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Abstract 

Acquired resistance to carboplatin is a major obstacle to the cure of ovarian cancer, but its 

molecular underpinnings are still poorly defined. We selected multiple clones derived from a 

single cell in parallel for similar levels of resistance to carboplatin. The resistant clones showed 

no significant genetic alterations, but each one activated different mechanisms of resistance 

resulting in transcriptional heterogeneity. Single-cell mRNA sequencing defined multiple 

transcriptional states associated with clone identity and resistance evolution, and identified a 

subset of unselected parental cells that were already in a resistant state. Six expression 

signatures derived from the resistant states distinguished primary from recurrent high-grade 

serous ovarian cancers, predicted both response and survival and disclosed functional 

differences between intrinsic and acquired resistance. This multidimensional, single-cell 

analysis offers new insights into the dynamics of the acquisition of resistance to carboplatin, a 

drug of major importance to the treatment of ovarian and other cancers.  
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Introduction 

Patients diagnosed with high grade serous ovarian cancer are generally treated initially with 

either cisplatin or carboplatin (CBDCA) in combination with paclitaxel. While 65-75% of patients 

respond to the primary treatment (1), resistance emerges frequently during therapy and this is a 

major obstacle to cure (2). Unlike targeted agents where high-levels of resistance are common, 

repeated treatment of sensitive cells with clinically relevant levels of exposure to cisplatin or 

CBDCA produces only low-level resistance, typically in the range of 1.5-3-fold, a level sufficient 

to account for clinical failure of treatment in vivo (3). 

The mechanisms underlying acquired resistance to platinum-containing drugs has been the 

subject of intense study ever since their discovery. Acquired resistance has been attributed to 

changes in many types of cellular functions including import and export of the drug, enhanced 

detoxification and DNA adduct repair, inactivation of the mismatch repair checkpoint and 

repression of apoptotic signaling (4). Findings from single genes or transcriptome-wide studies 

of bulk cell populations can usually be validated through overexpression or knock-out, but these 

studies have failed to disclose any actionable gene or set of genes that are consistently altered 

across different cell types or experiments and that would point toward widely useful approaches 

for preventing or overcoming the development of resistance in patients.  

Apart from rare instances of BRCA1/2 mutation reversion (5), the acquisition of chemo-

resistance is believed to be epigenetically mediated (6). Recent advances in the study of 

resistance to targeted agents has revealed the existence of “persister” cells in lung cancer cell 

lines that are present at low prevalence and can resist treatment through epigenetic mediated 

mechanisms (7). Previously, single cell tracing had shown that, within a cell population, the 

immediate response to genotoxic treatment can vary extensively from cell to cell giving rise to 

considerable heterogeneity within the surviving population (8,9). More recently, similar 

observations were made in vemurafenib-treated melanoma cells where cells in a transient 
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resistant state are present in the population prior to drug exposure and display increased levels 

of expression of resistance genes (10). Importantly, the relevance of these recent models to the 

acquisition of resistance to the platinum-containing drugs has not been established for either in 

vitro or in vivo models nor have the concepts been validated in clinical studies.  

Here we present a comprehensive phenotypic and molecular characterization of a set of 

ovarian cancer clones derived from a single cell and selected in parallel for acquired resistance 

to CBDCA. We show that the resistance is unlikely to be due to genetic mutations, copy number 

changes or differences in CBDCA uptake. Resistance was associated with significant changes 

in proliferation rate and the capacity to form colonies and organoids, and there is substantial 

heterogeneity between clones. Transcriptome profiling showed a common association of 

CBDCA resistance with slow proliferation and high interferon signaling but also demonstrated 

marked heterogeneity between resistant clones, suggesting that the mechanisms of resistance 

are private to each of them. Single-cell transcriptome analysis allowed us to characterize the 

resistant state at single cell resolution, and to trace its evolution both during the emergence of 

resistance and after drug withdrawal. A gene and pathway-specific analysis further revealed the 

presence of small numbers of cells already in a resistant state in unselected cell populations. 

Importantly, the clinical expression subtypes derived from the in vitro resistant states associate 

with therapy response and outcome in patients with ovarian cancer and reveal functional 

differences between intrinsic and acquired resistance.  
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Results 

While resistance acquisition can be well recapitulated in vitro, through repeated drug 

exposure, variation between cell lines, methodologies and the lack of selection replicates 

compromise the identification of widely shared molecular changes associated with resistance to 

platinum-containing drugs. In order to reduce noise levels, we isolated a single cell from a non-

clonal population of human ovarian cancer CAOV3 cells, and grew them to a small population 

