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ABSTRACT.  23 

Selection of effective genes that accurately predict chemotherapy response could 24 

improve cancer outcomes. We compare optimized gene signatures for cisplatin, 25 

carboplatin, and oxaliplatin response in the same cell lines, and respectively validate 26 

each with cancer patient data. Supervised support vector machine learning was used to 27 

derive gene sets whose expression was related to cell line GI50 values by backwards 28 

feature selection with cross-validation. Specific genes and functional pathways 29 

distinguishing sensitive from resistant cell lines are identified by contrasting signatures 30 

obtained at extreme vs. median GI50 thresholds. Ensembles of gene signatures at 31 

different thresholds are combined to reduce dependence on specific GI50 values for 32 

predicting drug response. The most accurate models for each platin are: cisplatin: 33 

BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, 34 

NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, TWIST1; carboplatin: AKT1, EIF3K, 35 

ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, 36 

VEGFB, VEGFC; oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, 37 

PANK3, SLC47A1, SLCO1B1, UGT1A1. TCGA bladder, ovarian and colorectal cancer 38 

patients were used to test cisplatin, carboplatin and oxaliplatin signatures (respectively), 39 

resulting in 71.0%, 60.2% and 54.5% accuracy in predicting disease recurrence and 40 

59%, 61% and 72% accuracy in predicting remission. One cisplatin signature predicted 41 

100% of recurrence in non-smoking bladder cancer patients (57% disease-free; N=19), 42 

and 79% recurrence in smokers (62% disease-free; N=35). This approach should be 43 

adaptable to other studies of chemotherapy response, independent of drug or cancer 44 

types. 45 

 46 
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INTRODUCTION 50 

Chemotherapy regimens are selected based on overall outcomes for specific 51 

types and subtypes of cancer pathology, progression to metastasis, other high-risk 52 

indications, and prognosis1,2, and variability in tumor resistance has led to tiered 53 

sequential strategies for selection of agents based on their overall efficacy3. We and 54 

others have developed machine learning (ML)-based gene signatures aimed at 55 

predicting response to specific chemotherapeutic agents and minimizing 56 

chemoresistance based on inhibition of growth or drug targets (GI50 or IC50)
4–6. In this 57 

study, we present integrated ML models of platin drug responses (cis-, carbo- and 58 

oxaliplatin). Previous studies have reviewed the genes7, gene products8 and specific 59 

individual pathways that are activated and repressed by drugs9, but lack comprehensive 60 

models of the global cellular response to drugs. We use integrated ML-based signatures 61 

based on expression of multiple genes to predict key responses to each of these platin 62 

agents, for the first time, at different resistance levels.  63 

Cisplatin, carboplatin and oxaliplatin are each widely prescribed compounds for 64 

their antineoplastic effects. While each contains platinum to form adducts with tumour 65 

DNA, their effectiveness differs for specific types of cancers, such as bladder (cisplatin), 66 

ovarian (cisplatin and carboplatin) and colorectal cancer (oxaliplatin). Carboplatin differs 67 

in structure from cisplatin, exchanging the latter’s dichloride ligands with a CBDCA 68 

(cyclobutane dicarboxylic acid) group, while oxaliplatin is paired with both a DACH 69 

(diaminocyclohexane) ligand and a bidentate oxalate group. These chelating ligands 70 

have greater stability and solubility to aqueous solutions, which lead to differences in 71 

drug toxicity compared to cisplatin10. Oxaliplatin can be up to two times as cytotoxic as 72 

cisplatin, but it forms fewer DNA adducts11. The large hydrophobic DACH ligand which 73 

overlaps the major groove is thought to prevent binding of certain DNA repair enzymes 74 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/231712doi: bioRxiv preprint 

https://doi.org/10.1101/231712
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

such as the POL polymerases, and may contribute to the low cross-resistance between 75 

oxaliplatin and cisplatin and carboplatin10. While all three drugs can enter the cell via 76 

copper transporters, organic cation transporters are oxaliplatin-specific and likely play a 77 

role in its efficacy in colorectal cancer (CRC) cells where these transporters are 78 

commonly overexpressed7. Oxaliplatin specifically plays a role in interfering with both 79 

DNA and RNA synthesis, unlike cisplatin which only infers with DNA12. It is these 80 

intrinsic properties between the platinum drugs which lead to differences in their activity 81 

and resistance profiles, despite their similar mode of action. 82 

 We derived gene signatures to predict drug response at different sensitivity and 83 

resistance levels for each of these agents. We and others have used supervised 84 

learning algorithms, including random forest models13; support vector machine (SVM) 85 

models6; neural networks14; and linear regression models5 to make these predictions. 86 

Pathway and network analysis of gene expression have been used to indicate hundreds 87 

of genes potentially up- and down-regulated upon cisplatin treatment15. Cisplatin-specific 88 

gene signatures have been developed with integrative approaches such as elastic net 89 

regression using inferred pathway activity of bladder cancer cell line data16. These 90 

methods have implicated genes that have not been described previously. Supervised ML 91 

with biochemically-relevant genes has also been useful for predicting drug response6. A 92 

concern with each of these ML approaches is that an insufficient number of samples 93 

coupled to a large number of features, i.e. gene expression changes, in each sample 94 

can result in overfitting of the model affecting its generalizability with other sources of 95 

data17. We therefore reduce the number of dimensions by selecting genes biologically 96 

relevant to the drugs under observation6,17. Additional selection criteria are necessary 97 

when the number of genes implicated in peer-reviewed reports is still prohibitively large 98 

compared to sample size.  99 
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Biochemically-inspired gene signatures have shown good performance in 100 

predicting treatment response. A paclitaxel ML signature based on tumor gene 101 

expression had a higher success predicting the pathological complete response rate 102 

(pCR 18) for sensitive patients (84% of patients with no / minimal residual disease) than 103 

models based on differential gene expression (GE) analysis6. For gemcitabine, a 104 

signature derived from both expression and copy number (CN) data from breast cancer 105 

cell lines was derived, and subsequently applied to analysis of nucleic acids from patient 106 

archival material. Multiple other outcome measures used to validate gene signatures 107 

include prognosis5, Miller-Payne response19, and disease recurrence. Binary SVM 108 

classifiers based on discrete time thresholds have been used to classify continuous 109 

outcome measures such as prognosis and recurrence. By contrast, pCR is simpler to 110 

interpret with binary SVM models. Nevertheless, differences in clinical recurrence have 111 

been noted between patients demonstrated with pCR and those who do not exhibit 112 

disease pathology18. This source of variability in defining patient response can confound 113 

transferability of SVM models between different datasets. 114 

We apply biochemically-inspired ML to predict and compare the cellular and 115 

patient responses to cisplatin, carboplatin and oxaliplatin. We train models for 116 

classification of platin resistance with cancer cell line data and validate with patient GE 117 

and outcome data. Our previous gene signatures were based on median GI50 for each 118 

drug6. This has been a necessary compromise, however in this study we consider 119 

signatures that differ at the highest vs. the lowest levels of drug resistance. A series of 120 

gene signatures are derived by shifting the GI50 thresholds that distinguish sensitivity 121 

from resistance. The frequency of genes selected at median vs. extreme thresholds 122 

highlights pathways that define these responses among different patient subsets. 123 

