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Abstract

Quantitative real-time PCR (qPCR) is one of the most widely used methods
to measure gene expression. Despite extensive research in qPCR laboratory
protocols, normalization, and statistical analysis, little attention has been given
to qPCR non-detects – those reactions failing to produce a minimum amount
of signal. While most current software replaces these non-detects with a value
representing the limit of detection, recent work suggests that this introduces
substantial bias in estimation of both absolute and differential expression. Re-
cently developed single imputation procedures, while better than previously used
methods, underestimate residual variance, which can lead to anti-conservative in-
ference. We propose to treat non-detects as non-random missing data, model the
missing data mechanism, and use this model to impute missing values or obtain
direct estimates of relevant model parameters. To account for the uncertainty
inherent in the imputation, we propose a multiple imputation procedure, which
provides a set of plausible values for each non-detect. In the proposed modeling
framework, there are three sources of uncertainty: parameter estimation, the
missing data mechanism, and measurement error. All three sources of variability
are incorporated in the multiple imputation and direct estimation algorithms.
We demonstrate the applicability of these methods on three real qPCR data sets
and perform an extensive simulation study to assess model sensitivity to misspec-
ification of the missing data mechanism, to the number of replicates within the
sample, and to the overall size of the data set. The proposed methods result in
unbiased estimates of the model parameters; therefore, these approaches may be
beneficial when estimating both absolute and differential gene expression. The
developed methods are implemented in the R/Bioconductor package nondetects.
The statistical methods introduced here reduce discrepancies in gene expression
values derived from qPCR experiments, providing more confidence in generating
scientific hypotheses and performing downstream analysis..
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1 Introduction

Polymerase chain reaction (PCR), developed over 30 years ago by Dr. Kary
Mullis, uses short-length oligonucleotide primers to initiate and direct synthesis
of new DNA copies using DNA polymerase plus single-stranded DNA as a
template [21]. Oligonucleotides complementary to each of the two possible
sequences relating to the sense and anti-sense strands of the target DNA are
included in the reaction, allowing both strands to be amplified simultaneously.
These new DNA copies are added to the pool of DNA templates and the process
is repeated multiple times, so that amplification occurs by chain reaction [2].

Figure 1: Polymerase chain reaction begins with a mixture of double-stranded
DNA (blue), DNA primers (green), and nucleotides (red). The reaction follows
three main steps: (1) denaturation: heating disrupts the bonds between DNA
nucleotides to produce single-stranded DNA molecules, (2) annealing: DNA
primers bind to their complementary single-stranded DNA sequence and begin
DNA formation, (3) elogation: DNA polymerase synthesizes a new DNA strand
complementary to each single-stranded DNA sequence. This sequence of steps,
called a cycle, results in a doubling of the initial DNA molecules under ideal
conditions.

The use of fluorescent tags allows one to quantify the amount of DNA present
at each PCR cycle; this is referred to as quantitative PCR or qPCR. Unlike other
genomic technologies, qPCR allows one to measure the rate of amplification
across PCR cycles [29]. Analysis of the resulting amplification data across PCR
cycles can be used to estimate a quantity proportional to the initial amount
of DNA in a sample, referred to as the quantification cycle (Cq). The most
widely used Cq value is the threshold cycle (Ct), the cycle at which expression
of a target gene first exceeds a predetermined fluorescence threshold level. This
quantity is inversely proportional to the number of target molecules in the initial
pool; therefore, a higher Ct value implies there was lower expression of the
target in a sample and more PCR cycles were required to exceed the fluorescence
threshold. Ct values are either related to a known set of copy number standards
or a control gene (absolute quantification) [20, 23] or to the Ct value of the same
target in another sample (relative quantification) [24].

