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Abstract  17 

Eukaryotic communities commonly display a positive relationship between biodiversity and 18 

ecosystem function (BEF). Based on current studies, it remains uncertain to what extent these 19 

findings extend to bacterial communities. An extrapolation from eukaryotic relationships would 20 

predict there to be no BEF relationships for bacterial communities because they are generally 21 

composed of an order of magnitude more taxa than the communities in most eukaryotic BEF 22 

studies. Here, we sampled surface water of a freshwater, estuarine lake to evaluate BEF 23 

relationships in bacterial communities across a natural productivity gradient. We assessed the 24 

impact of habitat heterogeneity - an important factor influencing eukaryotic BEFs - on the 25 

relationship between species richness, evenness, phylogenetic diversity, and heterotrophic 26 

productivity by sampling co-occurring free-living (more homogenous) and particle-associated 27 

(more heterogeneous) bacterial habitats. Diversity measures, and not environmental variables, 28 

were the best predictors of particles-associated heterotrophic production. There was a strong, 29 

positive, linear relationship between particle-associated bacterial richness and heterotrophic 30 

productivity that was strengthened when considering evenness. There were no observable BEF 31 

trends in free-living bacterial communities. In contrast, per-capita but not community-wide 32 

heterotrophic productivity increased across both habitats as communities were composed of taxa 33 

that were more phylogenetically clustered. This association indicates that communities with 34 

more phylogenetically related taxa have higher per-capita heterotrophic production than 35 

communities of phylogenetically distantly related taxa. Our findings show that lake heterotrophic 36 

bacterial productivity can be positively affected by evenness and richness, negatively by 37 

phylogenetic diversity, and that BEF relationships are contingent on microhabitats. These results 38 
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provide a stepping stone to compare biodiversity-productivity theory developed for Eukarya to 39 

bacterial ecosystems.  40 

Keywords: diversity-productivity, biodiversity-ecosystem function, bacterial communities, 41 

microhabitats, particle-associated, limnology, heterotrophic productivity 42 

Introduction 43 

Our planet is currently experiencing an extreme species extinction event (Thomas et al., 44 

2004; Wake & Vredenburg, 2008). Concern about such declines in biodiversity has resulted in 45 

hundreds of studies evaluating the relationship between biodiversity and ecosystem functions 46 

(BEF), with a large focus on terrestrial plant ecosystems. BEF relationships are generally 47 

positive and asymptotic and thus biodiversity loss causes a small change in ecosystem function at 48 

first and then, at some tipping point, a dramatic decrease in function (Cardinale et al., 2012, 49 

2012; Tilman et al., 2014). While the focus of local and global diversity loss is typically on 50 

eukaryotic organisms, bacterial biodiversity has also been shown to be decreasing at local scales 51 

within the human gut (Blaser, 2014) and terrestrial ecosystems (Singh et al., 2014). Of particular 52 

concern is the loss of diversity of bacterial guilds responsible for key geochemical 53 

transformations, such as methane oxidation (Levine et al., 2011) that controls rates of methane 54 

emissions. Yet, the study of BEF relationships has been more limited for Bacteria and Archaea. 55 

Based on the asymptotic BEF relationships observed for eukaryotic communities of up to 56 

20 species, the large range of species richness observed in natural bacterial communities 57 

(hundreds to thousands) may suggest an absence of bacterial BEF relationships. Several studies 58 

have indicated no BEF relationships with broad processes such as heterotrophic respiration or 59 

biomass production that are performed by many taxa (see figure 5 in Levine et al., 2011; 60 
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Langenheder et al., 2006; Delgado-Baquerizo et al., 2016). Yet, other studies on denitrification 61 

(Philippot et al., 2013) and on narrow metabolic processes that are catalyzed by few bacterial 62 

taxa, such as methanotrophy (Levine et al., 2011), and the degradation of triclosan and 63 

microcystin (Delgado-Baquerizo et al., 2016) found evidence of bacterial BEF relationships.  64 

Beyond the impact of the number of species, phylogenetic relatedness is predicted to 65 

influence BEF relationships based on the phylogenetic limiting similarity hypothesis. The 66 

phylogenetic limiting similarity hypothesis posits that distantly related organisms will have more 67 

dissimilar niches and therefore reduced competition and a higher likelihood of coexistence 68 

(Violle et al., 2011). Therefore, it predicts that communities will have high phylogenetic 69 

diversity due to competitive exclusion of closely related species. Indeed, some papers show 70 

relationships across different ecosystems between phylogenetic diversity and ecosystem 71 

functions (Cadotte et al., 2008; Jiang et al., 2010; Violle et al., 2011). However, studies with 72 

freshwater green algae (Fritschie et al., 2014; Venail et al., 2014) did not find this relationship. A 73 

recent study found the opposite result by showing that closely related green algal species had 74 

weaker competition and more facilitation than distantly related species (Narwani et al., 2017). 75 

