementary Figure 2a).   To examine the association between sequencing depth and 

variance, we down-sampled the number of reads (in steps of 1x106 reads) for six 

libraries with high read counts (up to 24x106 reads). We found a significant 

improvement in the quality of copy number plots with increasing number of reads 

(p<2.2e-16; Supplementary Figure 2b).  It is interesting to note that the noise reduction 

levels off at approximately 7x106 reads suggesting that increasing the read depth more 

than 7x106 reads provides little benefit to variance reduction.   

Performance of sWGS for copy number profiling using the RGT kit 

Due to the limited amount of DNA available for most samples, we chose the 

RGT kit as it required less input DNA due to fewer processing steps, in particular 

purifications.  Sequencing libraries were generated from as little as 3.8ng of DNA, and 

out of 16 libraries prepared from less than 10ng of DNA, only one failed, 13 generated 

good quality CNA plots, and 2 generated intermediate quality CNA plots. Information 

for all the libraries generated are summarised in Supplementary Table 3.   

Recovery of under-performing RGT libraries 

Eight (1.8%) libraries failed and 12 (2.7%) generated poor quality libraries out 

of 446 libraries.  To recover some of these failed/poor samples, we prepared fresh 

libraries from samples with sufficient DNA (n=6) or repeated the sequencing using 

three-fold more library material for samples with insufficient DNA to generate new 

libraries (n=8).  Thirteen of these new/re-sequenced libraries generated good quality 

data.  The one repeat sample that failed was from the re-sequencing group.   

Consequently, only two out of 446 RGT libraries (taking into consideration the repeated 
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libraries and re-sequencing) failed, resulting in a 99.5% success rate.  Good sWGS data 

produced from 379/446 (84.9%) samples.   

 

Association between FFPE storage time, site, and sequencing quality 

 The FFPE samples were collected from three different tissue banks, spanning 20 

years (Table 1).  The effect of storage time on the DNA extracted was analysed (Figure 

3).  DNA from older FFPE blocks (>5years) was generally of poorer quality: higher 

ΔCt values, shorter fragment size, generating lower yield sequencing libraries.  We 

compared the quality metrics for each banking site and found that overall FFPE samples 

from different sites were comparable (Table 1 and Supplementary Figure 3). 

 

Association between input DNA characteristics and sequencing library yield 

We used the Illumina FFPE QC kit, a quantitative-PCR assay to estimate the quality of 

FFPE-extracted DNA.  This assay measures the difference in Ct (cycle threshold) value 

of the test FFPE-extracted DNA against the Ct value of the control DNA template 

provided in the kit.  Increasing ΔCt values indicate decreasing DNA quality with 

Illumina quality thresholds set at: ΔCt<1.5 denotes high quality (HQ), ΔCt<3.0 denotes 

medium quality (MQ), and ΔCt>3 denotes low quality (LQ) DNA.  The Illumina DNA-

input recommendations for sWGS are 50ng DNA with HQ DNA, 200ng with MQ 

DNA, and exclusion of LQ DNA.  Using the ILMN kit, we could generate good quality 

sWGS using 50ng HQ and MQ DNA, and 200-500ng of LQ DNA. Unsurprisingly, for 

eight samples with paired libraries generated from 50ng and  200 or 500ng of input 

DNA using the ILMN kit, we found that the sequencing library yields generated with 

more DNA was significantly higher than when using only 50ng (p−value: 0.000265; 

Supplementary Figure 3a). This is an important consideration if these libraries were 

destined for downstream target enrichment assays for mutation detection that require 

500ng of library material.  Data from all the generated ILMN libraries (n=45) showed a 

library yield that averaged 5.6nM using 50ng FFPE-extracted DNA, which was 

significantly less than with libraries made with more input DNA (200ng: 23.6nM, 

Welch Two Sample t-test, p=5.24e-06; 500ng: 23.0nM, Welch Two Sample t-test, 

p=0.0121).  There was no difference in library yield when using either 200 or 500ng of 
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DNA (Welch Two Sample t-test, p=0.2401).  This is probably due to the quality of the 

input DNA as libraries produced from 200ng of DNA had lower ΔCt values (better 

quality) than those using 500ng (Welch Two Sample t-test, p=0.0179, Supplementary 

Figure 4a-c).  

Using the RGT kit, we found no correlation between amount of input DNA and 

sequencing library yield (r2= -0.002, p=0.81).   This is probably due to the fewer 

library-washing steps using the RGT kit (six washing steps in the ILMN protocol versus 

one in RGT).     