(the parental clone) from which 12 clones were isolated (Figure 1A). Four of these clonal 

populations were grown continuously in the absence of CBDCA (“S clones”: S01-S04). The 

remaining 8 (“R clones”: R06, R07, R14-R19) were each individually subjected to 4 cycles of 

exposure to CBDCA at which point they tolerated 5 µM drug (subsequently referred to as step 

5) and averaged 1.7-fold resistance relative to the parental clone (Figure 1B). Four of these 8 

clones were then treated with additional cycles of CBDCA at gradually increasing 

concentrations until they tolerated 15 µM CBDCA (referred to as step 15) and averaged 7.8-fold 

resistance relative the parental clone. Subsequent passages of the resistant clonal populations 

in the absence of CBDCA for 63 doublings did not result in loss of resistance (Figure S1) 

indicating that the phenotype was stable after selection with high concentrations of CBDCA. 

This experimental design allowed us to determine, with increased confidence and rigor, whether 

genetically identical clones underwent the same changes during acquisition of resistance. 

Phenotypic and molecular characterization of isogenic resistant clones 

The phenotypic characteristics of the 4 R clones at step 15 were compared to those of the 4 

S clones that had been grown continuously in the absence of drug. As shown in Figure 1C-E, 

the growth of the R clones was slower, they formed fewer large colonies in 2D culture, and in 

low-attachment plates they formed a higher proportion of tight spheres and a lower proportion of 

organoids. Most importantly, each of these metrics detected substantial heterogeneity among 

the isogenic R clones, which may be the result of small clonal differences developing during the 
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initial round of selection or the consequences of different evolutionary trajectories during the 

subsequent rounds of selection.  

Reduced drug uptake has been reported in many types of cells with acquired resistance to 

of cisplatin and CBDCA (11), but accurate measurement of initial influx rates has not been 

possible due to the limited sensitivity of available measurement techniques and lack of single 

cell resolution. Mass cytometry was used to compare cellular platinum (Pt) accumulation in the 

S and R clones which allowed precise quantification of Pt content in each individual cell in more 

than 105 cells per sample. After establishing the quantitative nature of this measurement (Figure 

S2A), we observed that the sensitive and resistant clones did not differ significantly with respect 

to the fraction of Pt-containing cells (Figure S2B). The total intracellular Pt content was actually 

slightly higher in the R than S clones (p<0.001, Table S1, Figure S2C,D), a change detectable 

only because of the ability of the mass cytometer to quantify levels in >100,000 cells per 

sample. However, the differences between R and S clones were very small suggesting that 

reduced drug uptake was not a major contributor to resistance in this model. 

We sequenced the exomes of 4 S clones and 8 R clones at selection step 5 and identified a 

median of 39 coding mutations per clone for a total of 91 independent mutations. Sixteen 

mutations were non-frameshift insertions or deletions which were shared by more than 10 

clones and thus less likely to be acquired in vitro, and may be due to sequencing or read 

alignment errors. The remaining 75 mutations affected 74 genes, 54 of which were mutated in 2 

or more clones (Table S2). None of these genes were significantly more frequently mutated in 

the R than S clones. Similarly, we verified that the R clones did not acquire any significant 

shared copy number alterations when compared to the S clones (Table S3). Two clones (S01 

and R06) were affected by copy number gains (4 and 10 Mbp) and 7 clones (S01-03, R06, R16, 

R18, R19) had copy number losses (0.2-12 M bp). When copy number changes occurred, they 

were small in magnitude (less than 1.5-fold) and none of them affected multiple R clones. Thus, 
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these clonal populations derived from a single cell were genetically homogeneous and the small 

numbers of genetic changes observed were unlikely to be causally associated with the resistant 

phenotype.  

In order to identify genes associated with resistance, we measured the expression level of 

all genes in the 4 S and the 4 R clones at step 15 using RNA-seq (Table S3). We identified 186 

genes that were differentially expressed between S and R clones (Figure 2A). An enrichment 

analysis of Hallmark (12) and Reactome (13) gene sets revealed that resistance was associated 

with a global repression of proliferation and translation and the activation of genes involved with 

interferon signaling, KRAS signaling and epithelial-to-mesenchymal transition (EMT) (Figure 

S3). All of these are processes previously reported to be involved in chemo-resistance or 

response to genotoxic injury (14–16). An unsupervised analysis revealed that, while the S 

clones had similar transcriptional profiles, the profiles of the R clones were highly 

heterogeneous (Figure 2B). A clone-specific analysis showed that each R clone had 

deregulated different biological processes to different levels when compared to the sensitive 

clones (Figure 2C and Figure S4). R06 activated cell cycle and nucleotide excision repair, R14 

showed the most significant EMT signature and active KRAS signaling, R16 had increased 

oxidative phosphorylation while R18 primarily activated the type I interferon response pathway. 