In addition to quantifying DNA, qPCR can be used to measure gene expression
at the level of mRNA by first generating a complementary DNA (cDNA) via
reverse transcription of the pool of mRNA and then using the cDNA for target
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amplification by PCR. qPCR remains the gold standard for measuring gene
expression below genome-scale [16]. qPCR is widely used in gene therapy
distribution and expression assays [30], drug response analysis [1, 13], mutation
analysis [11, 28], single nucleotide polymorphism (SNP) analysis [14, 10, 25],
expression system development [22], detection and quantification of pathogens [12,
26], GMO detection in food [3, 19], human and veterinary diagnostics [27, 17],
as well as in fetal medicine [5].

1.1 Statistical challenges in qPCR data analysis

An important issue in qPCR experiments that has been largely ignored is the
presence of non-detects, those reactions failing to pass the given quantification
threshold and therefore lacking a Ct value. There are several opinions about
the nature of non-detects and how to deal with their presence. Integromics
RealTime StatMiner divides non-detects into absent values, those samples for
which reactions did not occur, and undetermined values, those reactions that
failed to pass a predetermined quantification threshold. Absent values are set
to the median value of the replicates detected in the set of experiments, and
undetermined values are replaced by the maximum possible Ct value (typically
35 or 40) [9]. The Applied Biosystems DataAssist v3.0 software allows users to
set a Maximum Allowable Ct Value, a cut-off such that any value greater than
this chosen threshold will be changed to this maximum allowable value.

If we assume non-detects occur completely at random, then simply removing
them would lead to unbiased and consistent estimates of the RNA expression.
Alternatively, if we assume non-detects are missing at random given the expression
in replicate samples, a mean imputation procedure, in which missing values
are replaced by their conditional expectation, would produce unbiased and
consistent estimates of average expression. However, this approach would distort
the distribution of gene expression and lead to underestimation of residual
variance [7].

Recent work suggests that neither of these assumptions are valid for qPCR
non-detects. Previously, it has been shown that the probability of a non-detect
increases as the expression of the target transcript decreases; therefore, non-
detects do not occur completely at random [18]. While it is often not possible
to distinguish between missing at random and missing not at random from the
observed data, previous work suggests that qPCR non-detects are likely missing
not at random based on specific aspects of the technology and prior analysis of a
large control data set [18]. We have developed a single imputation procedure that
treats non-detects as non-random missing data, models the missing mechanism
as a monotone increasing function of gene expression, and uses an Expectation-
Maximization (EM) algorithm to impute missing values. This approach was a
significant improvement over previous approaches, but it underestimates the
residual variance, leading to anti-conservative inference.

We propose to address this issue by implementing an algorithm to directly
estimate the mean and variance of gene expression using Maximum Likelihood
Estimation (DirEst). Additionally, we have extended the methodology from a
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Single Imputation (SI) to a Multiple Imputation (MI) procedure that accounts
for the uncertainty in the imputed values. We have incorporated three sources
of variability into our model: uncertainty in the missing mechanism, uncertainty
in the parameter estimates, and measurement error.

In Section 2 we propose methods for handling non-detects in the qPCR
data and introduce models for absolute and relative quantification of the gene
expression. The model for relative quantification allows one to adjust for a
potential batch effect. The model for the missing data mechanism is also
given in this section. We emphasize that this model arises from a mechanistic
understanding of the biochemical processes in the qPCR experiments. Section 3
contains assessments of the proposed method using both simulations and three
real data sets. We study our procedures’ robustness to model assumptions and
compare them to other existing methods.

2 Materials and Methods

In this manuscript we propose two new methods to handle qPCR non-detects that
provide consistent estimates of the first and second moments of gene expression:
MI and DirEst. MI does this by taking into account the uncertainty of the
imputed data. DirEst allows one to directly estimate within replicate means
and variances for each gene and sample type. This approach is applicable to
the most common subsequent analyses, e.g. identification of genes that are
differentially expressed between sample types, for which the within-replicate
means and variances are sufficient statistics, meaning that all the information
about the data log-likelihood is contained in these parameters [6]. The limitation
of the DirEst approach is that individual expression values are unavailable, so
clustering or coexpression analyses are not possible.

