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Abstract

Identifying the maximal element (max, argmax) in a set is a core compu-
tational element in inference, decision making, optimization, action selection,
consensus, and foraging. We show that running sequentially through a list
of N fluctuating items takes N log(N) time to accurately find the max, pro-
hibitively slow for large N . The power of computation in the brain is ascribed
to its parallelism, yet it is theoretically unclear whether, even on an elemental
task like the max operation, leaky and noisy neurons can perform a distributed
computation that cuts the required time by a factor of N , a benchmark for par-
allel computation. We show that conventional winner-take-all circuit models
fail to realize the parallelism benchmark and worse, in the presence of noise
altogether fail to produce a winner when N is large. If, however, neurons are
equipped with a second nonlinearity so that weakly active neurons cannot con-
tribute inhibition to the circuit, the network matches the accuracy of the serial
strategy but does so N times faster, partially self-adjusting integration time for
task difficulty and number of options and saturating the parallelism benchmark
without parameter fine-tuning. Finally, in the regime of few choices (small N),
the same circuit predicts Hick’s law of decision making; thus Hick’s law be-
havior is a symptom of efficient parallel computation. Our work shows that
distributed computation that saturates the parallelism benchmark is possible
in networks of noisy and finite-memory neurons.

Introduction

Finding the largest entry in a list of N numbers is a basic and ubiquitous computa-
tion. It is invoked in a wide range of tasks including inference, optimization, decision
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making, action selection, consensus, and foraging [18, 23, 9, 63]. In inference and
decoding, finding the best-supported alternative involves identifying the largest like-
lihood (max), then finding the model corresponding to that likelihood (argmax);
decision making, action selection and foraging involve determining and selecting the
most desirable alternative (option, move, or food source, respectively) according to
some metric, again requiring max, argmax operations.

Because max, argmax are basic building blocks in these myriad computations,
it is important to characterize how long these operations take. The results on the
time-complexity of max, argmax in an optimal serial procedure, as would be carried
out a computer, are simple: Finding the largest number or its index in an unsorted
list of N elements involves a sequential loop through the list, with one comparison
per adjacent pair; the computational complexity is linear in N . We will refer to
this as the serial scaling of max, argmax. If each element is observed along with
some noise, the computational complexity of solving the task with a desired level of
accuracy increases to N log(N), as we will show (assuming that the gap in the mean
value of the top input and the rest remains fixed as N varies).

It is hypothesized that a major source of efficiency of computation in neural sys-
tems is the potential for massive parallelism: a computation that would take a long
time to perform serially can be distributed across neurons in a circuit containing many
(N in the range of tens of thousands) neurons, for a speed-up of a factor N . However,
for the benefits of parallelism to hold, the brain must extract the final information it
requires from across the N neurons in a time that is independent of, or at most very
weakly dependent on, N . In this paper, we will refer to a factor-N speed-up relative
to the serial strategy as the parallelism benchmark.

There are two distinct regimes in which it is interesting to consider how (fast)
the brain computes max, argmax: The first is finding the most active neuron across
thousands of neurons or neuron pools. An example of this large-N max, argmax
computation in the brain is the dynamics that lead to the sparsification of Kenyon
cell activity within the fly mushroom bodies [63]. It is possible that many more
areas with strong recurrent inhibition and gap-junction coupled interneurons display
similar dynamics, including the vertebrate olfactory bulb [60, 52], hippocampal area
CA1 [1, 19, 62], and basal ganglia [50, 55]. The second is the problem of explicit
decision making across a small number of externally presented alternatives.

In the first case, our goal is to understand whether it is possible for neural circuits
to achieve the gains of parallelism, in the context of the elemental computations of
max, argmax. In the second case, our goal is to refine our understanding of how
circuits in the brain perform multi-choice decision making, by generating predictions
about decision time from dynamical and biologically plausible models of neural net-
works and comparing these with findings from psychophysics experiments. Across
both cases, we seek a more unified understanding of neural circuit computation of
max, argmax, whether the options being considered number in the thousands, as
in the microscopic states of neurons, or ≤ 10, as in explicit decision-making among
externally presented options in psychophysical tasks.

Not surprisingly, because of the importance of max, argmax operations, they
are well-studied in neuroscience in the guise of winner-take-all (WTA) neural circuit
models and phenomenological accumulate-to-bound (AB) models. A WTA network
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consists of N neurons, each driven by an external input, each amplifying its own
state, and all interacting competitively through global inhibition. Self-amplification
and lateral inhibition result, under the right conditions, in a final state in which only
the neuron with the largest integrated input (max) remains active, while the rest are
silenced [24, 11, 41] (i.e., here we do not consider K−winners-take-all with K > 1
[42]). If the activation level of the winner is moreover proportional to the size of
its input [73], the network also solves the argmax problem. The final state of the
network is the completed output of the computation.

By contrast, AB models [33, 68, 6, 46, 53] consist of individual integrators that sum
their inputs and increase their outputs in proportion. In contrast to WTA models,
AB models require a separate downstream readout that applies a threshold across the
integrators to determine which is largest. Thus they do not, by themselves, output
an answer to the argmax and max problems. More importantly – unlike WTA
models, which consist of a network of leaky, interacting neurons – AB models are
phenomenological, not neural. For these reasons, our focus is on WTA networks.

Despite the elemental nature of WTA computation in neural circuits, and the
extensive literature on the topic, the time-complexity of WTA – how long it takes a
system to compute argmax and max from a set of N inputs, as a function of N – is
not well-characterized for recurrent continuous-time neural systems with noisy inputs
(see Discussion for background and related work). On the one hand, one might expect
that the parallel architecture of neural networks could speed up the computation –
trading temporal complexity for space. On the other hand, the neural elements are
leaky – hardly ideal parallel processors or integrators – and their nonlinear thresholds
combined with noise could discard information relevant to computation. Thus, it
is unclear whether parallel processing with such elements can manage the tradeoff
efficiently, reducing temporal complexity by an amount in proportion to the increase
in spatial complexity and thus achieving the parallelism benchmark.

At the same time, there is an important body of human psychophysics literature
on the speed of multi-alternative decision making as a function of the number of
options [47, 27, 67], showing that at high accuracy, the duration of human decision-
making increases with the number of options as log(N) [27, 68, 69, 6, 46] – a result
known as Hick’s law. Theoretical works reproduce Hick’s law starting from different
frameworks [68, 69, 6, 46], but what is missing is an examination of whether a self-
terminating network model with continuous-time dynamics, leaky neurons and noisy
inputs, that reports on the results of its own computation, is consistent with Hick’s
law.

Here, we show that for constant inputs conventional neural WTA networks achieve
the parallelism benchmark for strong, but not weak inhibition. However, when the
inputs are noisy, conventional WTA networks with strong inhibition altogether fail
to exhibit WTA behavior for large N . Making inhibition weak and exquisitely fine-
tuning the weights rescues WTA behavior, but yields suboptimal parallelism gains,
together with an overly conservative accuracy tending toward zero error and thus a
failure to exhibit a speed-accuracy tradeoff.