While relationships between phylogenetic relatedness among community members and 76 

ecosystem function have been assessed in bacterial systems (Tan et al., 2012; Galand et al., 77 

2015; Roger et al., 2016), most work has focused on low-diversity, experimentally-assembled 78 

communities with bacteria that can be grown in culture. We need to expand these findings to 79 

communities with richness levels typically found in natural communities. 80 

The nature of BEF relationships and the mechanism(s) that underpins them may depend 81 

on habitat structure or heterogeneity. Increasing habitat heterogeneity has been found to enhance 82 

the strength of BEF relationships (Tylianakis et al. 2008), presumably due to a greater role for 83 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2017. ; https://doi.org/10.1101/231688doi: bioRxiv preprint 

https://doi.org/10.1101/231688
http://creativecommons.org/licenses/by-nc/4.0/


 
 

5 

niche complementarity effects in heterogeneous environments (Cardinale 2011). While habitat 84 

heterogeneity contributes to increased diversity within bacterial populations and communities 85 

(Zhou et al., 2008; Shade et al., 2008), the influence of habitat heterogeneity on BEF 86 

relationships remains unknown for bacterial systems. 87 

In this study, we hypothesized that bacterial diversity would be positively correlated with 88 

bacterial heterotrophic production, and that this relationship would be stronger in more 89 

heterogeneous environments. We simultaneously surveyed free-living and particle-associated 90 

surface water bacterial communities. Particulate matter comprises a variety of types and sizes of 91 

particles with each particle also harboring physicochemical gradients (Simon et al., 2002), and 92 

hence represents a more heterogeneous habitat than the surrounding water. We tested BEF 93 

relationships using a variety of diversity metrics including observed richness, species dominance, 94 

and phylogenetic diversity. We focused on heterotrophic bacterial production as our measure of 95 

ecosystem function, as it is a key process affecting freshwater bacterial growth that in turn fuels 96 

the macroscopic food web through their recycling of nutrients bound in organic matter (Cotner & 97 

Biddanda, 2002).  98 

Methods 99 

Lake sampling and sample processing 100 

Surface water samples were collected at 1 meter depth from 4 long-term sampling stations 101 

(Steinman et al., 2008) in mesotrophic Muskegon Lake (Figure S1), which is a freshwater 102 

estuarine lake connecting the Muskegon River and Lake Michigan. These stations included the 103 

mouth of the Muskegon River (43.250133,-86.2557), the channel to Bear Lake (43.238717,-104 
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86.299283; a hypereutrophic lake), channel to Lake Michigan (43.2333,-86.3229; oligotrophic 105 

lake), and the deepest basin of Muskegon Lake (43.223917,-86.2972; max depth = 24 m).  106 

Samples were collected during the morning to early afternoon of 3 days in 2015 (May 12, 107 

July 21, & September 30) aboard the R/V W.G. Jackson. All water samples were collected with 108 

vertical Van Dorn samplers. Additionally, a vertical profile of temperature (T), pH, specific 109 

conductivity (SPC), oxidation-reduction potential (ORP), chlorophyll (Chla), total dissolved 110 

solids (TDS), and dissolved oxygen (DO) was constructed at each station to characterize the 111 

water column using a calibrated YSI 6600 V2-4 multiparameter water quality sonde (Yellow 112 

Springs Instruments Inc.). Total Kjeldahl nitrogen (TKN), ammonia (NH3), total phosphorus 113 

(TP), and alkalinity (Alk) were processed from whole water while nitrate (NO3), phosphate 114 

(PO4), and chloride (Cl-) were hand filtered using a 60 mL syringe fitted with Sweeny filter 115 

holder with a 13 mm diameter 0.45 µm pore size nitrocellulose filters (Millipore) and were 116 

determined by standard wet chemistry methods in the laboratory (EPA, 1993).  117 

Bacterial abundance by epifluorescence microscopy 118 

Lake surface water samples were processed within 2-6 hours of their collection for determination 119 

of heterotrophic bacterial abundance. Samples (5 mL) were preserved with 2% formalin and 1 120 

mL subsamples were stained with acridine orange stain and filtered onto black 25 mm 0.2 μm 121 

pore size polycarbonate filters (Millipore) at a maximum pressure of 0.1 Bar or 1.5 PSI. Prepared 122 

slides were stored frozen until enumeration by standard epifluorescence microscopy at 1000x 123 

magnification under blue light excitation (Hobbie et al. 1977). Bacteria within the field of view 124 