2.1 A statistical model for qPCR non-detects

We propose the following generative model for qPCR data in which Yij is the
measured expression value for gene i in sample j, some of which are missing (non-
detects), Xij represents the fully observed expression values, and Zij indicates
whether a value is detected:

Xij = f(θij , η) + εij

Yij =

{
Xij if Zij = 1

non-detect if Zij = 0
(1)

Pr(Zij = 1) =

{
g(Xij) if Xij < S

0 if otherwise.

In this model, we assume that the fully observed expression values, Xij are a
function of the true gene expression, θij , non-biological factors, η, and random
measurement error, εij . The probability of an expressed value being detected is
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assumed to be a function of the expression value itself, g(Xij), for values below
the detection limit, S. The following logistic regression model is a natural choice
for such a relationship:

logit
(
Pr(Zij = 1)

)
= β0 + β1Xij . (2)

The vast majority of qPCR experiments seek to compare replicate samples
from two or more sample-types. The model proposed above can be easily tailored
to this type of experimental design. Specifically, we partition the samples
(j = 1, . . . , J) into K sets of replicates, Jk, with k(j) = k for j ∈ Jk. In
Equation 1, we simply replace θij with θik(j). In the following two subsections,
we describe special cases of the proposed model to estimate absolute or relative
expression.

2.1.1 Model for absolute quantification.

Absolute quantification is used to estimate the expression of a target transcript
in one or more sample-types. For absolute gene expression we write the proposed
model as follows:

Xij = θik(j) + δj + εij (3)

where Xij are again the completely observed gene expression values, θik(j) are
the true values of gene expression for gene i in the sample-type k to which sample
j belongs, δj represents a global shift in expression across samples, and εij now
captures both biological and technical variability. In addition to estimating
absolute expression within each sample-type, parameter estimates from this
model can be used to assess relative expression between sample-types.

2.1.2 Model for relative quantification.

Due to the significant impact of batch effects on genomic data [15], it is increas-
ingly common for experiments to include a matched control sample for each
sample or group of samples analyzed. In this case, the parameters of interest
are no longer the average expression within each sample type; rather, they
are the differences in expression between the test and control samples. These
control samples can be included in a model to directly adjust for batch effects.
Specifically, we partition samples into J

′

n batches, with n(j) = n for j ∈ J ′

n, and
introduce γin into the model to capture the batch effect for gene i in samples
from batch n as follows:

Xij = θik(j) + γin(j) + δj + εij . (4)

Here, the parameter of interest, θik(j), is the difference in expression between
the test and control samples. Specifically, in Equation 4, we assume that control
samples are denoted by k = 0 and θi0 = 0 ∀i, such that:

Xij =

{
θik(j) + γin(j) + δj + εij if j /∈ J0
γin(j) + δj + εij if j ∈ J0

(5)
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Rarely, non-detects may occur in the control samples as well as in the test
samples. In this case we propose to use a two step process: first, apply the model
in equation 3 for the control samples and perform SI; second, use the model in
equation 4, to obtain the estimates of the non-detects for the test samples.

2.2 Improved estimation of the missing data mechanism

It is possible to observe perfect separation between observed and non-detected
transcripts. This is a common problem in applied regression with binary pre-
dictors. Prediction of the parameter values in this case becomes unstable. [8]
proposed to use Bayesian inference to obtain stable estimates of the generalized
linear regression coefficients, and we adopted their approach while performing
SI, MI and DirEst procedures.

2.3 Multiple Imputation

The central idea of MI is to replace a set of missing data points with M sets of
plausible values. These sets of values are independent between the imputations,
but share a correlation structure within each complete data set. This method
captures the uncertainty in the imputed values. The resulting M complete data
sets can be analyzed using standard statistical techniques, and the results can
be combined and compared across the M datasets. Contradicting results may
indicate that the imputed values are driving the inference and not the observed
data.

We incorporated different sources of variability in the MI procedure: random
noise, uncertainty in the linear model parameters (θ in Equations 3 & 4), and
parameters of the logistic regression model (β0 & β1 in Equation 2), as well as
each combination of these sources of variability.