We introduce a modified form of neural network WTA dynamics, nWTA dy-
namics, in which inhibition is strong, but only sufficiently active neurons contribute
inhibition to the circuit. These nWTA networks can trade time for space efficiently,
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fully saturating the parallelism benchmark by producing a factor-N speed-up relative
to the serial strategy for both constant and noisy inputs – all without any fine-tuning
of network parameters. The independence of decision time T from N means that
neural circuits may be able to infer the maximum from a large pool of individually
competing neurons in real-time, suggesting that it might indeed be possible for neu-
ral circuits to perform and exploit truly parallel computation. We show that these
networks are self-adjusting for task difficulty, integrating for longer when the inputs
are noisier or when the gap between the top option and the rest is smaller.

Finally, for psychophysics decision problems with a few (N < 10) external options,
we show that the networks exhibit a speed-accuracy tradeoff. In particular, we find
T ∼ log(N) at fixed accuracy, and hence a reward rate that decreases as log(N),
in accord with achieving the parallelism benchmark, and consistent with Hick’s law.
Hick’s law may thus be viewed as a behavioral signature of a neural computation
that saturates the gains of parallel computation. We generate predictions about
accuracy at fixed T and remark on the shapes of the responses of single neurons
during the evidence integration period. Interestingly, the networks can achieve near-
optimal performance across different N with fixed parameters, showing how decision
making circuits could solve multi-alternative decision tasks across varying numbers
of options, with little or no parameter re-tuning. The 2AFC task, standard in both
psychophysics and modeling efforts, is too simple or underconstrained to be fully
diagnostic of more general decision making dynamics in a circuit. Our work provides a
set of expectations to compare with neural recordings and behavior when generalizing
to multi-AFC tasks.

Results

Consider a network of N neurons (or neuron pools), whose states are described by
their outgoing synaptic activations xi(t) or firing rates ri(t), i ∈ {1, . . . , N}. The
neurons receive inputs b1 = b2 + ∆ > b2 ≥ b3 . . . ≥ bN respectively, and interact
through self-excitation (strength α) and mutual inhibition (strength β), Figure 1a:

τ
dxi
dt

+ xi =

bi + αxi − β
∑
j(j 6=i)

xj


+

≡ ri . (1)

Here, [·]+ = max[0, ·] is a rectification nonlinearity. For appropriate values of self-
excitation, inhibition and inputs, the network exhibits winner-take-all dynamics with
a unique winner ([73] and S1.1). These dynamics can be understood as movement
downhill on an energy landscape, which drives the network to one of N possible stable
states, each corresponding to solo activation of a different neuron (Figure S1a).

Our goal is to understand how WTA dynamics behave as a function of network
size N , and in particular, to examine how fast the network can pool information
across neurons to arrive at a single winner. We call this duration the decision time
TWTA of the network.

In all that follows, we will assume that the gap ∆ between the largest and next-
largest input is held fixed as N varies. In the quasi-2D input case, the remaining
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inputs are equal to each other (b = (b + ∆, b, . . . , b)> and b,∆ > 0); in the uniform
input case, the remaining inputs are uniformly distributed (b1 = b + ∆, b2 = b, and
bi = U[0, b] for i ≥ 3). We will begin by briefly considering the case in which inputs
are constant, then move to the more natural setting where inputs fluctuate about
their means over time.

(In the SI, we consider the case where the gap shrinks as N grows, as 1/N (all
inputs are drawn uniformly, bi ∼ U[0, 1]; see Figure S1g,h and S1.4 for deterministic
WTA, and Figure S1i–q and S1.8 for noisy WTA).)

Noise-free max

The decision time TWTA is the time taken before the firing rate ri(t) of the last losing
competitor drops to zero (Figure 1b), or in other words, when the activations x
of all neurons but the winner are decaying exponentially to zero while the winner
approaches its asymptotic state x∞1 = b1/(1− α) (Figure 1c and S1.2).

Weak inhibition: Linear growth in TWTA with network size The total inhi-
bition in Equation (1) grows with the number of neurons. A reasonable possibility
is thus to scale the inhibitory interaction strengths as β = β0/N , where β0 is some
constant independent of N . We call this “weak” inhibition.

The strength of self-excitation (α) must then be set to maintain stability and to
assure a WTA state. Setting α < 1 guarantees that the WTA activation states remain
bounded; further, if 1 − β < α < 1, there will be a unique winner ([73], S1.1). The
two-sided constraint 1− β0/N < α < 1 is a fine-tuning condition: excitation must be
within 1/N of 1, with the allowed range shrinking to zero width as N grows.

For quasi-2D inputs, all N − 1 neurons with input b exhibit identical dynamics;
hence the name of this input condition. The network converges to the correct solution,
where the neuron with input b + ∆ is the winner. The equations can be solved
analytically (S1.2):

TWTA
N�1
= 2N log

[
1 +

b

2∆

]
. (2)

Though the problem is effectively two-dimensional, TWTA grows linearly with N ,
Figure 1d, the same scaling as the serial strategy. Interestingly, in contrast to the
serial strategy, TWTA depends on the gap ∆, growing logarithmically as ∆ shrinks,
Figure 1f and Equation (2).

If inputs are drawn uniformly after holding the top gap fixed, the results remain
unchanged in their N -scaling, Figure 1d. In fact, the scaling of TWTA is practically
insensitive to the statistics of the inputs beyond the top gap (S1.3, Figure S1e,f).

The decision time TWTA grows linearly with N because the initial total inhibition
at each neuron is O(1) and roughly cancelled by the excitatory drive. The eventual
winner and losers are thus somewhat isolated from each other, individually integrating
their input drives with the slow network time-constant ∼ τ/(1− (α+β)) ∼ Nτ , until
the losers and eventual winner finally separate enough that the nonlinear portion
of WTA dynamics pushes them to their steady-state activations in a time given by
Equation (2) (see S1.2).
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Figure 1: WTA with non-noisy inputs: weak and strong inhibition. a)
Network schematic: Each neuron (pool), ordered by the size of its external inputs
(with gap ∆ ≡ b1 − b2), is inhibited by the others and excited by itself. Inset:
Mathematically equivalent network with a global inhibitory neuron, requiring only N
synapses compared to the N2 synapses for mutual inhibition as in the main schematic.
b-c) Neural firing rates and activation (coloring as in a)): The competitive phase
(gray area) is over when the firing rate of the second-most-active neuron drops to
zero (arrow). The duration of the competitive phase is the decision time TWTA.
d) Decision time TWTA versus N for weak inhibition (quasi-2D and uniform inputs:
dashed dark and light gray curves), with analytical prediction of Equation (3) (black
line). Decision time for the serial strategy (solid green) is also linear in N . The time
axis is normalized by 10000τ , where τ refers (here and in subsequent figures) to the
single-neuron time-constant for WTA curves and to the duration of a single time-step
taken to read an entry in a list for the serial curves. [b = 0.9; ∆ = 0.1; α = 0.5;
β = 0.6] e) TWTA versus N for strong inhibition (same color codes as above). The
parallelism benchmark, given by the serial time TS divided by N is shown in purple.
Parameters as in d). f) TWTA grows logarithmically as the gap ∆ shrinks (upper/lower
set of curves: weak/strong inhibition, same color codes as in d)).