(100 µm x 100 µm) that were not associated with any particles were counted as free-living 125 

bacteria, whereas bacteria that were on particles were counted as particle-associated. Sample 126 

filtration may bias counts due to free-living or particle-associated cells being hidden on the 127 
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underside of particles, , free-living bacteria settling on top of particles, or particle-associated 128 

cells dislodging. In the absence of any quantitative studies that have rigorously addressed this 129 

issue, we have assumed the net effect of these opposing methodological biases to be negligible in 130 

the present study.  131 

Heterotrophic bacterial production measurements 132 

Community-wide heterotrophic bacterial production was measured using [3H] leucine 133 

incorporation into bacterial protein in the dark (Kirchman et al. 1985; Simon and Azam, 1989). 134 

At the end of the incubation with [3H]-leucine, cold trichloroacetic acid-extracted samples were 135 

filtered onto 3 µm filters that represented the leucine incorporation by particle-associated 136 

bacteria (>3.0 µm). Each filtrate was collected and filtered onto 0.2 µm filters and the activity 137 

therein represented incorporation of leucine by free-living bacteria (>0.2 µm-<3 µm). Measured 138 

leucine incorporation during the incubation was converted to bacterial carbon production rate 139 

using a standard theoretical conversion factor of 2.3 kg C per mole of leucine (Simon and Azam, 140 

1989). Per-capita heterotrophic production was estimated by dividing heterotrophic production 141 

by the cell counts measured in each fraction.  142 

Preservation of bacterial filters in the field 143 

Microbial biomass for the particle-associated (> 3 µm) fraction and the free-living (3–0.22 µm 144 

fraction) bacterial fraction was collected by sequential in-line filtration on 3 µm isopore 145 

polycarbonate (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) and 0.22 µm Express 146 

Plus polyethersulfone membrane filters (47 mm diameter, Millipore, MA, USA). We used 47 147 

mm polycarbonate in-line filter holders (Pall Corporation, Ann Arbor, MI, USA)and an E/S 148 

portable peristaltic pump with an easy-load L/S pump head (Masterflex®, Cole Parmer 149 
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Instrument Company, Vernon Hills, IL, USA). The total volume filtered varied from 0.8–2.2 L 150 

with a maximum filtration time of 16 minutes per sample. Filters were submerged in RNAlater 151 

(Ambion) in 2 mL cryovials, frozen in liquid nitrogen and transferred to a −80°C freezer until 152 

DNA extraction.  153 

DNA extraction, sequencing and processing   154 

DNA extractions were performed using an optimized method based on the AllPrep 155 

DNA/RNA/miRNA Universal kit (Qiagen; McCarthy et al., 2015; details in supplementary 156 

methods). Extracted DNA was sequenced using Illumina MiSeq V2 chemistry 2 × 250 (500 157 

cycles) of dual index-labelled primers that targeted the V4 hypervariable region of the 16S rRNA 158 

gene (515F/806R) (Caporaso et al., 2012; Kozich et al., 2013) at the Microbial Systems 159 

Laboratories at the University of Michigan Medical School in July 2016. RTA V1.17.28 and 160 

MCS V2.2.0 software were used to generate data. Fastq files were submitted to NCBI sequence 161 

read archive under BioProject accession number PRJNA412984. We analyzed the sequence data 162 

using MOTHUR V.1.38.0 (seed = 777; Schloss et al., 2009) based on the MiSeq standard 163 

operating procedure accessed on 3 November 2015 and modified with time (see data 164 

accessibility and supplemental methods). For classification of operational taxonomic units 165 

(OTUs), a combination of the Silva Database (release 123; Quast et al., 2013) and the freshwater 166 

TaxAss 16S rRNA database and pipeline (Rohwer et al., 2017, accessed August 18, 2016). All 167 

non-bacterial and chloroplast sequences were pruned out of the dataset and replicate samples 168 

were merged by summing sample sequencing read counts using the merge_samples function 169 

(phyloseq). A batch script for our protocol can be found in this project’s GitHub page at 170 
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https://github.com/DenefLab/Diversity_Productivity/blob/master/data/mothur/mothur.batch.taxa171 

ss.  172 

Estimating Diversity 173 

To get the best estimate of each diversity metric, each sample was subsampled to 6,664 174 

sequences (the smallest library size) with replacement and were averaged over 100 trials. 175 

Observed richness, Shannon entropy, and inverse Simpson’s index were calculated using the 176 

diversity function within the vegan (Oksanen et al., 2013) R package via the estimate_richness 177 

function in the phyloseq (McMurdie and Holmes, 2013) R package. Simpson’s Evenness was 178 

calculated by dividing the inverse Simpson’s index by the observed richness (Magurran, 2004). 179 

To calculate phylogenetic diversity, we first removed OTUs that had a count of 2 sequences or 180 

less throughout the entire dataset, as these are more prone to be artefacts originating from 181 

sequencing errors or the OTU clustering algorithm. Representative sequences of each of the 182 

1,891 remaining OTUs were collected from the aligned fasta file produced within mothur, and 183 

header names in the mothur output fasta file were modified using bbmap (Bushnell, 2016) to 184 

only include the OTU name. A phylogenetic tree was created with FastTree using the GTR+CAT 185 