These processes are not mutually exclusive and were deregulated to different degrees in the 

various resistant clones. Indeed, processes related to cellular proliferation (E2F targets) were 

repressed in all clones, while interferon or KRAS signaling were induced in all clones.  

Identification of resistant states at single cell resolution 

Suspecting that the magnitude of the clonal heterogeneity within a cell population may be 

associated with the acquisition of drug resistance, especially in the initial selection phase, we 

measured the expression level of individual genes in ~2,000 single cells from the original 

CAOV3 cell population, the parental clone derived from a single cell in this population, 2 S 
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clones and each of the 4 R clones at both selection step 5 and step 15 (Table S4). Using the 

expression of a median of 1,689 genes per cell, the cells were grouped by expression similarity 

which led to 7 major clusters referred to as cell states (Figure 3A); there was 1 large cluster 

(7,464 cells), 2 medium (4,028 and 6,020 cells) and 4 small (1,807-2,812 cells) clusters. The 

majority of cells from the original CAOV3 non-clonal population (88%), the parental clone (93%), 

and the S clones (91% and 97%) all resided in the largest drug sensitive state, indicating that 

the initial clone selection and subsequent expansion was not associated with a significant 

phenotypic drift (Figure 3B). Cells from the R clones at selection step 5 distributed into 2 

separate states: R06 and R14 (both 94% of their cells) in one cluster and R16 and R18 (87% 

and 77% of their cells) in the other. Thus, at step 5, the R clones already showed divergence 

from the sensitive state but their relative differences were small suggesting the presence of 

functional similarities between them at this stage. Similar to the results from bulk RNA-seq, the 

R clones became very distinct after step 15 and each occupied one of 4 different more 

homogeneous and largely non-overlapping cell states (~88-99% of cells in each different single 

state).  

In order to further investigate the transition between states, clone R14 was analyzed at 4 

time points during the evolution of resistance: 1) at selection step 5; 2) after it became resistant 

to 10 µM CBDCA (step 10); 3) 40 doublings after the last 15 µM exposure to CBDCA (step 15a); 

and, 4) 77 doublings after the last 15 µM exposure (step 15b). After aggregating the data with 

those obtained from sensitive clones and the original non-clonal CAOV3 cell population, it was 

possible to map each time point to a different group of cells (Figure 3C). Interestingly, in this 

multidimensional projection, the cell clusters expanded radially as selection proceeded. 

Furthermore, the clusters after 40 and 77 doublings following drug removal were distinct, 

suggesting that the cell state continued to evolve in absence of selection, even splitting into 2 

subpopulations. Such evolution was not observed in unselected cells as the parental and 
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sensitive clones occupied the same state despite undergoing a sub-cloning step and an 

additional 60 doublings. This analysis clearly demonstrates that the states evolve with 

sequential rounds of selection and that individual clones eventually diverge into quite different 

states.  

Characterization of resistant states at an early point during resistance evolution 

In an attempt to characterize functional differences occurring early in the resistance 

acquisition process, we performed deeper single cell sequencing of the original CAOV3 line, the 

parental clone, 2 S clones and 4 step 5 resistant clones leading to reliable measurement of the 

expression of a larger number of genes (median: 3,636 genes/cell). At this resolution, 2 major 

states were identified, corresponding to sensitive and resistant cells (Figure 4A and 4B). 

Interestingly, while the resistant state was populated mostly with cells from resistant clones, a 

significant fraction of the cells from the sensitive clones were found in a resistant state including 

3% from clone S02, 5% from clone S03, 7% from the parental clone and 12% from the non-

clonal CAOV3 population, respectively (Figure 4B). Reciprocally, many fewer cells from the R 

clones were found in the sensitive state (0.7%, 0.9%, 0.6% and 3% for clone R06, R14, R16 

and R18, respectively). This observation suggests that some cells within a large population of 

unselected cells reside in a resistant state, and that these may have a selective advantage upon 

exposure to the drug. Moreover, the larger fraction of cells in a resistant state found in the non-

clonal CAOV3 population compared to the S02 and S03 clones indicated that resistant cells are 

more prevalent in the unselected population which had a higher level of clonal heterogeneity.  