In summary, the existence of WTA in a weak-inhibition circuit with constant
inputs requires exquisite fine-tuning of excitation. The decision time TWTA increases
linearly with the number N of inputs and neurons, independent of the statistics of
the input beyond the top gap (and cannot be adjusted for a speed-accuracy tradeoff),
exhibiting no gains in speed from parallelism.

Strong inhibition: TWTA can be independent of N An alternate choice is to
hold β, the strength of inhibition contributed by each neuron, fixed as N is varied.
Total inhibition then grows with N . A unique WTA solution exists for any choice
of α in the interval (1 − β, 1]. Unlike in the weak inhibition case, α need not be
fine-tuned because the interval of permissible values does not shrink with N .
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For quasi-2D inputs, we analytically obtain:

TWTA
N�1∼ log

[
b

∆

]
. (3)

As for the case with weak inhibition, TWTA depends on ∆. Notably, however, TWTA is
asymptotically independent of N , Figure 1e (simulations dashed dark gray, Equation
(3) solid black), meeting the parallelism benchmark of a factor-N speed-up compared
to the serial strategy.

To address whether the N -independent decision time holds beyond the quasi-
2D case, we test the fully N -dimensional case of uniform inputs. Even then TWTA

is determined essentially by ∆ (see S1.3, Figure S1d for details), and most of all
asymptotically independent of N (Figure 1e, simulations in light gray).

In sum, WTA networks of leaky neurons with strong inhibition can fully and
efficiently trade space for time, permitting a factor-N speed-up in computing max,
argmax relative to serial strategies when the input is non-noisy.

Noisy max

We turn now to the more realistic scenario central to the rest of this work: solving
a noisy version of the max, argmax problems. Suppose the inputs to the decision
circuit are noisy, fluctuating over time about their mean values (b̃i(t) = bi + ηi(t),
where bi is the fixed mean and ηi(t) are zero-mean fluctuations, see Methods). This
noise may be attributed to noise in the inputs or to stochastic activity in neurons of the
decision circuit, or both. (The results on the existence of WTA states and convergence
time are agnostic to the source of noise. For direct comparisons of accuracy with non-
neural benchmarks, however, the noise should be interpreted as being in the inputs.
A neural decision circuit with additional intrinsic noise would also follow the same
results, but at a correspondingly higher total noise variance.) The goal is to identify
the input with the largest true mean. Obtaining a correct answer involves collecting
information for long enough to gain a good estimate of the mean values of each input,
and then performing a max operation on the estimated means.

Any strategy with a finite decision time will have a non-zero error probability on
noisy max and we expect a speed-accuracy tradeoff where efficient solutions involve
setting an acceptable error probability then finding the fastest way to make a decision,
or setting the observation time T and finding a way to make a maximally accurate
decision within T . Clearly, the appropriate averaging time and decision error will
depend on the ambiguity or separation of the inputs from each other and on the
amplitude of noise. As we noted earlier — even in the deterministic setting where
gap size was computationally irrelevant — the neural WTA dynamics exhibited an
inherent dependence on the gap size, or more precisely on the signal-to-noise ratio
∆/b, suggesting that neural dynamics may be naturally suited to solving the noisy
max problem.

We next characterize the time-complexity of noisy max, argmax in a serial frame-
work and from it characterize the parallelism benchmark, then turn to neural WTA
solutions to the same problem.
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Serial strategy Consider the set of N − 1 summed differences δTi =
∑T

t=1(b̃1(t)−
b̃i(t)) between the fluctuating highest-mean input, and each of the others. The prob-
ability that the wrong element is selected by argmax after averaging for time T is
bounded by the sum of the probabilities that any of these individual δi’s is greater
than zero. The quantities δi concentrate around the true gaps (∆i = b1−bi), with the
probability of error-inducing fluctuations about the mean decaying as e−∆2

i T across
a wide set of possible input distributions. The waiting time T ∼ log(N) depresses
individual error probabilities so they scale as 1/N , keeping the total error probability
constant as N is varied (see Figure 2f, 3f for traces and S3.1 for a more detailed
analysis). Thus, the time for a serial strategy to achieve a constant decision accuracy
across N noisy inputs with top gap ∆ is TS ∼ N log(N)/∆2.

We can instead consider how accuracy varies with N if the averaging time T is held
fixed. The accuracy will decline as N increases, because there are more non-top inputs
that could transiently appear to be larger than the top input. The error probability
can be computed using results on the distributions of extreme order statistics (S3.2).
For Gaussian noise and a fixed top gap, the error probability for fixed T is a sigmoidal
function of log(N), with a power-law dependence on N for large N (S3.2).

WTA networks A network that converges to a unique WTA state with non-noisy
inputs and non-noisy internal dynamics need not do the same when driven by noise.
Noisy inputs or internal noise kick the state around and the system generally cannot
remain at a single point. Nevertheless, there can still be a sense in which the noise-
driven network state flows toward and remains in the neighborhood of a fixed point in
the corresponding deterministic system (Figure S1a,b; S1.5, Figure S2a–d). We will
refer to such behavior in the noise-driven WTA networks as successful WTA dynamics,
with the neighborhood defined in terms of one neuron reaching a criterion distance
from the deterministic WTA high-activity attractor (set by the dynamical system,
not an external threshold) while the rest are strongly suppressed (Methods). We
then examine the existence and decision time of WTA dynamics in neural networks
with strong and weak inhibition.

Strong inhibition: breakdown of WTA dynamics The parallelism benchmark
was previously attained (in the non-noisy case) with strong inhibition, thus we begin
there. For a given N , a network with strong inhibition can evolve to a WTA state
(according to our criterion), if the noise amplitude is sufficiently small relative to the
top gap, Figure 2a. However, as N grows (while holding the gap and noise amplitude
fixed; also see S1.8 and Figure S1i–q for a gap that shrinks as ∆ ∼ 1/N), the network
entirely fails to reach a WTA state, Figure 2b. Equivalently, if N and the gap are
fixed, WTA breaks down as the noise amplitude is increased, Figure 2c. This failure
is to be distinguished from an error: The network does not select the wrong winner,
it simply fails to arrive at any winner.