(general time reversible) model (Price et al., 2010). Mismatches between the species community 186 

data matrix and the phylogenetic tree were checked with the match.phylo.comm command 187 

(picante). Finally, both abundance-unweighted and -weighted phylogenetic diversity was 188 

estimated using specifications described in the next paragraph with the picante R package. 189 

 The most common phylogenetic diversity (PD) measure is Faith’s PD (Faith, 1992), 190 

however, this metric is very strongly correlated with species richness (Figure S2). Instead, the 191 

mean pairwise phylogenetic distance (or MPD) was calculated (ses.mpd function in the Picante 192 

R package (Kembell et al., 2010), null.model = “independentswap”). The MPD measures the 193 
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average phylogenetic distance between all combinations of two taxa pulled from the observed 194 

community and compares it with a null community of equal richness pulled from the gamma 195 

diversity of all the samples (see supplemental methods for more details). Values higher than zero 196 

indicate phylogenetic evenness or overdispersion (higher phylogenetic diversity) while values 197 

less than zero indicate phylogenetic clustering (lower diversity) or that species are more closely 198 

related than expected according to the null community (Kembel, 2009). Thus, this phylogenetic 199 

metric is relative. From here, we will refer to the SESMPD as the “phylogenetic diversity” for 200 

simplicity and clarity.  201 

Statistical analysis   202 

Further analysis of sequence data was performed in R version 3.4.2 (R Core Team 2017; 203 

see supplemental methods for more details). To test which variable(s) were the best predictors of 204 

community and per-capita heterotrophic production, we performed variable selection via a lasso 205 

regression (using the glmnet R package, alpha = 1, and lambda.1se as the tuning parameter 206 

(Friedman et al., 2010)) on all of the environmental, biodiversity, and principal component 207 

variables. To further validate the lasso regression results, we performed ordinary least squares 208 

(OLS) regressions on all variables, including the principal components (PCA) of the euclidean 209 

distances of the environmental data. We used the Akaike information criterion (AIC) (accessed 210 

with the broom::glance() command) to select the best performing OLS regression model. 211 

Data and code availability  212 

Original fastq files can be found on the NCBI sequence read archive under BioProject accession 213 

number PRJNA412984. Processed data and code can be found on the GitHub page for this 214 
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project at https://deneflab.github.io/Diversity_Productivity/ with the main analysis at 215 

https://deneflab.github.io/Diversity_Productivity/Final_Analysis.html. 216 

Results 217 

Free-living communities had more cells and higher community-wide heterotrophic production 218 

but particle-associated communities had higher per-capita heterotrophic production 219 

We observed an order of magnitude more cells per milliliter (p = 1 x 10-6, Figure 1A) and 220 

~2.5 times more community-wide heterotrophic production in the free-living fraction (p = 0.024, 221 

Figure 1B). However, when calculated per-capita, particle-associated bacteria were on average 222 

an order of magnitude more productive than free-living bacteria (p = 7 x 10-5, Figure 1C). 223 

Particle-associated and free-living cell abundances in samples taken from the same water sample 224 

did not correlate (Figure S3A). Heterotrophic production between corresponding free-living and 225 

particle-associated fractions from the same water sample were positively correlated for both 226 

community (Adjusted R2 = 0.40, p = 0.017; Figure S3B) and per-capita production rates 227 

(Adjusted R2 = 0.60, p = 0.003; Figure S3C). 228 

Particle-associated communities are more diverse in terms of observed richness and Shannon 229 

Entropy while free-living communities are more phylogenetically diverse 230 

Across all samples, particle-associated bacterial communities were more diverse than 231 

free-living communities when considering richness and Shannon entropy (Figures 2A & S4A), 232 

but similar in the inverse Simpson’s index and Simpson’s evenness (Figure 2B & S4B).  233 

Particle-associated bacterial community richness was always higher than in free-living 234 

communities and was maintained across the four sampling stations in the lake (Figure S5A). 235 
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Particle-associated samples at the river and Bear lake stations were on average more OTU-rich 236 

than the outlet to Lake Michigan and the Deep stations. Additionally, the river station had almost 237 

twice the inverse Simpson’s value as compared with all other lake stations (Mean inverse 238 

Simpson Indices: Outlet = 23.6; Deep = 23.7; Bear = 35.3; River = 59.1; Figure S5A).  239 

Particle-associated communities were more phylogenetically clustered than free-living 240 

communities based on unweighted phylogenetic diversity (p = 0.01, Figure 3A). Compared to 241 

other particle-associated samples, the outlet station that connects to oligotrophic Lake Michigan 242 

had a much larger unweighted phylogenetic diversity, indicating phylogenetic overdispersion 243 