 124 
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RESULTS 125 

Selection of Platin Drug Related Genes 126 

We documented genes in the peer-reviewed literature associated with drug 127 

effectiveness or response (Supplemental References). For cisplatin, carboplatin and 128 

oxaliplatin, this implicated 178, 90, and 288 genes, respectively (Suppl. Table S1). 129 

Multiple factor analysis (MFA) was used to determine which genes were correlated to 130 

GI50 in breast cancer cell lines through either GE and/or CN13, significantly reducing the 131 

sizes of the gene sets for cisplatin (N=39), carboplatin (N=28), and oxaliplatin (N=55). 132 

Genes with significant relationships to GI50 and direction of correlation (positive or 133 

inverse) are indicated in Figure 1. The diverse functions of these genes included 134 

apoptosis, DNA repair, transcription, cell growth, metabolism, immune system, signal 135 

transduction and membrane transport. Analysis of IC50 and gene expression levels for 136 

cisplatin-treated bladder cancer cell lines confirmed these relationships evident from GI50 137 

values of different breast cancer lines. IC50 values were related to GE for CFLAR, FEN1, 138 

MAPK3, MSH2, NFKB1, PNKP, PRKAA2, and PRKCA20. Similarly, separate bladder cell 139 

line IC50 values from the Genomics of Drug Sensitivity in Cancer project 140 

(http://www.cancerrxgene.org; N=17) were correlated with GE for CFLAR, FEN1, and 141 

NFKB1, in addition to ATP7B, BARD1, MAP3K1, NFKB2, SLC31A2 and SNAI1.  142 

We performed MFA on the GI50 values for cisplatin, carboplatin and oxaliplatin, 143 

without consideration of either GE or CN. Responses to cis- and carboplatin were 144 

directly correlated (a 6.2º separation between vectors), but neither was related to the 145 

oxaliplatin response (Figure 2). Previous studies have shown that cisplatin-resistant cell 146 

lines are generally sensitive to oxaliplatin21–23. 147 
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SVM-based signatures were initially derived for each platin drug from breast 148 

cancer cell line GE data. A 13-gene signature for cisplatin at the median GI50 threshold 149 

(5.2% misclassification rate) consisted of BARD1, BCL2L1, FAAP24, CFLAR, MAP3K1, 150 

MAPK3, NFKB1, POLQ, PRKAA2, SLC22A5, SLC31A2, TLR4, and TWIST1. A similarly 151 

derived carboplatin signature included AKT1, ATP7B, EGF, EIF3I, ERCC1, GNGT1, 152 

HRAS, MTR, NRAS, OPRM1, RAD50, RAF1, SCN10A, SGK1, TIGD1, TP53, and 153 

VEGFB (10.4% misclassification). For oxaliplatin, the final SVM model consisted of 154 

AGXT, APOBEC2, BRAF, CLCN6, FCGR2A, IGF1, MPO, MSH2, NAGK, NAT2, 155 

NFE2L2, NOTCH1, PANK3, PRSS1, and UGT1A1 (2.1% misclassification). A cisplatin 156 

SVM generated from 17 bladder cancer cell lines in cancerRxgene resulted in 2 equally 157 

accurate signatures (with 11.8% misclassification) consisting of either PNKP and 158 

PRKCA or ATP7B, CFLAR, FEN1, MAPK3, NFKB1 and SLC22A11. These models were 159 

not useful for predicting patient outcomes due to the limited size of the training set. 160 

GI50-Threshold Independent Modeling  161 

In our previous studies, we set median GI50 value as the threshold to 162 

distinguished drug resistance and sensitivity5,6. An important question is whether the 163 

genes contributing to drug response are consistent among different cell lines, each with 164 

their own unique GI50 values. Different ML models were obtained by shifting the GI50 165 

threshold, which changed the labels of resistant vs. sensitive cell lines. After feature 166 

selection, the compositions of the corresponding gene signatures for each threshold 167 

were compared. Finally, ensemble averaging of all of these optimized Gaussian SVM 168 

models derived for different GI50 thresholds was used to create a threshold-independent 169 

ML-based signature.  170 
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Kinase (MAPK3, MAP3K1) genes and apoptotic family members (BCL2, 171 

BCL2L1) were most the common in the cisplatin signatures at different GI50 thresholds, 172 

with consistent representation of error-prone and base-excision DNA repair genes as 173 

well (Figure 3A; Supplementary Table S2A). The kinases are more concentrated in 174 

signatures with lower drug sensitivity thresholds, whereas BCL2 and BCL2L1 are more 175 

ubiquitous at all levels. The error prone polymerases, POLD1 and POLQ, are more 176 

frequent in models with lower sensitivity thresholds, while the flap endonuclease FEN1 177 

tends to be present at high levels of resistance. Thresholded models for carboplatin-178 

related genes commonly contained the apoptotic family member AKT1, transcription 179 

regulation genes ETS2 and TP53, as well as cell growth factors VEGFB and VEGFC, 180 

although the latter was less common at lower sensitivity thresholds (Figure 3B). 181 

Common oxaliplatin-related genes included transporters SLCO1B1 and GRTP1 (but not 182 

SLC47A1), transcription genes NFE2L2, PARP15 and CLCN6, as well as multiple 183 

metabolism-related genes (Figure 3C).  184 

SVM models were also derived using the cisplatin and/or carboplatin-treated 185 

TCGA (The Cancer Genome Atlas) bladder urothelial carcinoma patients, using post-186 

treatment time to relapse as a surrogate criterion for different GI50 resistance thresholds 187 

(as performed in Mucaki et al. [2017]24; Supplementary Table S3). Similar trends to cell 188 

line SVMs are apparent: POLQ is frequently included in models with recurrence 189 

threshold of longer duration, while FEN1 is a marker of resistance, when time to relapse 190 

is shorter. However BCL2, which is present in a majority of breast cancer cell line SVMs, 191 

is present in only one model derived from TCGA data. Similarly, MSH2 was rarely 192 

selected using cell lines, yet appears in nearly all patient derived SVMs with > 1 year 193 

recurrence. 194 
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GI50 thresholded ML models were also derived using the log-loss function, which 195 

penalizes false classifications, whose value ranges from zero (or completely accurate), 196 

to 1 (or completely inaccurate; Supplementary Table S4). The overall distribution of 197 

genes across GI50 thresholds has many distinct similarities with the models derived by 198 

misclassification. For both sets of cisplatin models, BCL2, BCL2L1 and FEN1 are 199 

common in low-to-moderate GI50 thresholds, while NFKB1 is enriched at high thresholds 200 