We can understand the failure as follows. Unbiased (zero-mean) noise in the in-
puts, when thresholded, produces a biasing effect: Neurons receiving below-zero mean
input will nevertheless exhibit non-zero mean activity because of input fluctuations
(Figure 2a). Thus, even neurons with input smaller than their deterministic thresh-
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Figure 2: WTA with noisy inputs: strong and weak inhibition a) Firing rates
(top) and activations (bottom) of neurons with noisy inputs. Dashed gray line: The
convergence criterion for the top neuron to be declared a winner (defined in text);
black line: activation of this neuron if it were the winner when the network was run
without noise. [bi = {1, 0.9, 0.8, 0.7}; ση = 0.6; α = 0.5; β = 0.6] (b-c) Results from
network with strong inhibition. b) Activity dynamics of the most-active neuron for
networks of size N = 10, 20, 30 (light to dark gray), respectively. [α = 0.6; β = 1;
∆ = 0.1; ση = 0.35] c) Critical noise amplitude versus N : WTA dynamics exists below
a given curve and fails above it (dashed: numerical simulation; solid: analytical).
Darker curves correspond to a widening top gap (left; ∆ = {0.01, 0.06, . . . , 0.26};
α = 0.6) or more self-excitation (right; α = {0.1, 0.6, 0.9}; ∆ = 0.1). [β = 1 in all
curves.] (d-g) Results from network with weak inhibition. d) Same as b). e) Left:
Same as c). Middle: Variation of critical noise amplitude with the top gap ∆ for
quasi-2D (black) and uniform (gray) input drives. Dots: simulation; thick lines: best
fit (dark gray: f(∆) ∼

√
∆, light gray: f(∆) ∼ ∆ log(∆); thin black line: theoretical

prediction. Right: Average accuracy as function of N . f) Decision time of the network
(gray; colors as in Figure 1d-f), the serial strategy (dark green: quasi-2D; light green:
uniform, black line: theory), and the parallelism benchmark (TS/N ; purple shades).
Inset: the same curve on a semi-log scale, to make apparent the different scalings of
the benchmark (log(N)) and the faster growth of TWTA. [τη = 0.005τ ; b = 1−∆]

olds continue to contribute an inhibition term with strength of O(1) to the circuit.
The total inhibition in the circuit remains of order N over time, and increases with
noise amplitude, preventing any neuron from breaking away from the rest to become
a winner for sufficiently large N . This problem holds for both the quasi-2D and
uniform input cases.

The breakdown of the WTA-regime coincides analytically, for the quasi-2D case,
with the onset of stability of a non-WTA branch of self-consistent solutions in the
coupled dynamics of the noisy version of Equation (1) (see Methods, Equation (6)
and S1.5).

The resulting predictions for critical N and noise amplitude at WTA breakdown
closely match numerical simulation results (Figure S2a–c) and can be used to de-
termine the feasibility of WTA computation in large networks in the presence of
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noise. Qualitatively, the uniform input case exhibits similar breakdowns, but at
higher noise levels, because fewer neurons contribute noise-fluctuations above the
activation threshold (not shown).

The parameter regime for WTA states is shown in Figure 2c: WTA solutions exist
below a given curve, and break down above it (dashed lines: numerical simulation;
solid lines: analytical results). Increasing self-excitation or the gap expands the WTA
regime (Figure 2c, left and right). Nevertheless, at any self-excitation strength and
gap size, the WTA regime shrinks rapidly as N grows. In the limit N → ∞ our
numerical results suggest that WTA will fail at any finite noise level.

In summary, strong inhibition networks, which met the parallelism benchmark
when the inputs were deterministic, are not capable of finding a winner in large
networks with even slightly noisy inputs.

Weak inhibition: accurate but slow WTA after extreme fine-tuning The
weak inhibition regime (β ∼ 1/N) might permit WTA behavior in the noisy case,
because the excess inhibition that prevented strongly inhibiting large networks from
reaching a WTA state is greatly reduced. As before, we set the parameters to be:
1− β < α < 1 and β = β0/N , again requiring exceedingly fine tuning.

The weak inhibition network is capable of WTA-like dynamics for sufficiently small
noise and N (Figure 2d), and as in the strong inhibition network, the breakdown of
the WTA regime with quasi-2D inputs can be predicted analytically (S1.5, Figure
S2b). The key difference is that the WTA regime persists for finite noise levels even
for N → ∞, Figure 2e (left; simulations: dashed, analytics: solid lines). The noise
level up to which the network exhibits WTA dynamics can be substantially larger
than the gap (Figure 2e, left, middle) and in fact the network exhibits WTA behavior
even for ∆ = 0, (lightest line in Figure 2e, left), selecting a random neuron as the
winner.

Weakly inhibiting networks continue to exhibit WTA dynamics for large N be-
cause the total amount of inhibition at each neuron remains roughly independent
of N (β ∼ 1/N cancels ∼ N -fold inhibitory contribution), while simultaneously, α
increases towards 1 from fine-tuning as N grows. As a result, inhibition does not
swamp self-excitation even in asymptotically large networks, and a neuron can break
free to win the competition. As before, the WTA regime (Figure 2e, middle) is larger
and TWTA smaller (Figure 2f) in the uniform input case compared to the quasi-2D
case. In general, the quasi-2D case serves as an upper bound for TWTA and as a lower
bound on the critical noise amplitude (σ∗η) in noisy WTA; thus, to be conservative,
we will only show results for quasi-2D in what follows.

WTA accuracy and speed with weak inhibition The choice of winner is ran-
dom when ∆ = 0. Even for ∆ > 0 identifying the correct max, argmax element
becomes harder with increasing N as more elements are competing, and noise fluctu-
ations might permit any of these competitors to win, if the network does not spend
enough time averaging its inputs. The question is where the network falls on the
tradeoff between accuracy and speed, and whether the tradeoff is controllable and
efficient.
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First, note that wherever the weak inhibition WTA network falls in the tradeoff,
it is not controllable because it has no free parameters: β scales as 1/N by definition,
and α is then automatically determined through the fine-tuning condition. As N is
varied, the network therefore exhibits an inherent (non-adjustable) scaling of accuracy
and convergence time, which we characterize next.

Interestingly, the network exhibits perfect asymptotic accuracy in its WTA com-
putations (the network size above which perfect accuracy is obtained depends on
the exact choice of ∆ and ση; for parameters in Figure 2e (right), accuracy ∼ 1 for
N & 10), which suggests that the network must be averaging over longer times than
necessary, favoring accuracy over speed at all N .

Conditioned on the existence of WTA dynamics, the decision time with fluctuating
inputs (Figure 2f) exhibits the same linear scaling as when the inputs are constant
(Figure 1d). Convergence is thus not qualitatively slowed by the noisy dynamics (see
Figure S1h,k for similar results in networks with a shrinking gap).

To understand why averaging over a time ∼ N is sufficient to obtain essentially
perfect accuracy, note that the serial strategy for fixed accuracy has time-complexity
N log(N) and the parallelism benchmark is ∼ log(N). The weak inhibition network
therefore takes N/ log(N) times longer than strictly required for a fixed, imperfect
accuracy. This excess time produces a computation with near-perfect accuracy.