(Figure S5A). Nevertheless, no sample across the entire dataset differed significantly from the 244 

null model with a significance threshold p-value of 0.05. There was no difference between 245 

weighted phylogenetic diversity in particle-associated versus free-living communities (Figure 246 

S5A).  247 

Diversity-Productivity relationships are only observed in particle-associated communities 248 

There was a strong, positive, linear BEF relationship between community-wide (Figures 249 

2C-D & S4C-D) and per-capita (Figures 2E-F & S4E-F) heterotrophic productivity and all 250 

richness and evenness diversity metrics in the particle-associated communities, while no BEF 251 

relationships were observed for the free-living communities. The inverse Simpson’s index 252 

explained the most amount of variation in community-wide (Figure 2D; Adjusted R2 = 0.69, p = 253 

5 x 10-4) and per-capita (Figure 2F; Adjusted R2 = 0.69, p = 0.001) heterotrophic production. 254 

These results are robust across a range of minimum OTU abundance filtering thresholds (see 255 

Sensitivity Analysis of Rare Taxa in the supplemental methods and Figure S6) and hold up for all 256 

threshold levels in Inverse Simpson and for richness until removal of 25 counts (community-257 

wide heterotrophic production) and 15 counts (per-capita heterotrophic production). When the 258 
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particle-associated and free-living samples were combined together into one linear model to test 259 

an overall relationship between diversity and productivity, there was no relationship (richness: p 260 

= 0.86; Shannon: p = 0.99; Inverse Simpson: p = 0.36), with the exception of a weak correlation 261 

for Simpson’s Evenness (Adjusted R2 = 0.12, p = 0.054). However, when particle-associated and 262 

free-living samples were combined together into one linear model to test an overall relationship 263 

between diversity and productivity, there was a strong relationship with observed richness 264 

(Adjusted R2 = 0.63, p = 3 x 10-6), which broke down as evenness was weighed more (Figure S7: 265 

Shannon: Adjusted R2 = 0.52, 6 x 10-5; Inverse Simpson: Adjusted R2 = 0.48, p = 2 x 10-4; 266 

Simpson’s Evenness: p = 0.48). 267 

Phylogenetic diversity correlated with per-capita heterotrophic production but not with 268 

community-wide production 269 

Abundance-weighted phylogenetic diversity was not correlated with community or per-270 

capita heterotrophic production (Figure S8C - S8D) and therefore no further analyses were 271 

performed with this diversity metric.   272 

There was a moderate, negative, linear relationship when particle-associated and free-273 

living samples were combined together into one linear model to test an overall relationship 274 

between unweighted phylogenetic diversity and observed richness (Figure 3B; Adjusted R2 = 275 

0.35, p = 0.001). To further validate this trend, randomized communities were generated with an 276 

equal richness as the samples but with OTUs randomly picked across the dataset. The 277 

unweighted phylogenetic diversity was then calculated and regressed against each the 278 

randomized richness and there was no relationship (Figure S9; Adjusted R2 = -0.02, p = 0.44), 279 

verifying the negative relationship in the actual samples. When particle-associated and free-280 

living samples were individually run in separate linear models to test for habitat-specific 281 
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relationships between unweighted phylogenetic diversity and observed richness, no trend was 282 

found in either particle-associated or free-living models (Figure 3B; Particle: Adjusted R2 = 0.14, 283 

p = 0.12; Free = Adjusted R2 = -0.10, p = 0.97). In other words, particle-associated and free-284 

living diversities did not have individual effects on community-wide or per-capita heterotrophic 285 

production but rather, all samples were necessary for a correlation between per-capita 286 

heterotrophic production and unweighted phylogenetic diversity.  287 

There was no correlation between phylogenetic diversity and community-wide 288 

heterotrophic production (Figure 3C). However, a negative correlation was found when particle-289 

associated and free-living samples were combined into one linear model to test an overall 290 

relationship between unweighted phylogenetic diversity and per-capita heterotrophic production 291 

(Figure 3D; R2 = 0.42, p = 5 x 10-4). Therefore, these two results in combination indicated that 292 

communities composed of more phylogenetically similar OTUs had a higher per-capita 293 

heterotrophic production rate.  294 

Diversity, and not environmental variation, is the best predictor of particle-associated 295 

heterotrophic production  296 

To identify variables that best predicted community-wide and per-capita heterotrophic 297 

production (i.e. remove variables that were correlated with each other and/or uninformative 298 

variables), we performed lasso regression with all samples and individually with particle-299 

associated and free-living samples. For prediction of community-wide heterotrophic production, 300 

only the inverse Simpson’s index was selected for particle-associated samples whereas pH and 301 