2.3.1 Uncertainty in linear model parameters.

When the data has missing values, the estimates of the model parameters
contain an additional amount of uncertainty due to the missing data. One can
account for this added uncertainty by introducing additional variation in the
parameter estimates. Instead of using point estimates θ̂ we draw M different θ̂m
(m = 1, · · · ,M) from the estimated distribution of θ ∼ N(µ̂θ, σ̂θ).

2.3.2 Uncertainty in the missing data mechanism.

Similarly, one can account for the uncertainty in the missing data mechanism
by introducing additional variability in the corresponding parameters estimates.
To preserve the dependence between the parameters, we assume (β0, β1) are
jointly MVN(µ̂β , Σ̂β). One can draw M pairs of (β0, β1) from the estimated
distribution and use these estimates in the imputation procedure. This step
introduces additional variability in the resulting complete data sets that reflects
uncertainty in the estimated logistic regression model parameters.
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2.3.3 Biological variability and measurement error.

Suppose the model parameters are known and one is interested in applying MI to
obtain estimated differential gene expressions. In this case, given all the model
parameters, the imputed values will be identical and equal to the conditional
expectation of the missing data point without additional variability. Such a
result is undesirable, as it will lead to artificially small variance estimates. To
better estimate the uncertainty of the missing value itself under known true
parameters of the modeling framework, we must include biological variability
and measurement error in the MI procedure. We assume that these sources of
variability together are normally distributed with mean zero and variance equal
to the residual variance from the EM procedure.

2.4 Direct Estimation of Model Parameters

An alternative approach to handling missing data is to directly estimate the
parameters of interest. For a fixed gene, in sample j, let wj denote an unobserved
value of the gene expression yj and let zj be an indicator of an observed expression
value as in Equation 1. The MLE of the variance for a given gene is:

σ̂2
MLE =

1

J

J∑
j=1

(
(E(w2

j )− 2E(wj)θk(j) + θ2k(j))(1− zj)

+ (y2j − 2yjθk(j) + θ2k(j))zj

)
. (6)

In contrast, the sample variance estimate following SI for a given gene is:

σ̂2
SI =

1

J

J∑
j=1

(
(E(wj)

2 − 2E(wj)θk(j) + θ2k(j))(1− zj)

+ (y2j − 2yjθk(j) + θ2k(j))zj

)
. (7)

Derivations of these equations are given in Appendix A of the Supplementary
Materials.

These equations differ exclusively in the first element within the summation:
E(w2

j ) versus E(wj)
2. Taking the difference between Equations (6) and (7)

yields:

σ̂2
MLE − σ̂2

SI =
1

J

J∑
j=1

(
(E(w2

j )− (E(wj)
2)(1− zj)

)
=

1

J

∑
j∈J,zj=0

(
E(w2

j )− (E(wj)
2
)

= Qσw ∝ σw > 0, (8)

where Q > 0 is the proportion of non-detects for the given gene. Since E(w2
j ) is

greater then E(wj)
2, the variance estimated after SI is smaller than the MLE of

7

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231621doi: bioRxiv preprint 

https://doi.org/10.1101/231621
http://creativecommons.org/licenses/by-nc/4.0/


the variance. As the number of non-detects increases, Q increases, and hence the
difference between σ̂2

MLE and σ̂2
SI increases with the number of non-detected

values. Note that these relationships hold for any given gene.

2.5 Simulation study design

We performed simulation studies with 16 or 90 genes, 6 sample-types, 4, 6, or
10 replicates within each sample-type, and a common missing data mechanism
parameterized as in Equation 2. For each scenario we generated 100 complete
data sets with the same gene expression θij(k), within-replicate variance σ2

i , and
parameters of missing mechanism (β0, β1). To summarize the performance of
each estimation procedure, we report the 25th, 50th, and 75th quantiles of each
assessment measure for all genes and samples. For example, in the case of 16
genes and 6 sample-types, there are 16 different σ2

i and 16×6=96 distinct values
of θij(k) for each simulated data set.