At the molecular level, we identified 1,289 genes with altered expression (272 upregulated, 

1,017 down-regulated) in the resistant state. The two states can be distinguished by the 

expression level of a few processes, such as repression of cellular proliferation (E2F targets) 

and induction of interferon signaling (Figure 4C). These results are consistent with the findings 

from the bulk RNA-seq of step 15 R clones and suggest that the deregulation of these two 
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processes, common to all R clones and associated with the step 5-resistant state, is triggered 

early in the resistance acquisition process. Interestingly, this single cell expression analysis not 

only revealed that cells from the R clones had a higher interferon signaling signature on 

average, but that a fraction of them were clear outliers in the distribution (Figure 4D, 1-18% with 

Z score>2). While such outliers are not observed in the unselected samples, the cells in a 

resistant state also had a higher level of interferon signaling compared to the cells in a sensitive 

state (p=0.0014) suggesting that interferon signaling contributes to the resistant state of those 

few cells found to be in a resistant state in the unselected population. Other processes identified 

in the bulk RNA-seq analysis at step 15 were not yet significantly altered at step 5 in the single 

cell analysis. However, individual relevant genes were overexpressed only in the R clones 

(Table S6 and Figure 4E-G) including those coding for vimentin, a marker of EMT transition 

associated with Pt drug resistance (17), NEAT1, a non-coding RNA regulating EMT and radio-

resistance (18), and gelsolin, an apoptosis regulator previously reported to mediate resistant to 

the Pt drugs (19). These observations suggest that small numbers of cells already in a resistant 

state are important contributors to the acquisition of resistance during the selection process.  

Resistant states have prognostic and functional significance for high grade serous 

ovarian tumors (HGSOC)  

The single cell states observed at step 5 selection likely already capture the functional 

diversity observed between clones after step 15 selection. In addition, such processes are likely 

to mediate both intrinsic (in unselected cells) and acquired (in CBDCA selected cells) 

resistance. However, it is unknown whether these processes are active in ovarian cancers 

growing in patients or whether they can be used to otherwise sub-classify high-grade serous 

ovarian cancer (HGSOC) or predict treatment response and outcome. We used non-negative 

matrix factorization of the expression of 1,289 CBDCA-resistance state-defining genes in 

specimens from 111 HGSOC patients (20) and identified 6 transcriptional components that 
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classified these tumors into 5 different subtypes (Figure 5A). These subtypes were named on 

the basis of the fraction of each tumor type or treatment response observed in a given subtype 

(Figure 5B). This approach identified 2 “sensitive” subtypes, A (N=12) and B (N=10), in which 

79% of the tumors were sensitive. It identified a “mixed” subtype (N=21) in which 45% of the 

tumors were sensitive, a “resistant” subtype (N=44) in which 79% of the tumors were resistant 

or refractory, and a “recurrent” subtype (N=24) which contained 88% recurrent tumors. Primary 

tumors with a recognized homologous recombination deficiency (HRD) were more sensitive to 

the treatment (p<8 x10-9) and, while overall they were enriched in sensitive subtypes A and B 

(OR=7.7, p<8 x 10-4), those HRD tumors that did not respond to the treatment were more likely 

to be in the resistant subtype (Figure 5B; OR=5.9, p<0.017). This suggests that the proposed 

sub-classification of HGSOC based on in vitro resistant states adds valuable information that 

predicts response over and above that contributed by HRD status. The 4 subtypes composed of 

mostly primary tumors were further associated with overall survival (log-rank p=0.004; Figure 

5C), a prognostic result that was validated in HGSOC case from The Cancer Genome Atlas 

dataset (21) (log-rank p=0.009, Figure 5D) 

Gene Set Enrichment Analysis of the subtype-defining expression components can be used 

to identify functional differences between HGSOC subtypes (Figure 5E). Both sensitive 

subtypes are characterized by cell cycle and mitotic signatures in component 2 and 3, indicative 

of proliferative tumors, a well-known predictor of chemo-sensitivity (22). In contrast, the resistant 

subtype, driven by component 1, is characterized by the absence of proliferation and 

enrichment of processes related to mRNA processing composed of genes encoding RNA 

binding proteins and forming ribonucleo-particles (ribosomes, spliceosome, RNA interference, 

or signal recognition particle). The mixed subtype, characterized by component 6, is similar to 

the resistant subtype with the addition of a high level of oxidative-phosphorylation, indicative of 

more metabolically active tumors. Finally, the recurrent subtype is characterized by component 
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5 and enriched for TNFa signaling and hypoxia. Interestingly samples from recurrent tumors 

were primarily collected from ascites, a mostly hypoxic environment (23). Three primary tumors 

were also collected from ascites and displayed high level of component 5 suggesting that this 

functional association is driven by specimen origin rather than acquired resistance. Unlike the 

resistant subtype, the recurrent subtype does not show enrichment of RNA binding proteins, 

suggesting distinct differences between the mechanisms underlying intrinsic and acquired 

resistance.  
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Discussion 

In order to detect the changes that occur in human ovarian cancer cells as they become 

resistant to CBDCA at a high resolution, we used an isogenic system, matching resistant and 

sensitive samples, and multiple selection replicates. This rigorous experimental design together 

with the choice of the CAOV3 cell line, unambiguously originating from a patient with HGSOC 

(24), both contributed to reduce experimental noise relative to prior studies. 