(Figure 3A; Suppl. Figure 1A). For carboplatin, AKT1, VEGFB and VEGFC are similarly 201 

distributed across GI50 thresholds with both methods, although VEGFB is less dense 202 

with log-loss models at low GI50 values (Figure 3B; Suppl. Figure 1B). In both sets of 203 

models for oxaliplatin, SIAE and SLC47A1 show a high density across all GI50 204 

thresholds, while ABCG2 shows low density across each (<50% inclusion; Figure 3C 205 

and Suppl. Figure 1C). There are some distinct differences. EGF and ERCC1 were 206 

selected at a greater frequency at a moderate carboplatin GI50 with log-loss rather than 207 

misclassification. Similarly, the following oxaliplatin genes were selected considerably 208 

more often when using log-loss: APOBEC2, HLA-B, LTA, and MPO. Therefore, while the 209 

misclassification and log-loss based models are not interchangeable, the models are 210 

overall quite similar.  211 

Log-loss models were initially constructed either by (a) a modified version of the 212 

misclassification-based method, or (b) using the BFS software described in Zhao et al. 213 

(2018)25. Multiple signatures with low log-loss values can have different compositions, 214 

consistent with the possibility that there may be various diverse gene combinations that 215 

can give rise to signatures with satisfactory performance. However, these signatures 216 

often contain a larger number of gene features than the misclassification based 217 

signatures, and raised concerns that they might be more prone to overfitting. The log-218 

loss minimized models generated by both methods had comparable compositions. The 219 
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median GI50 thresholded cisplatin model generated by the log-loss modified software 220 

[ATP7B, BCL2L1, CDKN2C, CFLAR, ERCC2, ERCC6, FAAP24, FOS, GSTO1, GSTP1, 221 

MAP3K1, MAPK13, MAPK3, MSH2, MT2A, PNKP, POLD1, POLQ, PRKAA2, PRKCA, 222 

PRKCB, SLC22A5, SLC31A2, SNAI1, TLR4, TP63] shares 15/19 genes with the 223 

signature generated by the BFS software25 [ATP7B, BARD1, BCL2, BCL2L1, ERCC2, 224 

FAAP24, FEN1, FOS, MAP3K1, MAPK13, MAPK3, MSH2, MT2A, NFKB1, PNKP, 225 

POLQ, PRKCB, SLC22A5, SNAI1]).  226 

Traditional Model Validation against Cancer Patient Data 227 

GI50-thresholded models for each platin drug, generated with the breast cancer 228 

cell line data, produced 70 cisplatin, 83 carboplatin, and 83 oxaliplatin SVM models, 229 

respectively. Each model was validated using available platin-treated patient datasets26–
230 

30. The chemotherapy response metadata differed between studies. Als et al.29 reported 231 

survival post-treatment, whereas Tsuji et al.30 categorized patients as responders and 232 

non-responders. TCGA provided two different measures which were used to assess 233 

predictive accuracy in our models – chemotherapy response and disease-free survival. 234 

Accuracy is similar using either measure (Supplementary Table S5A); however 235 

recurrence and disease-free survival was used as the primary measure of response as it 236 

was more often recorded in the TCGA data sets tested. Patients from Als et al. with a ≥ 237 

5 year survival post-treatment were labeled as sensitive to treatment. The differences 238 

between these metadata may, in part, account for the differences in the prediction 239 

accuracy of the thresholded SVM models. 240 

At higher resistance thresholds for any platin drug (low GI50), where more cell 241 

lines are labeled sensitive, the positive class (disease-free survival) is correctly 242 

classified, while the negative class (recurrence) is highly misclassified (Suppl. Figures 2 243 
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and 3). The reverse is true for models built using lower resistance thresholds (high GI50). 244 

We therefore state SVMs generated at these extreme thresholds are not very useful at 245 

predicting patient data. When used to predict recurrence in the TCGA datasets, 246 

sensitivity and specificity appears to be maximized in models where the GI50 threshold 247 

for resistance was set near (but not necessarily at) the median (Suppl. Figure 2; Suppl. 248 

Tables S5A to 5C). While this pattern holds true for Tsuji et al.30, oxaliplatin models 249 

where GI50 thresholds were set above the median could better separate primary and 250 

metastatic CRC patients (best model predicting 92.6% metastatic and 60.7% primary 251 

cancers; Suppl. Table S5C). While less consistent, cisplatin models generated with 252 

thresholds above median GI50 performed better when evaluating the Als et al.29 patient 253 

dataset (Suppl. Figure 3). 254 

Models were further evaluated for their accuracy in TCGA patients using various 255 

recurrence times post-treatment to classify resistant and sensitive patients (0.5 - 5 years; 256 

Supplemental Table S6A-C). The best performing cisplatin model (hereby identified as 257 

Cis1; Table 1) was able to accurately predict 71.0% of bladder cancer patients who 258 

recurred after 18 mo. (N=31; 58.5% accurate for disease-free patients [N=41]). 259 

Response of TCGA bladder patients treated with carboplatin (without cisplatin; N=19) 260 

were best predicted by Cis12 two years post-treatment (80% accurate for responding 261 

patients [N=5]; 93% for recurrent patients [N=14]). The best performing carboplatin 262 

model (designated Car1 [Table 1]) predicted recurrence of ovarian cancer after 4 years 263 

at an accuracy of 60.2% (N=302; 61.0% accurate for disease-free patients [N=108]). 264 

These models were also used to test TCGA bladder cancer patients treated carboplatin 265 

but not cisplatin (N=19), of which the best performing model (Car73) was 84% accurate 266 

for patients after 1 year of treatment (100% for responding patients [N=11]; 62.5% 267 

accuracy for recurrent [N=8]). Two additional carboplatin models are tied for overall 268 
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accuracy (84%; Car9 and Car51), but more successfully predict non-responsive patients 269 

(87.5%; 82% accuracy for responding patients). These three models share four genes: 270 

AKT1, ETS2, GNGT1, and VEGFB. For oxaliplatin, the best performing model 271 

(designated Oxa1 [Table 1]) accurately predicted 71.6% of the disease-free TCGA CRC 272 

patients after one year (N=88; 54.5% accuracy predicting recurrence [N=11]). These 273 

models (based on gene expression measured by Affymetrix Gene Chip Human Exon 1.0 274 

ST arrays), TCGA sample expression data, as well as SVMs based on bladder cell line 275 

data (based on expression measured by Affymetrix U133A microarray), were added to 276 

the online web-based SVM calculator (http://chemotherapy.cytognomix.com; introduced 277 

in Dorman et al. [2016]6) to predict platin response. 278 

To evaluate the consistency in the response prediction of TCGA bladder cancer 279 

patients treated with cisplatin, the distance from the hyperplane for all SVMs generated 280 

were plotted for each patient with a short recurrence time (<6 mo., N=10; Supplementary 281 

Figure 4). Despite showing similar levels of resistance to treatment, patterns differed 282 

between patients. While these patients would be expected to be indicated as highly 283 

cisplatin resistant (hyperplane distance < 0), two patients (TCGA-XF-A9SU and TCGA-284 