 

Association between input DNA characteristics and sequencing library quality 

Next we sought to determine if sequencing quality was influenced by the nature 

of the input DNA by looking at the proportion of samples from all quality (ΔCt) groups 

(Figure 4a), fragment sizes (Figure 4b) and different input groups (Figure 4c) in each of 

the sequencing quality categories.    Reassuringly, we found no biases in sampling that 

contributed to the sequencing quality. In other words, each copy number plot quality 

group had samples from all DNA quality (ΔCt) groups, fragment sizes and input 

quantity groups, suggesting that we could generate good quality libraries from most of 

our FFPE DNA regardless of these features.   

Using our copy number output categorisation scoring, we examined if quality of 

the libraries (analysed as “all sequencing quality groups” versus “very good”) can be 

attributed to the different features of the input DNA and library yields (Table 2, Figure 

5).  We found that the quantity of template was only significantly different in the good 

quality libraries. Meanwhile, the quality of input DNA was significantly different in the 

intermediate libraries only when compared to the “very good” libraries.  Therefore, the 

lesser quality sequencing libraries (I, P and F) cannot be attributed simply to either 

quantity or quality of the template DNA.  The DNA fragment sizes, which should 

reflect the length of the template as the DNA was sheared under similar conditions, 

were found to be significantly different in all groups (progressively becoming shorter) 

except the failures.  We found that low quality DNA was associated with shorter DNA 

fragments, lower library yield and higher number of unmapped reads but no association 

with the total number of unique reads aligned (Figure 6a-d).   The recovery of most of 

the poor/failed libraries described previously, was achieved by either repeating the 
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library generation or re-sequencing to generate more reads.  Consequently, we suspect 

the poor/failed libraries could be due to a loss of DNA during the purification steps or 

that the Q-PCR quantification of the libraries prior to normalisation, over-estimated the 

library concentration resulting in inadequate amount of library being used for 

sequencing.  This would explain why by simply increasing the quantity of libraries for 

sequencing and reducing the number of samples in a single pool, ensured adequate read 

counts and successful sequencing.   

Discussion  

In this study, we have looked at the effect that quantity and quality of DNA 

from FFPE tissues has on successful sWGS library preparation for CN profiling of 

human breast cancers. Both the quantity and quality of DNA have always been an 

important consideration for sample selection and in deciding which genomic application 

to use. For example, microarrays require 100ng – 2.5μg of DNA depending on the 

resolution of the arrays whereas PCR based methods require only 10ng of DNA.  In our 

hands, we have not had much success in obtaining CN data with DNA extracted from 

FFPE DNA using microarrays, especially when the extracted DNAs are more 

fragmented and of lower quality (judging from absorbance ratios of 260nm to 280 nm 

and multiplex PCR for quality control).   

Here we have robustly shown that we can generate CN data from virtually all 

archived FFPE samples using sWGS. We show good CN profiling data irrespective of 

the quality of input DNA, as inferred by whether it can be amplified with Q-PCR (ΔCt).  

Previous work has extensively tested the utility of FFPE DNA for mutation analysis 14-

18 but to date no comprehensive study has shown its use for CN profiling.  Since many 

human cancer types, including breast and ovarian cancers, are driven mostly by CNA 

(C-class) rather than point mutations or indels (M-class), we believe more effort should 

be focussed on characterizing the copy number landscapes of these cancers  3. We 

found sWGS to be very robust in generating these CN profiles, independently of the 

kits used, quantity and quality of DNA.  sWGS is also significantly cheaper (~50%) 

than microarray-based methods (Supplementary Table 2).   

Another advantage of generating sWGS libraries is the ability to use the same 

library for targeted sequence enrichment to identify mutations.  There have been other 

methods reported for CN profiling using DNA extracted from FFPE samples but these 
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methods do not generate sequencing libraries that can then be used for target 

enrichment and sequencing 19 or if they do, are expensive 20.  In addition, sWGS will 

also serve as a quality control for the libraries, given its relative low cost when 

compared to that of generating targeted sequencing libraries.  Only libraries that 

generate good CN profiles should be used for target enrichment and mutation detection 
21.  Whilst we haven’t performed target enrichment on our FFPE libraries, we expect the 

performance of these FFPE libraries for mutation analysis to be similar to that of 

published data, including known artefacts caused by formalin-based fixation effects on 

the DNA template 15,17,22-24.   

In summary, we have shown that sWGS is a robust and cost-effective method 

for obtaining good quality CN data from FFPE cancer samples, irrespective of the DNA 

quality and quantity used.  In the case of breast cancer, CN profiles can be used to 

stratify breast cancers into one of the 10 Integrative Clusters 25, reiterating the 

importance of FFPE tumour archives. The methods described here are also of relevance 

to other cancers, e.g. ovarian cancers where CN profiling is essential to characterise 

their genomic landscapes.  
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FIGURE and TABLE – LEGENDS 

Table 1 

Features of input DNA and libraries generated from FFPE blocks collected at three different 
sites.  Data provided in minimum-maximum range and median in brackets.  Age = years since 
blocks were generated.  ΔCt = difference between the cycle threshold of test to the control 
template ACD1 provided in the kit.   ng=nanogram,  PCR= polymerase chain reaction, bp=base 
pairs, nM=nanomoles.  * denotes the site where there is a significant difference to the index 
group (ie Cambridge).   