The clones’ phenotypic and molecular characterization disclosed features that were shared 

by all R clones, distinguishing them from S clones. The R clones had lower proliferation rates, 

impaired ability to form colonies and organoids under low-attachment conditions, and activation 

of interferon signaling. Importantly, interferon signaling was already induced at step 5 selection, 

suggesting an early role in resistance acquisition. Activation of interferon signaling is triggered 

by the DNA damage response (DDR) (25) and was previously observed in response to 

genotoxic stress. Expression of IRF1, a main effector of interferon signaling, is induced by 

cisplatin and may limit this drug's effectiveness (15). Importantly, it is not yet clear whether the 

DDR-mediated response can be targeted to prevent or reverse resistance. In head and neck 

cancers, knockdown of STAT1 reduces cell death caused by cisplatin in vitro (26). Similarly, 

silencing of STING, a well-known inducer of interferon, increased the efficacy of genotoxic 

treatment in breast cancer cell lines (27). These observations suggest that targeting interferon 

signaling may be a viable option to combat resistance to the Pt drugs, but such a therapeutic 

strategy would have to be carefully weighed against the potential anti-tumorigenic benefits of 

interferons (28). 

While the R clones displayed common changes, they overall differed quite markedly from 

each other. The annotation of the expression profiles revealed that each R clone had up-

regulated a different set of cellular processes suggesting that the particular combination of 

processes used to attain resistance was private to each clone. In contrast to prior studies which 
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derived resistant cell lines from a heterogeneous cell population, we can confidently link the 

observed heterogeneity to the resistance acquisition process, as all studied clones were the 

progeny of a single cell and did not show any substantial genetic drift. These differences 

between isogenic clones may actually originate very early during the process of resistance 

acquisition, perhaps as soon as the first exposure to CBDCA, as has been reported for other 

chemotherapeutic agents when single-cell tracking assays were used (8,9). 

The acquisition of resistance to CBDCA in ovarian cancer is compatible with the persister 

model described for resistance to EGFR inhibitors in several types of cancer (7,29). Cells that 

persist in the presence of drug concentrations that kill most of the cells in the population are 

characterized by low proliferation rates likely mediated by epigenetic remodeling. Similar to 

persister cells (30), cells with acquired resistance to CBDCA are heterogeneous, each using 

variable numbers of elements of a diverse set of resistance mechanisms. Since persister cells 

also show reduced sensitivity to cisplatin (7), it is likely that the underlying mechanisms are 

shared. Similar to a vemurafenib-resistant state in melanoma (10), cells in a CBDCA resistant 

state pre-exist in the population of parental cells. Whether this state is transient or stable is 

currently unknown. Interestingly, the prevalence of cells in the resistant state in the unselected 

population diminished with each round of sub-cloning, suggesting that genetic or epigenetic 

heterogeneity mediates the transition between states.  

The single cell transcriptome analysis of a large number of cells in each R clone disclosed 

that they transited through different states as selection proceeded, and this state transition 

continued after the selective pressure of repeated exposure to CBDCA was stopped. This 

indicates that these states are not stable in culture. While the repeated cycles of CBDCA 

exposure likely fuels this evolution during the initial development of resistance, the selective 

forces operating after removal of the drug are less clear. One possibility is that cells constantly 

explore the state space to identify one with a faster proliferative rate. The observation that 
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evolution continues in the absence of additional CBDCA exposure suggests the possibility that 

novel vulnerabilities become manifest that could be exploited to therapeutic advantage. This is a 

high priority topic for future investigation particularly because it may be possible to 

pharmacologically accelerate state transitions to re-sensitize cells.  

Just as persister cells show sub-clonal heterogeneity (30), our results suggest that a 

population of cells in a resistant state displays substantial heterogeneity in the expression of 

single genes or more complex signatures. Some cells in a CBDCA-resistant state have very 

high levels of expression of individual genes and these cells may be those most likely to survive 

the next round of CBDCA exposure. Additional experiments using single cell tracking methods 

that can also record the level of activation of a particular resistance mechanism may be 

necessary to further explore the link between a transient, single-cell pre-selection resistant state 

and the resulting post-selection state of the population.  

The expression variation between sensitive and resistant states at selection step 5 captured 

a large fraction of the expression variation that was highly relevant to HGSOC stratification. This 

is perhaps not surprising since using the expression of genes identified through the comparison 

of the states rather than the R and S clones is very powerful, especially given the presence of 

resistant cells in the untreated control population. Moreover, the vast number of cells in each 

state identified by single cell RNA-seq provides an unprecedented statistical power to identify 

significant genes that is not achievable using traditional biological replicates. Given that the 

genes used for the classification were derived entirely from an in vitro experiment, the 

demonstrated association between expression subtypes and primary response was surprising. 