FJ-A871) were predicted sensitive across nearly all SVM models. Similar variation was 285 

also seen in patients with either a long recurrence time (>4 years) or no recurrence at all 286 

after 6 years (Suppl. Figure 5).  287 

Threshold independent models were generated for each individual platin drug at 288 

different GI50 thresholds through ensemble ML, which involves the averaging of 289 

hyperplane distances for each model to generate a composite score for each TCGA 290 

patient tested. Hyperplane distances across all 70 cisplatin models were similar, with a 291 

mean score of -0.22 and a standard deviation of 3.5 hyperplane units (hu) across the set 292 

of patient data. The ensemble model classified disease-free bladder cancer patients 293 
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with 59% accuracy and those with recurrent disease with 47% accuracy. Limiting 294 

ensemble averaging to only cisplatin models generated at a moderate GI50 threshold 295 

(ranging from 5.10 to 5.50) did not significantly improve accuracy (44% for disease-free 296 

and 66% for recurrent patients; Suppl. Table S7A). For carboplatin, ensemble ML did not 297 

produce significantly better predictions than random, regardless of the GI50 threshold 298 

interval selected (Suppl. Table S7B) or the similar mean hyperplane distances (-0.11 +/- 299 

3.9 hu). For oxaliplatin, the ensemble ML model (mean = -0.12 +/- 2.7 hu) was most 300 

accurate after 1 year (60% accuracy for disease-free and 73% for recurrent patients; 301 

Suppl. Table S7C). As in cisplatin, limiting this analysis to oxaliplatin SVM models with 302 

moderate GI50 thresholds did not significantly increase accuracy.  303 

To determine the impact of individual genes on overall model accuracy, each 304 

gene within every SVM model was excluded, and model accuracy was reassessed 305 

(Supplementary Tables S2A; S2B and S2C contain cis-, carbo- and oxaliplatin models, 306 

respectively). Genes which consistently significantly increase misclassification 307 

(averaging > 16% increase) in moderate threshold SVMs (GI50 thresholds set from 5.1 to 308 

5.5) include ERCC2, POLD1, BARD1, BCL2, PRKCA and PRKCB. ERCC2 and POLD1 309 

perform critical functions in nucleotide and base excision repair, respectively. PRKCA 310 

and PRKCB are paralogs with significant roles in signal transduction. BARD1 has been 311 

shown to reduce apoptotic BCL2 in the mitochondria31, and has a key role in genomic 312 

stability through its association with BRCA1. Genes with a high variance in increased 313 

misclassification between different models include NFKB1, NFKB2, TWIST1, TP63, 314 

PRKAA2, and MSH2. The variance of these genes may be due to epistatic interactions 315 

with other biological components, including the other genes in the SVM. For example, 316 

NFKB1 and NFKB2 are jointly included in 7 SVMs generated at a moderate GI50 317 

threshold. There is evidence of possible epistasis in that the removal of either of these 318 
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genes, but not necessary both, will have a large impact in model misclassification rates 319 

(≥ 18.0% increase). The misclassification variance of NFKB1 with NFKB2, is significantly 320 

lower than in SVM models lacking NFKB2.  321 

To further evaluate the predictive capability of the misclassification-based gene 322 

signatures, k-fold cross-validation of the cisplatin, carboplatin and oxaliplatin models 323 

were performed on TCGA bladder, ovarian and colorectal cancer patient data, 324 

respectively. Patients were evenly distributed in 5 groups with an equal (or near-equal) 325 

ratio of disease-free and recurrent patients. The majority of the cisplatin models showed 326 

an overall accuracy > 50%. The cisplatin model which performed best under the k-fold 327 

analysis (6-resistance level; BARD1, BCL2, BCL2L1, PRKAA2, PRKCA, PRKCB, 328 

TWIST1) showed an overall accuracy of 71.2% (84.4% accurate for sensitive and 53.9% 329 

accurate for resistant patients). The accuracy of the carboplatin and oxaliplatin models 330 

did not exceed 60%. In general, traditional validation outperformed the k-fold validation 331 

results. 332 

Predicting cisplatin response in patients based on smoking history 333 

Tobacco smoking is known as the highest risk factor for the development of 334 

bladder cancer32. We therefore subdivided the patients based on their smoking history 335 

and tested the thresholded models (Supplementary Tables S8 and S9). When testing 336 

patients who were lifelong non-smokers, the prediction accuracy of Cis1 predicted all 337 

non-smoking patients who were recurrent after 18 months as cisplatin-resistant (N=5). 338 

Prediction accuracy for disease-free patients was 57.1% (N=14). Another model (Cis18; 339 

Suppl. Table S8) had performed equally as well for non-smokers, and these two models 340 

share 7 genes: BCL2, BCL2L1, FAAP24, MAP3K1, MAPK13, MAPK3, and SLC31A2. 341 

Threshold independent analysis predicted disease-free equally well, but recurrence was 342 
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less accurate (66.7%). Note that non-smokers make up a small subset of the patients 343 

tested (N=19). Threshold-independent prediction of recurrence in patients with a 344 

smoking history was 46% accurate (N=13), while disease-free patients were correctly 345 

predicted at a rate of 58% (N=19). Recurrence in these patients was best predicted by a 346 

model built at the median GI50 threshold (Cis2). Accuracy improved for both disease-free 347 

(57.7% -> 61.9%) and recurrent patients (76.0% -> 78.6%) when excluding patients who 348 

quit smoking more than 15 years before diagnosis. Genes in this SVM which are not 349 

present in the two models which performed well for non-smokers include CFLAR and 350 

PRKAA2. 351 

Tobacco smoking has a significant impact on cytosine methylation levels in the 352 

genome33. CpG island methylation has been associated with smoking pack years in a 353 

subset of the TCGA bladder urothelial carcinoma patients26. We suspected that the level 354 

of methylation measured in the SVMs which performed best for smoking and non-355 

smoking patients might differ, and with possible concomitant effects on GE. When 356 

ranking each gene from Cis1 by highest methylation and GE, 88 of 1080 patient: gene 357 

combinations showed the expected inverse correlation between methylation levels and 358 

GE (i.e. high methylation and low GE). Inverse correlation of methylation and GE was 359 

more common than direct correlation (i.e. high methylation and high GE; N=17). 360 

However, direct correlation was more common in patients with a recent smoking history 361 

(70.5%). This pattern was also observed for Cis2, which best predicted recurrence in 362 

smokers. In cases where methylation and GE are directly correlated, we propose that 363 

smoking may alter expression by other effects, e.g. mutagenic, rather solely than by 364 

epigenetic inactivation through methylation.  365 

To determine which genes in these models led to discordant predictions of 366 

patient outcome, we conducted a bioinformatic analysis in which the expression of each 367 
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signature gene was gradually altered until the misclassification was corrected. If the GE 368 

value required to cross this threshold exceeded ≥ 3-fold the highest/lowest expression of 369 

that gene, it was interpreted as a minor contributor to the prediction. Genes which could 370 

not correct a discordant prediction included PRKAA2, NFKB1, NFKB2 and TWIST1. 371 