Mechanistically, the increase in the network’s decision time results from the growth
of the time-constant of the network’s WTA mode: As N increases, the positive self-
feedback term, α + β, approaches 1 from above as 1 + 1/N(1 − K) (where β =
1/N, α = 1 − K/N for some K < 1) and the time-constant of the WTA mode,
τ/(α + β − 1) ∼ τN(1 −K), therefore grows linearly with N , strongly filtering the
noisy input fluctuations.

In sum, conventional WTA networks, described by Equation (1), can only select a
winner from among a large number of noisy options when inhibition is weak and exci-
tation is extremely fine-tuned. In that case, they exhibit a decision time of TWTA ∼ N
for a fixed top gap ∆. This represents a modest speed-up of a factor log(N) relative
to the serial strategy for noisy inputs, but does not come close to the factor of N
speed-up desired for an efficient parallel strategy.

This result is pessimistic, and raises the question of whether networks of forgetful
neurons can ever implement parallel computation that is efficient, fully trading serial
time for space. In the next section, we find an affirmative answer to the question,
under a modified model for winner-take-all neural computation.

The nWTA network: fast, robust WTA with noisy inputs and
an inhibitory threshold

We motivate the construction of a new model for neural WTA from the successes and
failings of the existing models. As we have seen, large networks with weak inhibition
and fine-tuning can perform WTA computation on noisy inputs and are accurate,
but too slow, because inhibition is not strong enough to enforce a rapid separation
between winner and losers. Networks with strong inhibition achieve WTA with a full
parallelism speed-up for constant inputs, but they entirely fail to perform (accurate
or inaccurate) noisy WTA for large N , because most of the nearly-losing neurons
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continue to be weakly noise-driven and contribute an amount of inhibition to the
circuit that prevents any neuron from becoming a breakaway winner. (In Figure S2e
we show that a simple upshift of the activation threshold from 0 to θact > 0 for all
neurons does not fix the failure of WTA dynamics for large N). In addition, the
residual noise-driven inhibition also decreases the average asymptotic activity of the
near-winner, thus the true value of max will be underestimated.

Ideally, a WTA network would express strong competitive inhibition early and
weak inhibition later, so that the network can initially compare the different inputs
while allowing the top neuron to later take off unimpeded. Thus, we consider a model
where neurons contribute strong inhibition, but an individual neuron can only do so,
if its activation level exceeds a threshold θ. Effectively, the linear sum over activations
in the inhibitory term of Equation (1) is replaced by a set of individually thresholded
terms (see Discussion for biological candidates for this inhibition):

τ
dxi
dt

+ xi =

[
bi + ηi + αxi − β

∑
j 6=i

[xj − θ]+

]
+

. (4)

The inhibitory threshold θ is set in the range 0 < θ < b1/(1−α) (no fine tuning), and
the strength of self-excitation is in the range 1 − β < α < 1 (untuned). In this new
WTA network construction, the expected asymptotic state of the winning neuron, if
the ith neuron wins, is bi/(1− α): the proportionality to the true max is recovered.

In this nonlinear-inhibition WTA (nWTA) network, every neuron contributes an
inhibition of strength ∼ 1 when it is highly active (above threshold θ), ensuring robust
competition. However, the threshold on inhibitory contributions causes neurons with
decreasing activations to effectively drop out of the circuit when their activity level
is sufficiently low. The diminishing inhibition in the circuit over time permits the
leading neuron to break away and win, Figure 3a. The losing neurons continue to
receive inhibitory drive from the remaining highly active neuron(s), which suppresses
their activations. This network exhibits WTA states well into the noisy regime,
and for asymptotically many neurons, Figure 3b, without fine-tuning. Interestingly,
the maximal number of neurons that actively provide inhibition at a given time is
small and depends only very weakly on N , which partly explains why the inhibitory
threshold need not be tuned when N is varied (see S1.5 and Figure S2f,g for details).

Speed and accuracy of nWTA dynamics The second nonlinearity in the nWTA
dynamics makes it difficult to analytically evaluate the model’s behavior. Neverthe-
less, we can obtain a good estimate of its behavior and of quantities like the decision
time and critical noise amplitude from simulation.

When the nWTA network is presented with constant inputs, it again meets the
parallelism benchmark, converging in a factor of N less time than the serial strategy,
similar to conventional WTA networks with strong inhibition. Thus, the second
nonlinearity does not degrade performance on the deterministic problem (not shown).

The network exhibits a broad tradeoff between speed and accuracy, Figure 3d (top
curves: lower noise, bottom curves: higher noise; see also S1.6, Figure S3a–g), in con-
trast with the weakly inhibiting conventional WTA circuit. Starting at high accuracy
and holding noise amplitude fixed, the accuracy of computation can be decreased, and
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speed increased, by increasing α (for fixed β; darker gray circles along a curve corre-
spond to increasing α). Alternatively, it is possible to move along the speed-accuracy
tradeoff by varying the strength of β while holding α fixed (Figure S3g,h): speed
increases and accuracy decreases with increasing inhibition. The overall integration
time of the network is generally set by the combination of α and β, with high accu-
racy and low speed achieved as α+ β approaches 1. When α+ β are increased away
from 1, speed increases and accuracy decreases. Conveniently therefore, a top-down
neuromodulatory or synaptic drive can control where the network lies on the speed-
accuracy curves, with many mechanistic knobs for control, including synaptic gain
control of all (excitatory and inhibitory) synapses together (resulting in covariation
of α, β), neural gain control of principal cells (also resulting in effective covariation of
α, β), or a threshold control of inhibitory cells (modulation of inhibition).

The nWTA network exhibits an interesting non-monotonic dependence of accu-
racy on noise level: except for very small N , the accuracy minimum occurs not at
the highest but intermediate noise-levels, Figure 3c (horizontal slices, middle panel;
see also S3j). This improvement in performance at some higher noise-level is a form
of stochastic resonance [45]. The left-half of the stochastic resonance effect, that ac-
curacy declines as noise increases, is easily understood. The improvement in perfor-
mance as noise continues to increase, however, runs counter to intuition and requires
explanation. We find that large noise effectively extends the network’s integration
window, thus allowing it more time to average the noisy inputs and arrive at a correct
decision (S1.7, Figure S3i–n; also see below, Multi-alternative forced-choice decision
making). Consequently, the outcome of the computation more frequently reflects the
largest mean input. By contrast, conventional WTA networks, which converge only
when inhibition is weak, integrate for a sub-optimally long time and produce such
accurate results across noise levels that stochastic resonance is either not visible or
highly marginal (data not shown).

(There is a different non-monotonic effect in the speed-accuracy curve at the
lowest accuracies: further increasing self-excitation produces decreasing accuracy, as
discussed above, but also decreasing speed. This happens because the asymptotic
firing rate of the winning neuron, which grows as 1/(1−α), diverges as α approaches
1, and the network thus takes increasingly long to converge to this diverging steady-
state value. In short, at low accuracy with α approaching 1, the network rapidly
makes an “effective” low-accuracy decision but then actually converges to its steady-
state value increasingly slowly.)