This suggests that the model we used is clinically relevant, that it captures the key determinants 

of response, and that the contribution of factors such as grade or tumor micro-environment may 

already be captured by the multi-cycle, multi-replicate in vitro experiment carried out.  
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The resulting tumor expression subtypes and their associated biological processes show a 

clear difference between cases with intrinsic versus acquired resistance. The hypoxia signature 

observed in recurrent tumors is likely due to the hypoxic environment of ascites (23). Hypoxia 

promotes chemo-resistance via pathways shared with the inflammatory response (31), but the 

observed molecular changes primarily expose the differences in specimen origin rather than 

clinical behavior. While inflammatory cytokines are present in ascites (32), our in vitro results 

suggest that the pro-inflammatory signatures can have an endogenous origin. Importantly, this 

inflammatory signature is only seen in recurrent tumors and not in primary tumors that do not 

respond, suggesting that, it is more likely to result from a recent exposure to genotoxic stress or 

from the ascites hypoxic environment. In contrast, intrinsic resistance in primary tumors is tightly 

linked to a decrease in proliferation and induction of a large set of RNA binding protein genes.  

The molecular changes found in individual CBDCA-resistant clones are profoundly 

heterogeneous. The resistant states are plastic, changing during the course of selection and 

after drug exposure has been stopped. These characteristics are similar to non-genetic 

resistance to other chemotherapeutic agents. The development of a successful therapeutic 

strategy to combat and reverse chemo-resistance is therefore unlikely to result from the 

targeting of any one specific mechanism which may only provide a transient response. The 

detailed investigation of the early regulatory events underlying the emergence of resistance 

using single-cell tracking, expression or epigenetic profiling approaches will be critical to identify 

new therapeutic opportunities, optimize treatment schedule or better predict response to primary 

treatment. 
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Materials and Methods 

Generation of CBDCA resistant clones 

CAOV3 cells and all sublines were grown in RPMI 1640 containing 5% fetal bovine serum 

and 1X penicillin/streptomycin. The clonally derived cell lines were always plated at 40,000 cells 

per well in 6 well plates and allowed to attach overnight before adding the drug. A selection 

cycle consisted of exposure to the drug for 7 days following which cells were allowed to recover 

in drug-free medium for ~2 weeks until they resumed growth and reached confluence. CBDCA 

sensitivity was determined from concentration-survival curves using ³5 concentrations; viability 

was determined with the Cell Counting Kit 8 (Dojindo Molecular Technologies, Rockville, MD) or 

Crystal Violet reagent after 96 h of drug exposure.  

2D and 3D Growth Assays 

CAOV3 cells were seeded at 200 cells/well in a 6-well plate in replicates of 3 or 6 and 

allowed to form colonies for 9 days after which they were stained with Crystal Violet. Colonies 

were counted microscopically. The capacity to grow in 3 dimensions was tested by seeding 

20,000 cells/well in ultra-low attachment 6 well plates (Corning Ref 3471) in stem cell medium 

(1:1 DMEM:F12 plus L-glutamine, 15 mM HEPES, 100 U/mL penicillin, 100 μg/mL streptomycin, 

1% knockout serum replacement, 0.4% bovine serum albumin, and 0.1% insulin-transferrin-

selenium (Corning, Corning, NY). The stem cell medium was further supplemented with human 

recombinant epidermal growth factor (20 ng/mL) and human recombinant basic fibroblast 

growth factor (10 ng/mL). The medium in each well was refreshed every 3 days by adding 

500 µL/well of fresh stem cell media supplemented with the growth factors. Spheres were 

counted under a microscope and subclassified as either tight spheres or organoids after 7 and 

14 days of culture.  

Mass Cytometry 
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Cells were incubated with 15 µM CBDCA for 1 h at 37oC, washed and then exposed to a 

1:500 dilution of Cell-ID Intercalator 103Rh for 15 min at 37oC to mark the dead cells in the 

population. Analysis of ~2 x105 cells from each sample was carried out on a Fluidigm Helios 

mass cytometer using EQ Four Element Calibration Beads for normalization. 

Exome Sequencing and Analysis 

The sequencing libraries were prepared and captured using SureSelect Human All Exon V4 

kit (Agilent Technologies) following the manufacturer’s instructions. The sequencing was 

performed using the Illumina HiSeq 2000 system, generating 100 bp paired-end reads. All raw 

100 bp paired-end reads were aligned to the human genome reference sequence (hg19) using 

BWA (33) and further jointly realigned around indels sites using GATK’s (34) IndelRealigner. 