Significant genes which, when altered, corrected discordant predictions included 372 

MAP3K1, MAPK3, SLC22A5 and SLC31A2. Altering BCL2L1 expression was more 373 

likely to correct the discordant predictions of Cis1 (4 out of 5) than with Cis2 (2 out of 4). 374 

DISCUSSION 375 

Using gene expression signatures, we derived both GI50 threshold-dependent 376 

and -independent ML models which predict the chemotherapy responses for cisplatin, 377 

carboplatin and oxaliplatin, respectively. The cisplatin model Cis1 (Supplementary Table 378 

S6A) most accurately predicted response in bladder cancer patients after 18 months, 379 

and Car1 (Suppl. Table S6B) best predicted response in ovarian cancer patients after 4 380 

years. Oxa1 (Suppl. Table S6C) more accurately predicted disease-free patients than 381 

recurrent disease at the one year treatment threshold. The thresholds which best 382 

represented time-to-recurrence differed between the platin drugs in each cancer type. 383 

Cisplatin gene signatures had noticeably improved performance when smoking history 384 

was taken into account. 385 

The three platin drugs produce distinctly different gene signature models. Initial 386 

gene sets exhibited some overlap between platin drugs (N=67 between any two platins), 387 

but very few of these were correlated by MFA of GI50 with multiple platin drugs (ATP7B, 388 

BCL2 and MSH2). Signature genes common to multiple platin drugs whose expression 389 

was correlated with cisplatin GI50 values but not with carboplatin and/or oxaliplatin values 390 

include BCL2L1, GSTP1, MAP3K1, MAPK3, MT1A, and MT2. Similarly, genes 391 
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correlating only to carboplatin GI50 included AKT1, EGF, ERCC1, KRAS, LIG3, MTHFR, 392 

MTR, RAD50, TP53, while genes correlating to only oxaliplatin GI50 included ATM, 393 

BCL2, CLCN6, ERCC2, ERCC6, and UGT1A1. Despite the close similarity between 394 

cisplatin and carboplatin GI50 response (see Figure 2), only one gene (ATP7B) was 395 

related by MFA to GI50 levels of both drugs. BCL2 and MSH2 correlated with both 396 

cisplatin and oxaliplatin GI50 (BCL2 did not correlate with carboplatin GI50). The increase 397 

in misclassification caused by the elimination of MSH2 from any SVM model in which it 398 

was present was significant; for example, misclassification of Cis14 and Oxa21 (Table 399 

1) were increased by 28.2% and 19.1%, respectively (Suppl. Tables S2A and S2C). 400 

These differences may reflect the spectrum of activity, sensitivity, and toxicity of these 401 

signature genes21–23,34,35.  402 

Previous validation of patient data for other drugs validated with other datasets6,24 403 

using biochemically inspired machine learning have had better performance than those 404 

reported here. We investigated the possibility that disease and molecular heterogeneity 405 

in platin-treated patients may have affected the accuracy of our results. Model 406 

predictions were reevaluated after stratifying clinical features such as time-to-disease 407 

recurrence, cancer stage, and metastatic lymph node count. Breast cancer patients with 408 

advanced disease (stage III and IV) were analyzed separately from those with earlier 409 

stage diagnoses (stage I and II). Cisplatin model Cis1 performed best on stage IV 410 

patients (overall accuracy 72.4% at a 2 year recurrence threshold), while Oxa1 similarly 411 

performed best in predicting late stage cancers (74.5% accurate for stage III and 71.4% 412 

accurate for stage IV at a 2 year recurrence threshold). Cis5 was also more accurate for 413 

later stage cancer patients (72.4% overall accuracy at 18 months). The accuracies of 414 

models were similar across all stages (e.g. Car1 ranged from 58-74%). Cisplatin-treated, 415 

TCGA bladder cancer patients and oxaliplatin-treated TCGA colorectal cancer patients 416 
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were also stratified by Lymph Node status (N0, N1, and N2 [bladder cancer patient data 417 

set comprised of only two N3 patients, which were included with the analysis of N2 418 

patients; N3 was not represented in colorectal cancer]). In TCGA bladder cancer 419 

patients, Cis1 exhibited ~60% accuracy across all categories; however it performed 420 

better in sensitive N0 and N1 patients relative to N2. Cis2 was less accurate for N2 421 

patients than for N0 and N1. Sensitive N2 patients were more likely to be misclassified 422 

(<40%) than relapsed N2 patients. In TCGA colorectal cancer patients, Oxa1 was 88% 423 

accurate in N2 patients (95% accurate for sensitive N2 patients [n=19], and 67% 424 

accurate for relapsed N2 patients [n=6]). Oxaliplatin models were less accurate for N1 425 

patients compared to N0 and N2. Thus, heterogeneity in disease stage as well as 426 

metastatic phenotypes adversely confounds the overall accuracies of our predictions.  427 

Gene signature models derived from cell lines and tested on patients differ in 428 

their outcome measures. The exact GI50 cell line threshold that is most predictive of 429 

patient outcome is not known, and different groups use different methods to discretize 430 

GI50 values36,37. Therefore, we developed ML models for platin drugs which predict drug 431 

response without relying on arbitrary GI50 thresholds. For cisplatin, SVM ensemble 432 

averaging generated on different resistance thresholds shows a small increase in 433 

accuracy over most models, better representing the sensitive, disease-free class (59% 434 

accuracy). Interestingly, ensemble averaging of only the models built using a moderate 435 

GI50 thresholds yielded results which better represented the resistance class. This result 436 

closer matches the accuracy of Cis1, and may be due to Cis1 having a greater overall 437 

impact on the ensemble prediction. When limiting ensemble averaging to only those 438 

models with the highest area under the curve (AUC) at each resistance threshold, 439 

differences in predictions were negligible. Ensemble ML can potentially avoid problems 440 

with poor performance and overfitting by combining models that individually perform 441 

slightly better than chance38.  442 
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  It is difficult to reconcile gene signatures without features known to be related to 443 

chemoresistance with tumor biology. Our thresholding approach may reveal potentially 444 

important genes and pathways associated with platin resistance. It would be preferable 445 

to explore pathways related to signature genes to improve accuracy, identify potential 446 

targets for further study of chemoresistance, and expand the model parameters to take 447 

into account alternate states besides those captured in the original signature39. 448 

Signatures for resistance may be useful for developing targeted intervention to re-449 

sensitize tumours. For example, the mismatch repair (MMR) gene MSH2 is commonly 450 

present in gene signatures at high resistance levels for oxaliplatin, which is of interest, 451 

as MMR deficiency has been shown to be predictive for oxaliplatin resistance35. Indeed, 452 

MLH1, MSH2 and MSH6-deficient cells are more susceptible to oxaliplatin, despite 453 