PC5 were selected for free-living samples, and no variables were selected when all samples were 302 

included in the lasso regression. In contrast, for per-capita heterotrophic production, temperature 303 

and the inverse Simpson’s index were selected for particle-associated samples whereas pH was 304 
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the only predictor for free-living samples, and observed richness was the only predictor for all 305 

samples (plotted in Figure S7A). Therefore, the best model for particle-associated microhabitats 306 

always included inverse Simpson’s index whereas free-living samples only included 307 

environmental variables, such as pH. 308 

To further verify that there were no confounding impacts of seasonal and environmental 309 

variables on community-wide and per-capita heterotrophic production, we performed ordinary 310 

least square (OLS) regressions and a dimension-reduction analysis of the environmental 311 

variables through a principal components analysis (Table S1 & S2; Figure S10). Specifically, the 312 

first 2 environmental axes explained ~70% of the environmental variation in the sampling sites 313 

(Figure S10). Next, we predicted community-wide and per-capita heterotrophic production with 314 

all environmental variables and the first six principal components as predictor variables with 315 

individual particle-associated and free-living samples, and combined (i.e. all samples) models 316 

(Table S1 & S2). The best single predictor of community-wide heterotrophic production was 317 

Inverse Simpson for particle-associated samples (AIC = 74.34; R2 = 0.69), pH for the free-living 318 

samples (AIC =98.43; R2 = 0.49, p = 0.006), and pH for all samples (AIC = 192.16; R2 = 0.35) 319 

(Table S1). Whereas, the best single predictor of per-capita heterotrophic production was Inverse 320 

Simpson for particle-associated samples (AIC = 8.29; R2 = 0.69), pH for the free-living samples 321 

(AIC = -2.39; R2 = 0.78), and observed richness for all samples (AIC = 24.72; R2 = 0.63) (Table 322 

S2). Thus, the OLS regressions are in agreement with the lasso regressions. 323 

 Discussion 324 

We examined bacterial biodiversity-ecosystem function (BEF) relationships in relation to 325 

two microhabitats within freshwater lakes: particulate matter and the surrounding water. First, 326 

we found that community-wide and per-capita heterotrophic productivity of particle-associated 327 
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but not free-living bacterial communities showed a positive, linear BEF relationship with both 328 

richness and evenness contributing. Second, particle-associated heterotrophic production was 329 

better explained by diversity (i.e. inverse Simpson’s index) than by environmental parameters. 330 

Third, across both particle-associated and free-living communities, higher richness was 331 

associated with lower phylogenetic diversity which, in turn, was associated with higher per-332 

capita heterotrophic bacterial production but not associated with community-wide heterotrophic 333 

production.  334 

Microbes have a large diversity of metabolisms and the choice of which to focus on may 335 

inherently affect the BEF relationship. Indeed, “narrow” metabolic processes that are catalyzed 336 

by a small subset of taxa within bacterial communities, such as nitrogen and sulfur cycling, have 337 

been found to display BEF relationships (Levine et al., 2011; Delgado-Baquerizo et al., 2016). In 338 

contrast, for “broad” processes that are performed by the majority of taxa within a bacterial 339 

community, such as heterotrophic production (focus of the present study) and respiration, 340 

functional redundancy appears to weaken or remove the presence of BEF relationships (Griffiths 341 

et al., 2000; Langenheder et al., 2006; Wertz et al., 2006; Levine et al., 2011; Peter et al., 2011, 342 

Galand et al, 2015). These findings are in line with the absence of a BEF relationship for free-343 

living bacterial communities in our study.  344 

However, the above results and hypotheses surrounding narrow and broad processes are 345 

in conflict with the strong BEF relationship we observed in particle-associated bacterial 346 

communities. As such, our study signifies that microhabitats or habitat heterogeneity can 347 

influence bacterial BEF relationships, in agreement with previous research in eukaryotic systems 348 

across a variety of ecosystems (Tylianakis et al., 2008; Cardinale 2011; Zeppilli et al., 2016). A 349 

study using controlled stream mesocosms by Cardinale (2011) found that niche complementarity 350 
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effects are particularly important in more heterogeneous environments. In more heterogeneous 351 

streams, algal populations used different nutrients and avoided direct competition for resources, 352 

resulting in unique species occupying distinct and local microhabitats. 353 

Our observational study could not directly test the role of niche complementarity effects. 354 

However, support for niche complementarity alone or in combination with species selection as 355 

the mechanism underlying the BEF relationship in particle-associated habitats is provided by the 356 

inverse Simpson’s index being the strongest predictor of community-wide heterotrophic 357 

production. As the inverse Simpson’s index represents a measure of species dominance, it is 358 

strongly affected by the evenness of abundant species. Communities that are more even have an 359 

increased likelihood for complementary species to neighbor each other.  360 

In our study, there are several reasons why heterogeneity of particulate matter may allow 361 

for niche complementarity effects to occur and result in BEF relationships. First, particles have a 362 

two-fold layer of heterogeneity as they (A) may be composed of different substrates such as 363 

organic matter from terrestrial or aquatic environments and either heterotrophically or 364 

photosynthetically derived (Grossart, 2010), and (B) each particle may comprise 365 

physicochemical gradients as well (Simon et al., 2002). Second, microbial interactions are more 366 

likely to occur between cells aggregated on particles as the interaction distances are usually 367 

much shorter (Cordero & Datta, 2016) compared to free-living bacterial cells. In fact, genes 368 

mediating social interactions, such as motility, adhesion, cell-to-cell transfer, antibiotic 369 

resistance, mobile element activity, and transposases, have been found to be more abundant in 370 

marine particles than compared to the surrounding water (Ganesh et al., 2014).  371 