For a fixed amount of noise per input or neuron, the decision time to reach a fixed
accuracy scales as TWTA ∼ log(N) (Figure 3f; also see Figure S3e,h), compared to the
serial time-complexity of TS ∼ N log(N). The nWTA network therefore achieves a
fully efficient tradeoff of space for time, matching the parallelism benchmark of TS/N
at fixed accuracy, for noisy inputs.

Not only does the scaling of decision time with N in the nWTA network match
the functional form of the parallelism benchmark, the prefactor is nearly optimal too:
it takes only a factor of 2-3 more time steps (in units of the biophysical time-constant
of single neurons) to converge than the parallelism benchmark (Figure 3f, black vs
purple curves).

On the other hand, if we evaluate accuracy at fixed TWTA in Figure 3d (here at
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TWTA = 28τ), and compare performance with the parallelism benchmark at some
fixed TS/N = kTWTA (here, k = 0.34), we see that accuracy at large N is almost
identical to that of the parallelism benchmark, again given just a two to three-fold
absolute increase in decision time (Figure 3e).

ac
tiv

at
io

n

0

2

1

3

a

time (      )t/τ0 70 time (      )t/τ0 70

�r
in

g 
ra

te

0

2

4

b

cr
it 

 n
oi

se
  (

   
   

) 2

1

WTA

no WTA

WTA

no WTA

0

2

1

0

100 101 102 103

N

de
ci

si
on

 ti
m

e

60

0

40

20

f

ac
cu

ra
cy

 (�
xe

d 
T)

0

1
e

101 102 103

N
104

sp
ee

d 
  (

   
   

   
   

   
   

  ) 8

0

sp
ee

d 
  (

   
   

   
   

   
   

  ) 8

0

c

accuracy0 1

d

lo
g 2(N

) 
1

8

15
.03 .27.19.11 .35

TS/N ~ log(N)

TWTA ~ log(N)
N

accuracy timefraction WTA
0 1 0 1 0 135

N

101 102 103

N
104

Figure 3: WTA dynamics for networks with strong nonlinear inhibition
is robust to finite noise a) Firing rates (upper panels) and activations (lower
panels) in noisy WTA networks with strong inhibition. Left column: network with
additional nonlinear threshold on the ability of neurons to contribute inhibition to
the network (threshold depicted as black dashed line) Right column: conventional
WTA network without inhibitory threshold can fail to exhibit WTA dynamics (gray
dashed line as in Figure 2a). [θ = 0.2; α = 0.5; β = 0.6] b) Critical noise ampli-
tude σ∗η as a function of N for varying α = {0.5, 0.7, 0.9, 1.1, 1.5}, ∆ = 0.1 (left)
and ∆ = {0, 0.0125, 0.05, 0.075, 0.1, 0.15}, α = 0.6 (right). Below each curve, WTA
behavior exists, while above it does not. c) Heatmaps showing fraction trials with
a WTA solution (single winner; left), accuracy of the WTA solution (middle) and
convergence time TWTA/τ (right) as function of network size N and noise amplitude
ση. Dashed lines denote ση = 0.1 (dark blue) and ση = 0.17 (light blue), which
are the noise amplitudes used in the upper or lower panels of (d), respectively. d)
Speed-accuracy curves for ση = 0.1 (upper) and ση = 0.17 (lower panel) for varying
N = {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 7500, 10000} (light to dark red) and
α = {0.42, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9} (light to dark gray circles). Dashed lines indi-
cate α = 0.5 used in (c). Only trials that produced a WTA solution were included.
e) N -scaling of accuracy at fixed decision time. Gray dashed line: WTA dynamics;
purple: parallelism benchmark. f) N -scaling of decision time at fixed accuracy for
WTA (dashed gray curves) and the parallelism benchmark (purple) for accuracy 0.6
(dash-dotted) and 0.8 (dashed). Solid lines are logarithmic fits [α = 0.5; β = 0.6;
∆ = 0.05; τη = 0.05τ ; θ = 0.2; ση = 0.2; see S1.7, Figure S3a–h for similar results
with different parameters and noise levels].

In summary, the nWTA network can perform the max, argmax operations on
noisy inputs with comparable accuracy as the optimal serial strategy, but with a
full factor-N parallelism speed-up, even though the constituent neurons are leaky. It
does so with network-level integration and competition, but does not require fine-
tuning of network parameters. Finally, the suggested form of additional nonlinearity
is likely not unique: it might be possible to replace the threshold-nonlinearity in
the contribution of individual neurons to the inhibitory drive with other forms of
nonlinearity in either the excitatory or inhibitory units (see Discussion).
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Multi-alternative forced-choice decision making

Thus far, we have focused on the efficiency of neural WTA in computing max, argmax
when the number of alternatives or competitors is large, equating each competitor
with an individual neuron or small pool of neurons during a highly distributed inter-
nal computation. The brain also makes explicit judgements between small numbers
(N ∈ {1, · · · , 10}) of externally presented alternative objects or actions in the world,
as widely studied under the rubric of multi-alternative forced-choice (multi-AFC)
tasks [23] in human and non-human psychophysics.

An influential result in multi-AFC decision making, used as far afield as com-
mercial marketing and design to improve the presentation of choices [36], is Hick’s
law [27, 35]: the time to reach an accurate decision increases with the number of
alternatives N , as log(N + 1).

This observed increase in decision time with alternatives is reproduced by accumulate-
to-bound (AB) models, in which the evidence for each option is integrated by either
perfect or leaky accumulators, and an N -dependent threshold (specifically, one that
increases as log(N) to maintain a fixed decision-making accuracy across N) is then
applied to the integrated evidence [68, 46].

We investigate the behavior of WTA networks that arrive at a decision on multi-
AFC tasks through self-terminating dynamics. Consider the case of N − 1 noisy
alternatives with true input means b and a final noisy alternative with input mean
b + ∆ (quasi-2D input), consistent with the setup of most multi-AFC psychophysics
studies [10, 40]. As we will see, Hick’s law is a natural byproduct of efficient parallel
computation through WTA dynamics in a neural circuit.

For a small number of alternatives N , it is not meaningful to define a “scaling”
of inhibition strength with N . Instead, we consider the speed and accuracy of WTA
computation across strengths of self-excitation and inhibition in the interval [0, 1] for
both α and β (β could be chosen, in principle, to be arbitrarily large, but the out-
comes of interest can be found with β ≤ 1: increasing β further decreases integration
time, thus increasing speed while decreasing accuracy to a degree not consistent with
behavior; these trends asymptote by about β ≈ 3, not shown), Figure 4a. For multi-
AFC tasks, with their relatively small numbers of alternatives, the performance of
networks with conventional WTA and nWTA networks is qualitatively similar. For
simplicity, we describe the nWTA network results here; comparisons between the
conventional and nWTA results are in S2, Figure S4a–d.