MMR-deficiency being associated with cisplatin resistance34. The autoimmune disease-454 

associated gene SIAE, which has been previously shown to have a strong negative 455 

correlation to oxaliplatin response in advanced CRC patients40, was selected in the 456 

majority of thresholded oxaliplatin models (Supplementary Table S2C). The gene BCL2, 457 

which was commonly selected for cisplatin (Figure 3A), was rarely selected for 458 

oxaliplatin (Figure 3C). At the highest levels of resistance to cisplatin, models were 459 

enriched for genes belonging to DNA repair, anti-oxidative response, apoptotic pathways 460 

and drug transporters (Figure 3A). These gene pathways are known to be involved in 461 

cisplatin resistance41,42 and these specific genes may be explored in subsequent work to 462 

identify the contribution to chemotherapy response in a biochemical context.  463 

  Log-loss evaluates the accuracy of a classifier by penalizing erroneous 464 

classifications, and is relevant in cases where data is imbalanced and/or have an 465 

unequally distributed error cost. We assessed whether ML models based on log-loss 466 

minimization could improve model accuracy in patient data (Supplementary Table S4) 467 

and compared these to models generated by minimizing cell line misclassification. When 468 
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models generated by both methods were highly similar (generated at the same GI50 469 

threshold, consist of a similar number of genes and consist of ≥ 80% shared genes), 470 

prediction accuracy of TCGA cancer patient outcomes were nearly indistinguishable, as 471 

accuracy can vary over different relapse thresholds. Where significant differences in 472 

predictions were seen, the misclassification-based models were more accurate overall 473 

(Cis1, Cis17 and the “12-Resistant” carboplatin model were +8.3%, +5.6% and +3.9% 474 

more accurate compared to the log-loss model, respectively). Oxaliplatin models were 475 

dissimilar across all GI50 thresholds, as the log-loss minimized ML models often contain 476 

increased numbers of genes compared to the misclassification-based models. Many of 477 

these larger models were less accurate in patients compared to models which minimized 478 

misclassification rates consistent that this evaluation and model selection method is 479 

more prone to overfitting. This pattern was also noted for models generated at extreme 480 

GI50 thresholds for all three platin drugs in which response was, by definition, somewhat 481 

imbalanced. 482 

It may be feasible to predict responses to combination chemotherapy with the 483 

models described here. Not included in the present analysis were signatures for 484 

methotrexate, vinblastine, and doxorubicin, which comprise the MVAC cocktail used to 485 

treat bladder cancer. This was due primarily to a lack of patients treated with this drug 486 

combination in the TCGA bladder dataset (N=11). Individual signatures for several of 487 

these drugs have been derived and analyzed using the patient data from METABRIC 488 

(Molecular Taxonomy of Breast Cancer International Consortium)24. A reasonable 489 

approach to predicting combination chemotherapy would first determine the probability 490 

of sensitivity or resistance to individual drugs, accounting for the misclassification rate by 491 

each (defined as d1, …, dk). The ML classifiers output these probabilities, analogous to 492 

their misclassification rates in a set of patients treated identically. If the model predicts 493 

that the patient is sensitive to drug d1 with 90% probability, and sensitive to drug d2 with 494 
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5% probability, the probability of sensitivity to the combination is 1 - (1 - 0.9)*(1 - 0.05) = 495 

90.5%, and the probability of resistance is 9.5%. The correlated responses could be 496 

estimated for drug pairs, d1 and d2, and then adjusted for the combined probability of the 497 

pair to d12, based on the features that are shared by the signatures of both drugs. The 498 

probability of sensitivity would then be given by 1 - (1 - d12)*(1 - d3)*…*(1 - dk).  499 

The predictive accuracy for the same model could differentiate highly between 500 

the two datasets. Cis3 (Supplemental Table S6A) had a high predictive accuracy and 501 

AUC for TCGA bladder cancer patients (AUC=0.64). However, the AUC was lower when 502 

applied to the Als et al.29 dataset (AUC=0.18). Patient metadata in the latter study only 503 

indicated patient survival times, while we base the expected TCGA patient outcome on 504 

time to disease recurrence. As the basis of our expected outcome differs between 505 

datasets, these differences may be acting as a confounding factor to determine accuracy 506 

of gene signatures. The datasets also differ in how expression was measured 507 

(microarray vs. RNA-seq). The relevance of models based on training and testing data 508 

from different platforms can affect the accuracy of validation, which might not be 509 

improved by data normalization. In this study, datasets were subjected to z-score 510 

normalization. In subsequent studies, other techniques to correct for some of these 511 

effects have been described and could be applied43. 512 

In summary, we describe GI50- or IC50-threshold-independent ML models to 513 

predict chemotherapy response to platin agents in cancer patients. Ensemble machine 514 

learning produced combined signatures that were more accurate than most individual 515 

models generated with different thresholds. Genes associated cisplatin response 516 

included those which exacerbate resistance in patients with a history of smoking. The 517 

methodology described here should be adaptable to other drugs and cancer types. With 518 

a range of models for multiple drugs, it may be possible to improve the efficacy of 519 
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treatment by tailoring treatment to a patient's specific tumour biology, and reduce 520 

treatment duration by limiting the number of different therapeutic regimens prescribed 521 

before achieving a successful response44. 522 

MATERIALS AND METHODS 523 

Data and preprocessing 524 

Microarray GE and data were from breast cancer cell lines were used to train 525 

ML-based gene signatures of drug response based on respective growth or target 526 

inhibition data (GI50 or IC50). Cell lines were treated with either cisplatin (N=39), 527 

carboplatin (N=46), or oxaliplatin (N=47)13. Bladder cancer cell line GE and IC50 528 

measurements for cisplatin were obtained from cancerRxgene (N=17). However, all 529 

testing was performed on breast cancer cell line data as the number of bladder cancer 530 

cell lines was insufficient to produce accurate signatures. RNA-seq GE and survival 531 

measurements were downloaded from TCGA for bladder urothelial carcinoma (N=72 532 

patients treated with cisplatin)26, ovarian epithelial tumor (N=410 treated with 533 

carboplatin)27 and colorectal adenocarcinoma (N=99 treated with oxaliplatin)28. GE of 534 

cisplatin-treated patients of cell carcinoma of the urothelium (N=30)29 and for oxaliplatin-535 

treated CRC patients (N=83)30 were obtained from the Gene Expression Omnibus. 536 

Clinical metadata and GE for TCGA patients were obtained from Genomic Data 537 

Commons (https://gdc.cancer.gov/), while methylation HM450 (Illumina) data for these 538 

patients was downloaded from cBioPortal45.  539 

 Initial gene sets for developing signatures for each drug were identified from 540 

previously published literature (see Supplemental References) and databases, such as 541 

PharmGKB and DrugBank46,47. The final gene sets were chosen using MFA to analyze 542 

interactions between GE, CN, and GI50 data for the drug of interest48. Genes whose GE 543 
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and/or CN showed a direct or inverse correlation with GI50 were selected for SVM 544 

training. As the number of genes related to GI50 for oxaliplatin exceeded the number of 545 

cell lines available for training, we limited the input to the ML model oxaliplatin to those 546 

genes whose GE were related to GI50. Similarly, the number correlating genes in 547 

cisplatin treated cells exceeded the number of cell lines. For cisplatin, genes whose 548 

expression correlated with GI50 were eliminated if they showed no or little expression in 549 