3 Results

3.1 Simulation studies

3.1.1 Single imputation underestimates the residual variance of gene
expression.

We expect the variability to be underestimated when performing a SI procedure.
To confirm this and assess the bias and MSE of θ̂ij(k) and σ̂2

θ , we performed
a simulation study [4] with 16 genes as described in Section 2.5. While the
SI bias and MSE are small for both θij(k) and σ2

θ , the SI bias for σ2
θ is always

negative (Table 1). Note that for SI, σ̂2
θ = σ̂2

i /n; therefore, we confirm that the
SI procedure underestimates the residual variance.

3.1.2 Performance assessments of the proposed methods.

To gain insights into the performance of the proposed MI and DirEst methodology,
we constructed a simulation study (see Section 2.5) to compare the bias and
MSE of the model parameter estimates from four imputation techniques: mean
imputation, single imputation, multiple imputation, and direct estimation. Table
1 displays the 25th, 50th, and 75th quantiles of the bias and MSE for θ̂ and
σ̂2
θ for all four methods. The mean imputation method underestimated both θ

and σ2
θ in this study. These disadvantages of mean imputation are noticeable

even for the relatively small proportion of missing values in this study (6-11%).
Single imputation performed almost as well as multiple imputation and direct
estimation with respect to the bias and MSE of θ̂; however, as expected SI
underestimated σ̂2

θ . MI on average had similar performance to DirEst; however,
the range of MI bias is generally wider than DirEst. In summary DirEst and MI
are the most accurate methods in our assessments.
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Table 1: Comparison of methods to handle missing data based on 100 simulated
data sets.

Bias MSE
Mean imputation

θ −0.035 -0.013 0.009 0.071 0.114 0.155

σ2
θ −0.032 -0.024 −0.012 0.000 0.001 0.002

Single imputation
θ −0.024 0.003 0.024 0.072 0.114 0.156

σ2
θ −0.014 -0.007 −0.004 0.000 0.001 0.001

Multiple imputation
θ −0.024 0.003 0.023 0.072 0.114 0.155

σ2
θ −0.020 -0.001 0.014 0.000 0.001 0.004

Direct estimation
θ −0.024 0.003 0.025 0.072 0.114 0.156

σ2
θ −0.001 0.000 0.000 0.000 0.001 0.001

3.1.3 Direct estimation is robust to misspecification of the missing
data mechanism.

We used the same simulated data to assess the robustness of our method to
model misspecification. We compared the performance of the method under
three possible link functions: logit, probit, and cloglog. Each simulation used
the model described in Section 2.1. To assess the effect of the link function, we
chose to fix the number of genes (n=16) and number of replicates (k=6) within
each of the 6 sample types. In this case the correctly specified model is a logit
link.

All three link functions yield very similar results in terms of bias and MSE for
θ and σ2 (Table 2). Logit link gives estimates closer to the true values followed
by cloglog then probit. Typically researchers are interested in estimating average
gene expression θ and its variability σ2. All three link functions performed
almost identically in estimating these parameters; therefore, the proposed method
appears robust to the choice of link function in estimating gene expression means
and variances in this simulation study. Because of the model robustness to the
choice of the link function, in the remaining sections we present results using
the logit link.

3.1.4 The effect of the sample size.

To assess the effect of sample size, we compared the performance on data sets
with 16 or 90 genes and 4, 6, or 10 replicates for each sample type. An increase
in the number of genes significantly improves the estimates of β0 and β1, while
the accuracy of the parameters of interest, θ and σ2, remain basically the same
(Table 3). These results are consistent across different numbers of replicates.
Additionally, the MSE decreases as the number of replicates increase for both 16
and 90 genes. There is substantial bias and MSE in the estimates of β0 for 4, 6,
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Table 2: Performance assessments of direct estimation under misspecification of
the missing data mechanism based on 100 simulated data sets.