As before, the condition for WTA dynamics and the emergence of a winner is
that α + β > 1. Within this constraint, decision accuracy is maximized as α + β
approaches 1 (diagonal band, Figure 4a panel 1), consistent with the increase in
the network integration time (τinteg = τ/(1 − (α + β)); see S1.1) for the evidence-
accumulating differential modes: The longer the network can integrate information,
the more accurate its eventual decision. (The limit α = 1 and β = 0 corresponds to a
non-leaky, non-competitive integration process and, thus, is equivalent to a non-leaky
AB model, if supplied with an explicit bound. The non-leaky AB model, in turn, is
equivalent to the serial strategy from previous sections, but operated in parallel; thus
its performance defines the parallelism benchmark.)

Decision speed, on the other hand — computed by averaging all trials that pro-
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duced a winner (correct or wrong) — is maximized when inhibition is large but
self-excitation is intermediate in size, Figure 4a (panel 2). The network exhibits
speed-accuracy tradeoffs, controllable by top-down influences that simply modulate
the strengths of inhibition, excitation, or both, Figure 4a (panels 1,2).

Reward rate, the product of accuracy and an offset decision speed (offset decision
speed is the inverse of the sum of decision time with a constant offset T0, reflecting
a baseline of internally or externally imposed response latency that does not depend
on the decision-making computation), is a key quantity for psychophysics experi-
ments since subjects are taught the task using reward contingencies. Because speed
varies more steeply with parameters than does accuracy at zero latency (T0 = 0 ms),
the maximum in the speed landscape determines the maximum reward rate (Fig-
ure 4a, panel 3), which is therefore achieved for strong inhibition and intermediate
self-excitation. With no latency, responding fast and less accurately yields a higher
reward rate than waiting longer to be more accurate.

With the addition of a non-zero latency, the reward rate becomes less sensitive
to time or speed and relatively more sensitive to accuracy; hence, the reward rate
maximum occurs at higher accuracy. For even a modest T0 = 300 ms latency (chosen
from a range of latency estimates from psychophysics results [61, 7]), near-perfect
accuracy (closer to the α+ β = 1 diagonal, Figure 4b panel 4) is required to achieve
the maximum in reward rate. Thus, at modest-to-high response latencies the maximal
reward rate is achieved by waiting longer to be more accurate. Qualitatively similar
results hold for different numbers of alternatives N (see S2, Figure S4e,f for how α, β
values for maximal reward rate depend on N and T0).

The WTA condition α + β > 1 corresponds to unstable network dynamics. As
a result, the network is generically impulsive, more strongly weighting early inputs
relative to late ones [29, 71, 32], as seen in the decision-triggered average input curves
of Figure 4b (top row; blue curves). However, the network can achieve uniform
integration over longer decision time windows when tuned, with α+ β set close to 1,
Figure 4b (top row, gray curves). To obtain a uniform weighting of evidence over the
relatively short 1-2 second integration time-windows tested in existing experiments
[8, 31, 59], the tuning of α + β to 1 need not be finer than ∼ 2%, however, even if
the biophysical time-constant of single neurons or synapses is as short as 20− 50 ms.
(See the energy landscape of the network dynamics in Figure S1a,b, which shows that
the landscape is quite flat early on, consistent with the network evenly integrating its
inputs rather than being pulled strongly by the WTA attractor states, for α + β =
1.05). The circuit tuning required to arrive at this or a more finely specified parameter
setting is likely achieved through plasticity during task training. AB models, by
contrast, do not naturally display impulsive dynamics, instead requiring the addition
of another dynamical process, such as an “urgency signal” or collapsing decision
thresholds over time during the trial, to reproduce impulsive behavior [12, 10].

Neural responses The outputs of neurons during the integration period vary
enough from trial to trial for fixed parameter settings and across parameter set-
tings to look variously more step-like or ramp-like (compare curves within and across
Figure 4b-d). Different choices of α, β modulate the neural response curves, shifting
them from more ramp-like to more step-like even as the network integration time
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(τ/(1− (α+ β)) and mean inputs are held fixed, Figure 4c. Thus, the sharp distinc-
tions drawn by statistical models that delineate and interpret step- versus ramp-like
response curves as supporting binary or graded evidence accumulation [34] are not
meaningful in dynamical neural models of noisy choice behavior, at least on the level
of individual neural responses during the decision period [70].

When parameters and numbers of options are held fixed, correct WTA trials
terminate faster than wrong ones (Figure 3g), as observed in other attractor dynamics-
based decision models [72, 21] and consistent with the psychophysics literature [56, 40]
(and a drawback of AB models because these do not produce the faster-more-accurate
result [64, 53, 44] without additional modifications [54]).

In experiments, the decision threshold or pre-decision activity level of the winning
choice neurons increases under pressure to respond rapidly [26]. This result has been
noted as counterintuitive from the perspective of AB models that increase speed by
lowering the bound [26]. In the WTA networks, the asymptotic activity of the win-
ning neuron is proportional to 1/(1− α), while speed increases with α + β. Starting
from parameters consistent with a high reward rate (high β at zero latency or inter-
mediate α, β at non-zero latency, Figure 4a, panels 3-4), a speed-up can be achieved
by increasing α or β or both (panel 2). Thus, except in the special case where only
inhibition is allowed to increase, the asymptotic activity level of the winning choice
neurons is predicted to increase under speed pressure, as seen in experiments [26].

Performance comparison: WTA versus benchmark models We next com-
pare neural WTA performance against a phenomenological model with perfect inte-
gration: non-leaky AB (Figure 4e, gray and purple curves, respectively) [68, 6, 46].
There is no simple decision model (i.e., there is no simple approximation to the full
Bayesian expression) known to be optimal for multi-AFC tasks with more than two
alternatives [13, 46, 66]. However, non-leaky AB is a commonly used benchmark.

The reward rate on multi-AFC tasks achieved by neural WTA (Figure 4e; through-
out we assume a response latency of T0 = 300 ms) is competitive with AB at small N
(see also [46] and Figure S4b), even outperforming it for high accuracy (compare gray
and purple in Figure 4e). With more alternatives, neural WTA becomes competitive
with the benchmark across a wider range of accuracy levels. Note that AB does not
make an optimal decision, as can be seen from the slightly better performance of neu-
ral WTA at high accuracies (Figure 4e; SI 2.1; also see [46] for a similar observation
about integration to threshold in the presence of inhibition).

If the decision time is held fixed as N varies, our analytical results for large N
suggest that accuracy should asymptotically decay as a power law in N . Indeed,
the response accuracy declines with N (Figure 4f), but the asymptotic scaling does
not apply for small numbers of alternatives. For very small N (N = 2 − 3), WTA
accuracy at fixed time matches that of the AB strategy (Figure 4f), if the matched
noise in both cases is purely in the inputs. However, WTA accuracy decreases faster
than AB accuracy as a function of number of alternatives (Figure 4f).