Table 2 

Features of input DNA and libraries for the different categories of copy number data.  Data 
provided in minimum-maximum range and median values in brackets.  ΔCt = difference 
between the cycle threshold of test to the control template ACD1 provided in the kit, 
ng=nanogram, bp=base pairs, nM=nanomoles, SD=standard deviation.  * denotes the site where 
there is a significant difference to the index group (ie Cambridge). 

Figure 1 – Overall Design: Schematic showing the workflow to ensure successful shallow 
whole genome sequencing (sWGS) libraries  

Figure 2 – Categorisation of copy number profiles 

A. Examples of QDNASEQ copy number plots scored as Very Good, Good, Intermediate 
and Poor.  Failed libraries had very few reads and are not shown.  Green dots represent 
regions of gains/amplifications and red dots represent regions of loss/deletion. 

B. Boxplots showing increasing measured standard deviations with decreasing 
libraries’qualities.  Dots represent individual samples within each category.   
VG=very good, G=good, I=intermediate, P=poor, F=fail 

Figure 3 – Features of input DNA and libraries generated from blocks less and more than 
five years.   

Dot plots represent the range (minimum-maximum) of observed values for each of the 
following categories and the red dot represents the median.   

A. The quality of input DNA inferred by ΔCt.   
B. Fragment sizes of the libraries in base pair 
C. The library yield in nanomoles 
D.  

Figure 4 – Measured standard deviations from the QDNASEQ copy number plots and 
associations with the quality of sequencing libraries.   

A. Bar charts showing proportion of samples with different input DNA quality (based on 

ΔCt) in each sequencing quality group..  

B. Bar charts showing proportion of samples from FFPE blocks of different fragment sizes 
in each sequencing quality group.  

C. Bar charts showing proportion of samples with different amount of input DNA in each 
sequencing quality group  

 VG=very good, G=good, I=intermediate, P=poor, F=fail 

` 
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Figure 5 –Features of the sequencing libraries.   

Boxplots showing different features of input DNA and library yield relative to the different 
library qualities.   

A. Input DNA 
B. Quality of input DNA inferred from ΔCt 
C. Fragment size of libraries 
D. Library yield 
VG=very good, G=good, I=intermediate, P=poor, F=fail 

 

Figure 6 – Effect of input DNA quality  

Scatterplots showing the association between quality of input DNA with different features of 
the sequencing libraries. 

A. Fragment size of libraries 
B. Library yield 
C. Unmapped Reads 
D. Unique aligned reads 
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Table 1: Description of the samples and libraries according to sites 
 

Cohort Cambridge Korea Spain 
Patients 62 122 172 

Age (years) 2-19 
(12.4) 

3-8 (6.4) 9-10(9) 

DNA Quality (ΔCt) -0.3-8.1 
(3.5) 

1-17.1 * 
(5.7) 

-3.2-7.8 (3.5) 

Fragment Size (bp) 217-324 
(247.5) 

197-288* 
(236) 

180-251* 
(225) 

Library Yield (nM) 0-77 
(17.3) 

0-925 (12.3) 0.18-278 
(13.8) 

Good Quality libraries (%) 48 (87.3) 48 (97.1) 163 (74.8) 
 

 

Table 2: Description of the libraries grouped by quality 
 

Quality DNA 
Input (ng) 

DNA Quality 
(ΔCt) 

Library 
Yield (nM) 

Fragment 
Size (bp) 

Observed  SD 

VG 3.8-100 
(30.3) 

-0.3-12.7 
(4.4) 

0.28-245.1 
(16.1) 

180-288 
(235) 

0.01-0.132 
(0.097) 

G 4.3-107 
(35.9)* 

1-17.1 
(4.2) 

0.18-139.7 
(11.3) 

195-324 
(229)* 

0.0789-0.144 
(0.1105)* 

I 4-59 
(33.1) 

-3.2-6.3 
(3.5)* 

1.06-924.8 
(16.0)* 

191-258 
(231)* 

0.0739-0.24 
(0.127)* 

P 14.7-50 
(28.7) 

2-11.3 
(4.9) 

0-55.63 
(8.7) 

187-243 
(219)* 

0.119-0.329 
(0.171)* 

F 4.8-51.1 
(25.2) 

1.9-8.2 
(4.9) 

0-179.6 
(8.2) 

204-244 
(225) 

0.388-0.826 
(0.528)* 
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