Bias MSE
16 genes k=6

logit
β0 -0.593 32.905
β1 0.014 0.027
θ −0.024 0.003 0.025 0.072 0.114 0.156

σ2
−0.008 -0.003 0.003 0.012 0.029 0.047

probit
β0 16.31 276.39
β1 -0.459 0.219
θ −0.022 0.003 0.024 0.071 0.114 0.153

σ2
−0.009 -0.003 0.003 0.012 0.029 0.048

cloglog
β0 7.509 71.845
β1 -0.228 0.065
θ −0.025 0.003 0.026 0.071 0.114 0.156

σ2
−0.006 -0.003 0.003 0.012 0.029 0.048

and 10 replicates; however, these decrease from 16 to 90 genes. MSE decreases
with an increase in the number of replicates, but stays consistently large. These
high values of MSE for β0 have very little effect on the estimates of θ and σ2.
Similar results were obtained for probit and cloglog links.

Table 3: Performance assessments of direct estimation for varying data set sizes
based on 100 simulated data sets.

16 genes 90 genes

Bias MSE Bias MSE

k=4

β0 -2.101 78.176 1.018 7.895
β1 0.055 0.062 -0.034 0.007
θ −0.025 0.006 0.033 0.111 0.173 0.226 −0.022 0.009 0.045 0.121 0.172 0.253

σ2
−0.012 -0.008 0.011 0.020 0.047 0.091 −0.018 -0.004 0.009 0.025 0.045 0.098

k=6

β0 -0.593 32.905 -0.107 5.427
β1 0.014 0.027 -0.00018 0.004
θ −0.024 0.003 0.025 0.072 0.114 0.156 −0.016 0.005 0.034 0.083 0.113 0.160

σ2
−0.008 -0.003 0.003 0.012 0.029 0.047 −0.015 -0.003 0.007 0.016 0.029 0.053

k=10

β0 -2.214 35.204 -1.076 4.078
β1 0.060 0.028 0.029 0.003
θ −0.014 0.003 0.020 0.044 0.069 0.089 −0.012 0.005 0.023 0.049 0.069 0.096

σ2
−0.002 0.005 0.009 0.006 0.019 0.030 −0.011 -0.003 0.006 0.009 0.016 0.030
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3.2 Comparison of proposed methods using real data

We applied the proposed methodology to three real datasets. The first dataset
is composed of two cell types and three treatments (Sampson et al., 2013); the
second dataset is a study of the effect of p53 and/or Ras mutations on gene
expression (McMurray et al., 2008); the third dataset consists of nine gene
perturbations with matched control samples (Almudevar et al., 2011). As in
the original publications, all three datasets were normalized to a reference gene,
Becn1. Additional details regarding each of these datasets can be found in the
original publications.

3.2.1 Difference in variance estimates between single imputation
and direct estimation.

We compared estimates of the variance from a direct estimation procedure with
SI estimates for absolute and relative quantification. The minimum, maximum,
first, second and third quartiles for σ̂2

MLE − σ̂2
SI are presented in Table 4 for

all three datasets. The difference between the two variance estimates is usually
small, but in Dataset 2 the variance estimates for the gene Afp differ by 35.38. In
this dataset Afp has 13 non-detects out of 14 values. This is a concrete example
of the difference in variance estimates increasing as the number of non-detects
increases, in other words, the effect of a larger Q in Equation 8.

Table 4: Summary statistics for the difference between estimates of within
replicate variance: σ̂2

MLE − σ̂2
SI in three real data sets.

Min. 1st.Qu. Median Mean 3rd.Qu. Max.
Dataset 1 0.024 0.026 0.033 0.095 0.109 0.429
Dataset 2 0.006 0.009 0.027 1.014 0.110 35.380
Dataset 3 0.010 0.019 0.040 0.056 0.042 0.199

The individual differences in variance estimates for absolute and relative
expression can be seen in Supplementary Figures 1 and 2 in Appendix C of the
Supplementary Materials, respectively. Similar to the results show in Table 4,
most of the differences are fairly small with a few exceptions, especially in
Dataset 2. However, even small differences may influence downstream analyses
and lead to anti-conservative inference.