Duplicate reads were removed using Picard Tools MarkDuplicates (35). Table S6 presents the 

summary statistics of the sequencing. The variants were called using Freebayes (36) and 

filtered for high quality (QUAL/AO>10). We annotated the variants with ANNOVAR (37), 

removed non-coding and synonymous variants, variants in dbSNP147 or shared between all 

samples, leading to a total of 93 variants across all 8 samples (Table S2). The copy number 

changes were called independently on each chromosome using CODEX (38) with default 

settings (Table S3), limited to the expected exonic target from the SureSelect capture kits and 

expecting fractional copy number from aneuploidy. Segments smaller than 100kb, supported by 

less than 3 exons, or with copy number between 1.5 and 2.5 were excluded.  

RNA Sequencing and Analysis 

RNA was extracted using Qiagen RNAEasy and the libraries were prepared from 1 µg of 

RNA using TruSeq following the manufacturer instructions (shear time modified to 5 min). The 

libraries were sequenced on HiSeq 4000 (paired end 100 nt reads) and analyzed using BCBio-

nextgen 1.0.1 (39) RNA-Seq default pipeline which included adapter removal with cutadapt 

v1.12 (40), read splice aware alignment with Bowtie2/Tophat suite v2.22.8 (41,42) for quality 
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control (Table S7), and isoform expression level estimation using sailfish 0.10.1 (43). The 

differential expression was determined using DESeq2 (44). We performed Gene Set Enrichment 

Analysis (45) using gene set from MSigDB (46) and implemented in the liger R package.  

Single cell RNA-Sequencing 

We used the 10x Chromium (10x Genomics v2 reagents) to isolate ~2000 single cells from 

each sample following the manufacturer’s instructions. Briefly the cells/GEM droplets emulsion 

was formed using 10x Chromium controller. The reverse transcription and template switching 

steps added both a cell-specific barcode and unique molecular identifier to each cDNA. The 

emulsion was then broken up and the GEM cleaned up. The single-strand cDNA was 

fragmented enzymatically and subjected to library preparation, including clean-up, end-repair, 

adapter ligation and enrichment PCR to add sample-specific index. The libraries were quantified 

using Agilent Tape-station, and pooled for sequencing on the Illumina HiSeq 4000 for single 

index paired-end sequencing (28+98nt reads). The resulting sequencing reads were separated 

using bcl2fastq and analyzed using the Cell Ranger v2 pipeline count, combining reads from 

different sequencing runs. The barcode/cell matrices from different samples were further 

aggregated using Cell Ranger aggregate normalizing to total number of reads (Table S4). The 

resulting multi-sample cell/barcode matrix was then analyzed using cellRangerkit R package. 

Notably, each sample was sequenced at different depth, thus requiring down-sampling the 

reads before aggregation. This led us to three sample aggregation schemes (Table S4): 1) 

broad: includes all unselected, step 5 and step 15 selected samples (median of 15,981 reads 

per cell), 2) deep: includes unselected and step 5 selected samples (median 41,523 reads per 

cell), 3) R14 focused: includes unselected and all R14 selected samples (median 14,731 reads 

per cell). We used a graph-based clustering default settings from CellRanger and adapted from 

Macosko et al (47). The clusters were further consolidated according to their distribution in the 

tSNE projection. Differentially expressed genes were identified using the Cell Ranger 
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implementation of sseq (48). The pathway score for each cell was determined using the 

bioconductor gsva package.  

Clinical sample classification and prognosis 

The gene expression from the ICGC high grade serous ovarian cancer (20) was obtained 

directly from the ICGC portal (49). The expression level was available for 1251/1289 genes, 

rescaled (z-score transform), outliers were collapsed to a maximum of 3 standard deviation and 

all scores were made positive (adding 3). The rank of the non-negative matrix factorization was 

identified using Findrank of the NMF R package, and the matrix was decomposed at the chosen 

rank (k=6) using 100 permutations. The samples were clustered according to the resulting 

component level using pheatmap and cutree packages. The gene expression data from TCGA 

(21) was obtained from the Broad institute Firehose API (RSEM normalized, v2016012800) and 

scaled the same way. The subtype membership of each sample was determined as the subtype 

with maximal Pearson correlation (greater than 0.2) to each cluster-specific meta-gene 

expression derived from ICGC data. Survival analysis were performed using R package 

‘survival’ and significance determined using log-rank test.  
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Figure 1: Phenotypic characterization of the resistant clones. (A) Schematic 

representation of the workflow to generate CBDCA resistant clones from CAOV3. (B)

Changes in IC50 of S clones (unselected) or R clones (8 at step 5 and 4 at step 15). 