TCGA bladder cancer patients (i.e. RNA-seq counts by Expectation Maximization 550 

[RSEM] were < 5.0 for majority of individuals). This reduces the overall number of genes 551 

for SVM analysis, and thus helps to avoid a data to size sample imbalance. For cisplatin, 552 

MFA was repeated using IC50 values for 17 bladder cancer cell lines; however, the 553 

available CN data generally showed a lack of variation in the cell lines for these genes. 554 

Instead, the available IC50 values for three other cancer drugs (doxorubicin, 555 

methotrexate and vinblastine) were compared with the IC50 of cisplatin by MFA.  556 

Applying an SVM model directly to patient data without a normalization approach 557 

is imprecise when training and testing data are not obtained using similar methodology 558 

(i.e. different microarray platforms). To compare the cell line GE microarray data and the 559 

patient RNA-seq GE datasets, expression values were normalized by conversion to z-560 

scores using MATLAB49. Although Log2 intensity values from microarray data were not 561 

available for TCGA samples, RNA-seq based GE and log2 intensities from microarray 562 

data are highly correlated50. 563 

Machine Learning 564 

SVMs were trained with breast cancer cell line GE datasets13 with the Statistics 565 

Toolbox in MATLAB49 similar to Dorman et al (2016)6. Rather than a linear kernel, we 566 

used a Gaussian kernel function (fitcsvm), and then tested with leave-one-out cross-567 
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validation (using the options ‘crossval’ and ‘leaveout’). A greedy backwards feature 568 

selection algorithm was used to improve classification accuracy51. BFS leaves out 569 

individual genes from the initial MFA-qualified gene set, then trains a cross validated 570 

Gaussian kernel SVM on the training samples, removing the gene with the highest 571 

misclassification rate. The procedure is repeated until all genes have been evaluated. 572 

The gene subset with the lowest misclassification rate6 or log-loss statistic25 based on 573 

cross-validation is selected as the model for subsequent testing with patient GE and 574 

clinical data. K-fold cross validation of the misclassification-based models was 575 

performed using MATLAB software described in Zhao et al. (2018)25. 576 

SVMs minimized according to the log-loss classification function were also 577 

generated with both software described in Zhao et al. (2018; uses multiclass compatible 578 

'fitcecoc' function)25, and with a modified version of the software described above (using 579 

‘fitSVMPosterior’ to compute posterior probabilities). Computed probabilities differ 580 

between 'fitSVMPosterior' and 'fitcecoc' (range: 0.02-0.04), thus the resultant models will 581 

differ between the two programs. When given unbalanced data (e.g. lower resistance 582 

thresholds), ‘fitSVMPosterior’ will warn that some classes are not represented, and thus 583 

those folds will not predict the labels for those missing classes. The log-loss models 584 

described in this manuscript were generated with the multiclass compatible 'fitcecoc' 585 

function software25. 586 

Derivation of gene signatures for different drug resistance thresholds  587 

We have previously set a conventional GI50 threshold distinguishing sensitivity 588 

from resistance at the median of the range of drug concentrations that inhibited cell 589 

growth by 50%6. We hypothesized that different gene signatures could be derived for 590 

different levels of drug resistance by varying this threshold. ML experiments for 591 
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classifying resistance or sensitivity at GI50 values generated a series of optimized 592 

Gaussian SVM models whose performance were assessed with patient expression data 593 

for each signature. A heat map which illustrates the frequencies of genes appearing in 594 

these models was created with the R language hist2d function.  595 

A composite gene signature was created by ensemble averaging of all models 596 

generated at each resistance threshold. Ensemble averaging combines signatures 597 

through averaging the weighted accuracy of a set of related models38. The decision 598 

function for the ensemble classifier is the mean of the decision function scores of the 599 

component classifiers, weighted by the AUC.  600 

Significance of cell line-derived models 601 

The potential for models to overfit data during training and/or feature selection 602 

was first assessed by permutation analysis with randomized cell line labels and with 603 

random sets of genes, as described previously6. Using the median cisplatin GI50 as the 604 

resistance threshold, 10,000 models based on random gene selection (15 genes) had 605 

higher rates of misclassification than the best median SVM models (2 signatures with 606 

7.7% misclassification). Cisplatin, carboplatin and oxaliplatin GE data for random cell 607 

line label combinations (n=10,000) generated only 8, 1 and 1 signatures, respectively, 608 

with lower error rates than the best biochemically-inspired signatures. When minimizing 609 

for log-loss (rather than misclassification), random gene analysis (10,000 iterations; 610 

median cisplatin GI50 threshold) resulted only in models with a higher log-loss than the 611 

model generated with the initial cisplatin gene set. Log-loss based random label analysis 612 

(n=2000 combinations) resulted in 3.4% of random label models resulted in a lower log-613 

loss than the cisplatin model at the same GI50 threshold (5.27).This was not entirely 614 

surprising, since this result depends on the GI50 threshold used for labeling. The 615 
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differences between GI50 values for cell lines close to the median GI50 used in this 616 

analysis are almost negligible (e.g. 5.11 vs 5.12) and likely within the measurement error 617 

for these values.  618 

Cell-line based model accuracies in predicting outcomes of platin-treated TCGA 619 

bladder cancer patients were compared with results from participants who did not 620 

receive these treatments (using an 18 months post-treatment threshold). In non-platin 621 

treated patients, 36.5% of those who were disease-free were predicted accurately with 622 

the Cis1 signature (N=178; 22% less accurate than platin treated patients), and 62.9% 623 

accurate for those with recurrent disease (N=70; 8.1% less accurate). Cis2 was 43.8% 624 

accurate for disease-free non-platin treated patients (N=178; 12.3% lower accuracy), 625 

and 60.0% of those who relapsed (N=70; 2.9% less accurate). Gene expression 626 

changes in patients treated with platin drugs are better modeled by cancer cell-line 627 

based predictors than in patients receiving other treatments.  628 
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Tables 761 

Table 1: Models Which Best Predicted Response in TCGA Cancer Patients 762 

Model ID Cancer Type 

Tested 

GI50 

Threshold 
Signature (C, σ*) 

Cis1 

(Cisplatin) 
Bladder 5.11 

BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, 

MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, 

SLC22A5, SLC31A2, TLR4, TWIST1 (100000, 100) 

Cis2 

(Cisplatin) 
Bladder 5.12 

BARD1, BCL2L1, CFLAR, FAAP24, MAP3K1, MAPK3, 

NFKB1, POLQ, PRKAA2, SLC22A5, SLC31A2, TLR4, 

TWIST1 (10000, 100) 