3.2.2 Multiple imputation for absolute and relative quantification.

We have implemented a MI procedure in the presence of non-detects for abso-
lute quantification. To account for the uncertainty in the imputed values, we
propose to use different variability sources and combinations thereof. The MI
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approach allows one to choose the number of complete data sets to impute for
a set of non-detects, in contrast to SI which returns one complete data set of
observed and imputed values. In Supplementary Figure 3 in Appendix C of the
Supplementary Materials, we show gene expression estimates produced by SI
and MI for Datasets 1 and 2. MI can incorporate all sources of uncertainty at
once (“MI: all”), pairs of sources (“MI: θ, ε”, “MI: fit, θ”) or one source at a
time (“MI: ε”, “MI: θ”, “MI: fit”).

In Supplementary Figure 4 in Appendix C of the Supplementary Materials,
we show the distribution of residuals for the observed data and the results of a
SI procedure and several MI procedures for the missing data. Because a missing
value likely represents slightly lower gene expression compared to the observed
values from replicate samples, the majority of the residuals for the imputed
values are slightly negative. While the medians are similar between the MI and
SI results in both Datasets 1 and 2, the MI residuals often have a larger IQR
because they incorporate additional sources of variability that are ignored by
the SI procedure. The smallest impact on the distribution of the residuals is the
uncertainty in the missing data mechanism, indicated as “fit” in Supplementary
Figure 4, followed by uncertainty in θ. The biggest impact is measurement error,
ε. Overall, the MI procedure better captures the uncertainty in estimates of
absolute quantification.

Similar to absolute quantification, we have implemented an MI procedure in
the presence of non-detects for relative quantification. While Datasets 1 and 2
focused on absolute expression, Dataset 3 focused on relative expression. The
results for ten imputed data sets are presented in Figure 2. The distribution of
within replicate residuals in MI compared to SI appears to be very similar in
the case where only uncertainty in θ is included in MI. Overall, the mean of the
residual distribution stays relatively unchanged, but the IQR is wider due to the
incorporated sources of variability in the model. In summary, the uncertainty in
estimates of relative quantification are better captured by MI than by SI.
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Figure 2: Comparison of single and multiple imputation using a real data example.
The left panel shows within-replicate residuals stratified by the presence and
handling of non-detects. The average ∆∆Ct values were calculated over the
replicates for gene i and sample j. The residuals for each gene and sample-type
were summarized and are plotted here. The box-plots from left to right display
the distribution of residuals for: the observed data, missing data after SI, and
missing data after MI with different sources of variability. The right panel shows
the responses of gene Sema7a to the perturbation of Wnt9a from Dataset 3.
Imputed values are denoted with an asterisk. ∆∆Ct values produced by replacing
a non-detect with a value of 40 are in the leftmost panel, SI estimates are in the
next panel, and estimates resulting from applying MI with different combinations
of variability sources are shown in the rightmost six panels.
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4 Discussion

This paper has introduced two methods to account for missing data in qPCR
experiments: multiple imputation and direct estimation. Both methods treat
qPCR non-detects as missing not at random, and model the missing data mech-
anism with a two parameter sigmoidal curve. Using simulations, we showed that
DirEst and MI can accurately estimate the first two moments of the distribution
of gene expression and out perform SI and mean imputation. Additionally, we
showed that the proposed methods are robust to model misspecification and
perform fairly well even with small sample sizes and without a large number of
replicate samples.

Expanding upon a previous SI procedure for non-detects, we developed a
MI procedure that incorporates different sources of uncertainty into the model.
This approach is preferred when the actual expression estimates are required
for analysis, for example in gene regulatory network modeling, clustering, or co-
expression analysis. We also developed a method to estimate model parameters
directly, DirEst approach. This method can be used when the mean and variance
are sufficient statistics, e.g. when performing analysis of differences in average
gene expression across groups.