Each IC50 is calculated from dose-response curves of 6 replicates and experiments 

repeated twice or more (dots). (C) Doubling time measured over a 48 h time course –

y axis cut for R18 (>100 h). (D) Counting of colonies formed in a period of 9 days 

after seeding 200 cells per well. Experimental replicates (N=6) are shown. (E) 

Fraction of organoids (O), spheres (S) and cell aggregates (A) observed after 14 

days growth in low adherence 3D culture model. For each sample (N=8) and 

replicates (N=2), the total number (point size) and relative abundance (Gibbs triangle 

coordinates) of each type of structure are indicated. 
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Figure 2: Expression profiling of the derived clones. (A) Volcano plot indicating the 

fold change (y axis) and significance (x axis) of the genes differentially expressed 

between S and R clones. (B) First two principal components derived from the expression 

profiles of each clone. (C) Most significantly up or down-regulated gene sets (Hallmark 

and Reactome) in individual R clones compared to all S clones. Significant gene sets 

(q.value<0.005) enriched (score>1.5) or depleted (score <-2) in at least one clone are 

reported. Color gradient indicates enrichment score. 
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Figure 3: Identification of single cell resistant states. (A) tSNE projection of 28,982 

single cells from CAOV3, parental clone, S02, S03 as well as four R clones (after step 5 

and step 15 selection). Cell are colored according to the 7 clusters identified. (B) 

Proportion of cells located in each cluster. (C) tSNE projection of 17,320 single cells from 

CAOV3, parental clone, S02, S03 as well as four R14 selection steps: step 5, step 10, 

step 15a (40 drug-free doublings) and step 15b (77 drug-free doublings). The arrows 

highlight the transition between states during the progression of the selection. 

A

B

C

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231548doi: bioRxiv preprint 

https://doi.org/10.1101/231548
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Single cell expression analysis after step 5 selection. (A) tSNE projection of 

17,230 single cells from 8 samples (COAV3, parental, S02, S03, R06, R14, R16, R18). The 

two main clusters corresponding to sensitive (black) and resistant (red) states are indicated. 

(B) tSNE projection identical to (A) and highlighting the location of cells from each sample in 

their respective panel (black). (C) Most significantly up or down-regulated processes 

(Hallmarks and Reactome) in cells located in the resistant state (q.value<0.01). All Hallmark 

(N=50) and Reactome (N=674) gene sets were included in the analysis. (D-G) Single cell 

(N=500) interferon signaling score (D) or expression level for Vimentin (E), Gelsolin (F) or 

NEAT1 non-coding RNA (G). The state of each cell is indicated (red: resistant, black: 

sensitive). The blue boxes represent mean and standard error. 
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Figure 5: Resistance-based patient stratification. (A) NMF-based classification of 111 high grade 

serous ovarian cancer from Patch et al. (20). The level of the 6 transcriptional components are 

indicated in heatmap scale, the 5 resulting subtypes are color coded. (B) Distribution of all (upper 

panel) or HRD (lower panel) primary tumors across subtypes (colors) and primary response (y –

axis). (C) Kaplan-Meier plot of overall survival (OS) of ICGC primary tumors from the three major 

states (Sensitive=Sensitive A+Sensitive B). The log rank test p-value is indicated. (D) same as (C) 

for TCGA tumors. 101/270 TCGA primary tumors were robustly assigned to a subtype (maximum 

Pearson correlation > 0.2). (E) Reactome pathway Gene set enrichment scores (heatmap) in each 

NMF component. The most significantly enriched gene sets (p<3 x10-3) in at least one component 

are represented. 
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Figure S1: Dose Response comparing the drug sensitivity of 

R14 clones after 36 (R14_early) and 99 (R14_late) doublings 

after step 15 selection. 
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Figure S2: Pt uptake measured by mass cytometry. (A) The fraction of cells with 

detectable Pt content was measured after 1 h treatment with increasing dose of 

carboplatin (x axis, grey color gradient). (B) Fraction of cells with detectable levels of Pt. 

Each clone and replicate are represented. (C) Violin plot showing the distribution of Pt 

content across cells from all clones and replicates. (D) Cumulative distribution of Pt 

content between cells from R and S clones and replicates. The Pt negative cells were 

assigned at 0.01 Pt content for graphical representation (C and D). 
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Figure S3: Most affected pathways in the resistant clones. Most significantly 

up or down-regulated processes in CBDCA resistant clones after step 15 

selection (q.value<0.05). All Hallmark (N=50) and Reactome (N=674) gene sets 

were included in the analysis.
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Figure S4. Most significantly altered clone-specific GO biological 

processes. The enrichment of gene sets from GO biological processes (N=136 

from DNA repair and cell cycle related GO) was determined and the most 

significant (q.val<0.05) and most clone specific (standard deviation >0.5) are 

reported. 
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