The importance of niche complementarity in microbial communities can also be deduced 372 

from recent findings in the field of microbiology, which have shown widespread metabolic 373 
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interdependence among bacterial community members. First, a 2016 study that reconstructed 374 

2,540 draft genomes of microbes found that most bacteria specialize in one particular step in 375 

sulfur and nitrogen pathways and “hand-off” their metabolic byproducts to nearby organisms 376 

(Anantharaman et al., 2016). It is likely that metabolic hand-offs, a specific form of bacterial 377 

facilitation, will occur more in particle-associated compared to free-living communities. Indeed, 378 

Datta and Cordero’s (2016) work on model marine particles found that taxa that are incapable of 379 

breaking down particles and instead rely on carbon produced by primary degraders thrive in later 380 

phases of particle degradation. Second, Lilja and Johnson (2016) demonstrated that different 381 

microbial cell types eliminate inter-enzyme competition by cross feeding, which increases 382 

substrate consumption by allowing intracellular resources to go towards a single enzyme, rather 383 

than having two enzymes that perform two separate reactions compete for nutrients within a cell. 384 

Third, some bacteria are unable to grow in laboratory cultures unless they are in co-culture with 385 

other organisms, which may be due to metabolic hand-offs or to growth factors such as 386 

siderophores or catalases (Stewart, 2012).  387 

Taking into account that (i) closely related taxa share more genes and metabolic 388 

pathways than distantly related bacterial taxa (Konstantinidis & Tiedje, 2005; Kim et al., 2014) 389 

and (ii) bacteria commonly have incomplete metabolic pathways, we propose that closely related 390 

bacteria may be most likely to hand-off their metabolic byproducts. This may be why we found 391 

that new taxa added to the community represented taxonomic clades similar to or already present 392 

in the community, and that these communities with lower phylogenetic diversity (relative to 393 

expected) had higher productivities. This result is in line with a recent study using freshwater 394 

algae and vascular plants that reject predictions from the phylogenetic limiting similarity 395 

hypothesis (Narwani et al., 2017). However, recent bacteria-focused studies from Russel et al. 396 
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(2017) and Venail and Vives (2013) found higher levels of antagonism (Russel et al., 2017) or 397 

more bacterial productivity (measured through colony forming units per mL;Venail and Vives, 398 

2013) with more distantly related taxa. Both of these studies were performed in the lab with r-399 

selected (i.e. copiotrophic) species grown in stable, warm, aerobic, agar plate conditions. Thus, 400 

Venail and Vives (2013) and Russel et al. (2017) inherently break up potential interdependent 401 

relationship between bacteria either by creating artificial communities or evaluating pairwise 402 

interactions and remove the natural effect of spatial heterogeneity, environmental fluctuations, 403 

and the rest of the bacterial community. As a result, future studies on bacterial interactions and 404 

the role of phylogenetic diversity will need to maintain natural structure and complexity in 405 

bacterial communities.  406 

Previous studies on bacterial BEF relationships have used three approaches to manipulate 407 

bacterial diversity (Krause et al., 2014): (1) dilution to extinction in which complex communities 408 

are diluted to more simple communities (Wertz et al., 2006; Peter et al., 2011; Philippot et al., 409 

2013; see Roger et al., 2016 for a review of this approach), (2) manually assembled communities 410 

in culture (Tan et al., 2012; Salles et al., 2009), or (3) natural or manipulated environmental 411 

communities (Griffiths et al., 2000; Levine et al., 2011; Galand et al., 2015). In this study, we 412 

took the latter approach. In contrast to the other two approaches, this had the benefit of (1) 413 

maintaining high diversity with both abundant and rare taxa, (2) including both r- and k-selected 414 

organisms, (3) allowing natural environmental and ecological forcings to shape the community, 415 

and (4) evaluating BEF relationships in diversity and productivity ranges that reflect natural 416 

communities. Admittedly, three inherent weaknesses to our approach were that (1) we cannot 417 

measure all the potential variables that influence heterotrophic productivity, (2) we only have 24 418 

samples for a 12 versus 12 study, and (3) our analysis is correlational and we cannot manipulate 419 
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the system to unequivocally separate causes and consequences of bacterial production. For 420 

example, strong correlations with heterotrophic production and pH in the free-living samples 421 