A previous SI procedure, described in [18], preserves the first moment but
introduces bias in the estimation of the variance. We have shown that this
underestimation of the variability increases with the proportion of non-detects.
Smaller estimated standard deviations lead to smaller p-values, which result in
anti-conservative inference and a larger Type I error. This can lead to reporting
significant results where there is no statistical difference.

Future work should further investigate these approaches and extensions of
these methods. One current limitation is that the proposed methods require an
observed value for a given gene in at least one replicate sample; however, it is
possible for all the replicates of a given sample-type to be non-detects. Further-
more, it is important to distinguish between the lack of gene expression and the
lack of detection of an expressed gene. Additionally, in this work we assume that
the gene expressions are non-correlated; posing a correlation structure would
allow us to borrow information across genes and improve parameter estimation.
Finally, the use of qPCR data in medical applications requires methods that do
not rely on replicate samples.

In conclusion, both MI and DirEst models are presented as strong options for
data with non-detects in qPCR when repeating the experiment is not feasible. By
using them we may be able to make even more robust inference in downstream
analysis and have more confidence in generating scientific hypotheses.

5 Software

Our algorithm is implemented in the R/Bioconductor package, nondetects. Our
software can handle a variety of study designs. For example, if samples are
collected in batches and there is a control sample for each batch, the software
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can adjust for batch effects. To clearly describe the functionality of the package
and demonstrate multiple reproducible real data examples, we created a user
friendly vignette to accompany the package. Software in the form of R code for
the simulation studies and real data applications, together with input data sets,
is available in Appendix D of the Supplementary Materials.

6 Supplementary Material

Supplementary materials contain derivations of the variance estimates for SI and
MLE and their difference in Appendix A. In Appendix B we present tables with
the simulation results; Supplementary Figures are shown in Appendix C.

7 Acknowledgments

The authors thank Ollivier Hyrien and Andrew McDavid for comments and
feedback on the earlier versions of this manuscript and for additional advice.
Conflict of Interest: None declared.

8 Funding

The project described in this publication was supported by the National Human
Genome Research Institute of the National Institutes of Health under Award
Number R00HG006853 (to M.N.M.), the National Cancer Institute of the Na-
tional Institutes of Health under Award Numbers CA138249 and CA197562 (to
H.L.), and the University of Rochester CTSA award number UL1TR002001 (to
M.N.M.) from the National Center for Advancing Translational Sciences of the
National Institutes of Health. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National
Institutes of Health.

References

[1] J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin,
S. Kim, C. J. Wilson, J. Lehár, G. V. Kryukov, D. Sonkin, et al. The
cancer cell line encyclopedia enables predictive modelling of anticancer drug
sensitivity. Nature, 483(7391):603–607, 2012.

[2] J. M. Bartlett and D. Stirling. A short history of the polymerase chain
reaction. PCR protocols, pages 3–6, 2003.

[3] S. R. Broeders, S. C. De Keersmaecker, and N. H. Roosens. How to deal
with the upcoming challenges in gmo detection in food and feed. BioMed
Research International, 2012, 2012.

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231621doi: bioRxiv preprint 

https://doi.org/10.1101/231621
http://creativecommons.org/licenses/by-nc/4.0/


[4] A. Burton, D. G. Altman, P. Royston, and R. L. Holder. The design of
simulation studies in medical statistics. Statistics in medicine, 25(24):4279–
4292, 2006.

[5] M. Ehrich, C. Deciu, T. Zwiefelhofer, J. A. Tynan, L. Cagasan, R. Tim,
V. Lu, R. McCullough, E. McCarthy, A. O. Nygren, et al. Noninvasive
detection of fetal trisomy 21 by sequencing of dna in maternal blood: a
study in a clinical setting. American journal of obstetrics and gynecology,
204(3):205–e1, 2011.

[6] R. A. Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical or Physical Character, 222:309–368, 1922.

[7] A. Gelman and J. Hill. Data analysis using regression and multi-
level/hierarchical models. Cambridge university press, 2006.

[8] A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative
default prior distribution for logistic and other regression models. The
Annals of Applied Statistics, pages 1360–1383, 2008.
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