Cis3 

(Cisplatin) 
Bladder 5.60 

BCL2, CFLAR, ERCC2, ERCC6, FAAP24, FEN1, 

MAP3K1, NFKB1, NFKB2, PNKP, POLQ, PRKCB, 

SLC22A5, SNAI1, TLR4 (100000, 100) 

Cis12 

(Cisplatin) 
Bladder 5.40 

ATP7B, BCL2, BCL2L1, CDKN2C, ERCC2, FAAP24, 

GSTO1, MAP3K1, MAPK3, MT2A, NFKB1, NFKB2, 

POLD1, POLQ, PRKCB, SNAI1, TLR4, TP63 (10000, 

100) 

Cis14 

(Cisplatin) 
Bladder 5.16 

BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, 

FOS, GSTP1, MAP3K1, MAPK13, MAPK3, MSH2, 

NFKB1, POLD1, POLQ, PRKAA2, PRKCB, SLC22A5, 

SLC31A2, SNAI1, TWIST1 (10000, 100) 

Cis17 

(Cisplatin) 
Bladder 5.10 

ATP7B, BCL2, BCL2L1, FEN1, GSTP1, MAP3K1, 

MAPK3, MT2A, NFKB1, PNKP, POLQ, PRKAA2, 

PRKCB, SLC31A2, TLR4, TP63 (100000, 100) 

Car1 

(Carboplatin) 
Ovarian 4.22 

AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, 

NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, 

VEGFB, VEGFC (100000, 100) 

Car9 

(Carboplatin) 
Ovarian 4.32 

AKT1, ATP7B, EIF3I, ETS2, GNGT1, HRAS, KRAS, 

LIG3, MTHFR, MTR, NRAS, RAD50, SCN10A, TIGD1, 

TP53, VEGFB (10000, 100) 

Car51 

(Carboplatin) 
Ovarian 4.34 

AKT1, EGF, EIF3I, ERCC1, ETS2, GNGT1, KRAS, 

MTHFR, MTR, NEDD4L, NLRP1, NRAS, RAD50, 

RAF1, SGK1, TIGD1, TP53, VEGFB, VEGFC (10000, 

100) 

Car73 

(Carboplatin) 
Ovarian 4.09 

AKT1, ATP7B, ETS2, GNGT1, HRAS, NLRP1, 

SCN10A, VEGFB (100000, 1000) 

Oxa1 

(Oxaliplatin) 
Colorectal 5.10 

BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, 

PANK3, SLC47A1, SLCO1B1, UGT1A1 (10, 10) 

Oxa21 

(Oxaliplatin) 
Colorectal 5.10 

BRAF, IGF1, IGF1R, KLF3, MSH2, NAT2, NFE2L2, 

NQO1, PANK3, PRSS1, SIAE, SLC47A1, SLCO1B1, 

UGT1A1 (1000, 100) 

*C - The box-constraint. σ – the kernel-scale (“sigma”). Bolded models are those that best overall performance 

against TCGA cancer patient gene expression data. 
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 764 

FIGURE LEGENDS 765 

Figure 1. Schematic of platinum drug sensitivity and resistance genes which showed 766 

MFA correlation for GI50 of A) cisplatin, B) carboplatin, and C) oxaliplatin. The genes 767 

used to derive the SVM are shown in context of their effect in the cell and role in cisplatin 768 

mechanisms of action. GE and CN correlation with inhibitory drug concentration by MFA 769 

of breast (GI50) and bladder (IC50) cancer cell line data.  770 

Figure 2: GI50 values for cell lines treated with the three platin drugs were plotted in 771 

order of ascending oxaliplatin GI50. For most cell lines, there is a visible trend between 772 

the GI50 for cisplatin and carboplatin, reflecting the correlation between the two drugs 773 

seen by MFA. Despite this correlation, carboplatin shows a much smaller variance (0.22) 774 

compared to cisplatin (0.37; oxaliplatin variance is 0.34). 775 

Figure 3. The variation in gene composition of misclassification-based SVMs at different 776 

GI50 thresholds for A) cisplatin, B) carboplatin, and C) oxaliplatin. GI50 intervals are 777 

indicated on the left, with the number of cell lines with GI50 values within said intervals in 778 

brackets. Each box represents the density of genes appearing in optimized Gaussian 779 

SVM models in those functional categories, with darker grey indicating frequent genes in 780 

indicated GI50 threshold intervals, while lighter grey indicates less commonly selected 781 

genes. The number of thresholded models used to derive the density plot within each 782 

interval is equal (or greater, in the case of multiple equally performing models) to the 783 

number of cell lines within that GI50 interval. 784 

Supplementary Figure 1. The variation in gene composition of log-loss based SVMs at 785 

different GI50 thresholds for A) cisplatin, B) carboplatin, and C) oxaliplatin. Each box 786 

represents the density of genes appearing in optimized Gaussian log-loss SVM models 787 
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in those functional categories, with darker grey indicating frequent genes in indicated 788 

GI50 threshold intervals, while lighter grey indicates less commonly selected genes. 789 

Supplementary Figure 2. Classification accuracy of models on TCGA bladder cancer 790 

patients treated with cisplatin and/or carboplatin as the resistance threshold is varied. 791 

Recurrence and disease-free survival are used as a binary measure to assess 792 

performance. The x-axis indicates movement of the resistance threshold, with more cell 793 

lines labeled sensitive on the left and more labeled resistant on the right. Maximal AUC 794 

is indicated by the downward arrows. 795 

Supplementary Figure 3. Classification accuracy of SVM models for cisplatin, at a 796 

range of response thresholds, were assessed using gene expression data for cisplatin-797 

treated bladder cancer patients from Als et al. 29. Patients with a ≥ 5 year survival post-798 

treatment were labeled sensitive. Red arrows indicate the SVM models with the highest 799 

positive predictive value (PPV) in the accuracy of classification of patient outcome.  800 

Supplementary Figure 4. Hyperplane distance calculated by all thresholded SVMs for 801 

recurrent (<6 months) TCGA patients. Each diagram represents the predictions of all 802 

SVMs for all patients who had recurrence less than 6 months after treatment (N=10). 803 

Each point represents an SVM, where the x-axis represents the number of cell lines set 804 

to resistant (in order of lowest to highest GI50), and the y-axis represents the calculated 805 

hyperplane distance. A negative hyperplane distance would represent a prediction of 806 

resistance to cisplatin. Despite this, some patients show a strong preference towards 807 

predictions of sensitivity (i.e. TCGA-XF-A9SU). 808 

Supplementary Figure 5. Hyperplane distance calculated by all thresholded SVMs for 809 

sensitive TCGA patients. Each diagram represents the predictions of all SVMs for all 810 

patients who had recurrence > 4 years after treatment (top; N=3), or patients who 811 
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showed no recurrence after 6 years (bottom; N=6). Each point represents an SVM, 812 

where the x-axis represents the number of cell lines set to resistant (in order of lowest to 813 

highest GI50), and the y-axis represents the calculated hyperplane distance. A positive 814 

hyperplane distance would represent a prediction of sensitivity to cisplatin.  815 
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