(Table S1 & S2) may point to pH being a consequence of rather than a cause of varying 422 

production levels. This is because bacterial production and bacterial respiration are positively 423 

correlated (del Giorgio & Cole, 1998) and with increased respiration, pH may decrease due to 424 

CO2 dissolution into the water.  425 

Finally, we acknowledge that the typical sampling of bacterial communities and analysis 426 

using DNA sequencing reflects all bacteria present in the community and not necessarily only 427 

the active members of the community contributing to a given ecosystem function. In freshwater 428 

systems, up to 40% of cells from the total community have been shown to be inactive or dormant 429 

(Jones and Lennon, 2010). If one were to sample plant communities in an analogous way to 430 

bacterial systems, one would measure the diversity of all the above- and below-ground plant 431 

biomass including seeds, pollen, and detrital biomass. In this context, it is interesting to reflect 432 

on the richness in absence of function (i.e. x-intercept) of the observed BEF relationship which is 433 

295. This could be interpreted as a baseline level of 295 inactive (either dead or dormant) 434 

bacterial OTUs and in the case of particulate material, environmental DNA adhered the 435 

substrate, in the community. This value represents 35-85% of the total particle-associated 436 

communities and may obscure the actual diversity (and BEF relationship) of the bacterial 437 

community (Carini et al., 2016).  438 

In conclusion, we show that increased bacterial diversity, especially when measured by 439 

the inverse Simpson’s index, leads to increased community-wide and per-capita bacterial 440 

heterotrophic production in particle-associated but not in free-living communities. As such, we 441 

extend the validity of principles of the impact of microhabitat on BEF relationships from 442 
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Eukarya to Bacteria, contributing to current efforts to integrate ecological theories into the field 443 

of microbiology (Barberán et al., 2014). Additionally, we show that communities with low 444 

phylogenetic diversity have higher per-capita heterotrophic production rates, which we 445 

hypothesize to be related to genome evolutionary patterns specific to bacteria that result in the 446 

dependence on metabolic hand-offs. Differences between Bacteria and Eukarya in patterns of 447 

genome evolution and its ecological consequences, as well as in how active and dormant 448 

fractions of the community are measured need to be taken into account when trying to integrate 449 

BEF studies across all domains of life.  450 
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27 

Figure 1: Bacterial counts, community-wide and per-capita heterotrophic production differ 613 

between microhabitats. Particle-associated and free-living samples were taken from four 614 

stations within Muskegon Lake during 2015 in May, July, and September. (A) Free-living 615 

bacteria were an order of magnitude (106 cells/mL) more abundant compared to particle-616 

associated bacteria. (B) Free-living bacteria were more heterotrophically productive compared to 617 

particle-associated bacteria. (C) Particle-associated bacteria were disproportionately 618 

heterotrophically productive per cell compared to free-living bacteria. 619 

 620 

Figure 2: Richness and Inverse Simpson correlate with heterotrophic productivity. Top 621 

panel: Differences in (A) the observed richness and (B) the inverse Simpson diversity metrics 622 

between particle-associated (orange) and free-living (blue) habitats. Middle panel: Biodiversity 623 

and community-wide heterotrophic production (ugC/L/day) relationships. The y-axis between 624 

(C) and (D) is the same, however, the x-axis represents (C) richness and (D) Inverse Simpson. 625 

Bottom panel: Biodiversity and log10(per-capita heterotrophic production) (ugC/cell/day) 626 

relationships. The y-axis between (E) and (F) is the same, however, the x-axis represents (E) 627 

richness and (F) Inverse Simpson’s index. Solid lines represent ordinary least squares models for 628 

the free-living (blue) and particle associated (orange) communities. All R2 values represent the 629 

adjusted R2 from an ordinary least squares model. 630 

 631 

Figure 3: The relationship between heterotrophic productivity and unweighted 632 

phylogenetic diversity (SESMPD; ses.mpd function in picante with null.model = 633 

“independentswap”). Positive phylogenetic diversity values represent communities that are 634 

phylogenetically diverse (i.e. overdispersed) while negative phylogenetic diversity values 635 

represent communities that are phylogenetically less diverse (i.e. clustered) compared to a null 636 

community with equal species richness. (A) Phylogenetic diversity was higher in free-living 637 

communities compared to particle-associated communities. (B) Negative relationship between 638 

observed richness and phylogenetic diversity. (C) Absence of phylogenetic diversity and 639 

community bulk heterotrophic production (µgC/L/day) relationships. (D) Negative phylogenetic 640 

diversity and per-capita heterotrophic production (µgC/cell/day) relationship. Linear models in 641 

figure B and D represent trends over all samples.  642 
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Figure 1 644 
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Figure 2 646 
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Figure 3 649 
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