On the other hand, if the desired accuracy is fixed at a high value (again, moving
through speed-accuracy space by sweeping (α, β) for each N to achieve this accuracy,
similar to the threshold adjustment to maintain fixed accuracy with varying N in the
AB models; note that for small N α + β moves toward 1 to maintain fixed accuracy
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Figure 4: Self-terminating WTA dynamics as a minimal-parameter, neural
model of multi-AFC decision-making a) Accuracy, speed and reward rate as a
function of β and α [N = 6]. Gray: tuples excluded by constraints α < 1, β > 1− α.
Reward rates shown at non-decision latencies of T0 = 0 ms (top) and T0 = 300 ms
(bottom). Stars: optimal (α, β); gray lines: iso-reward contours at 98% (dark) and
95% (light) of maximum. b) Top: average input for winning (dark gray, blue) and
losing (light gray, blue) neurons in a WTA network performing a 2-AFC task with zero
gap for two parameter settings (gray versus blue). Bottom: example firing rates from
trials used for the averages in the top panel. c) Example firing rate trajectories for
WTA networks with different (α, β) but with α + β (i.e., integration time-constant)
held fixed. Left: lower self-excitation and higher inhibition; right: vice versa. d)
Example firing rate trajectories for network with same inhibition as c) (right panel)
but stronger self-excitation. Trials are faster, but final activation of winner is higher.
e) Reward rate vs. accuracy for N = {2, 6, 10}. Thick gray: WTA (using best α, β
for given accuracy); thin purple: AB model (note that AB model takes time TS/N
and is thus the parallelism benchmark). Inset for N = 6 panel shows speed-accuracy
curve (dark gray: α fixed, β varied; light gray: β fixed, α varied, T0 = 300 ms). f)
Accuracy at fixed decision time, TWTA = 90 ms. Box plots: distribution of accuracies
across different network parameter settings that reach a decision at this time. Thin
purple: AB model accuracy at same decision time. g) Decision time at fixed accuracy,
A = 0.99. Box plots: distribution of times across different network parameter settings
that reach this accuracy. Solid lines: fit of distribution medians to log(N + 1). h)
Reward rate at (α, β) settings individually optimized for each N . Thin solid line: fit
to (T0 +log(N+1))−1. i) Convergence time at best shared (α, β) across N . Thin solid
line: fit to (T0 + log(N + 1)). Inset: accuracy (left) and reward rate (right, dashed)
for shared parameters across N remain high and reward rate is comparable to when
parameters are optimized for each N (thick solid gray) and to the AB strategy (thin
purple). For T0 = 300 ms: ᾱ = 0.41, β̄ = 0.7. j) Accuracy (plots 1-2) and decision
time (plots 3-4) in WTA network with fixed parameters as gap size ∆ (fixed ση = 0.2)
or noise amplitude ση (fixed ∆ = 0.05) are varied; light to dark curves: N = {2, 6, 10}.
k) Accuracy for WTA network (N = 6) compared to AB model for matched time as
∆ and ση are varied. In j,k α = 0.6, β = 0.6.
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as N increases, see S1.7, Figure S3h), the resulting decision time increases weakly
with the number of alternatives and the increase is well-fit by log(N + 1), Figure 4g.
This result shows that a self-terminating dynamical decision process in a competitive
network of leaky neurons with noisy input produces behavior consistent with Hick’s
law.

The Hick’s law-like scaling holds across a range of fixed accuracy values (S2, Figure
S4g–j). Note that the agreement with Hick’s law does not depend on the choice of
decision latency T0, because different values of T0 merely shift the decision time curve
up or down without affecting its functional form. The reward rate achievable by
neural WTA across N is comparable to the benchmarks, Figures 4h,i and S4.

Interestingly, in the neural WTA network, it is possible to maintain near-constant,
high accuracy while holding all parameters fixed as N is varied, Figure 4i (inset 1, see
also Figure S4g). When we examine the decision time of the network as a function
of number of options, it once again produces a log(N + 1), or Hick’s law-like scaling,
Figure 4i (also Figure S4h,j), but this time without any parameter readjustments
as a function of N . In other words, unlike in the AB models and the neural WTA
result above where Hick’s law is recovered when decision or circuit parameters are
adjusted by hand as a function of N , the neural WTA model maintains a high response
accuracy and produces Hick’s law behavior even when the network parameters are
held fixed as the number of options is varied.

Finally, if the top gap is held fixed while the remaining inputs are drawn uniformly,
the decision time is predicted to become very weakly dependent on N , since the inputs
beyond the first two are smaller, and thus largely irrelevant, in the competition (not
shown). To our knowledge, this experiment has not been done. Similarly, if the top
gap is made very large (with all the other inputs equal), decision time is predicted to
become independent of N (not shown).

Performance: Network re-tuning for high reward-rate across alternatives?
As we have seen, the neural WTA network reproduces Hick’s law whether or not
parameters are re-optimized when the network solves tasks with different numbers of
alternatives. In Hick’s experiments, subjects were trained on blocks of trials with a
fixed number of alternatives, then retrained on a new block with a different number of
alternatives, presumably allowing for the possibility of network parameter re-tuning.
Yet it is unclear if the brain does re-tune its parameters, or even whether such retuning
is necessary in principle, to achieve high reward rates across varying numbers of
alternatives.

To answer the latter question, we set (α, β) to a single (α, β)opt value that maxi-
mizes the summed reward across all N -alternative tasks, with N ranging from 2 to 10;
the setting corresponds to intermediate self-excitation and stronger inhibition (Fig-
ure 4 caption and Figure S4e). We recomputed the reward rate across N with this
fixed parameter setting, and found that performance closely matched that achieved
when the network parameters were separately optimized at each N , Figure 4i (second
inset). In other words, a WTA network with a fixed strength of self-excitation and
global inhibition can achieve good performance across decision tasks with varying
numbers of alternatives, without parameter re-tuning.

The network achieves this high reward rate across N without parameter retuning
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because its dynamics are (partially) self-adjusting to the difficulty of the task, au-
tomatically slowing down as the noise increases or the gap shrinks, Figure 4j, while
remaining competitive with non-leaky integration for the resulting decision time, Fig-
ure 4k. It has recently been shown in experiment that decision circuits can be trained
to adapt their integration time to the time-varying statistics of the input data [51].
The present result shows how neural circuits, if similar to our WTA model, may be
able to automatically and instantly (from trial to trial), without plasticity, partially
adjust to the statistics of the input stimulus.

Discussion

Our work has focused on the question of efficient parallel computation of max,
argmax in neural network models with leak and in noisy settings that include fluc-
tuating inputs and potentially noisy neural dynamics. As noted in the Introduction,
max, argmax are elemental operations in inference, optimization, decision making,
action selection, consensus, error-correction, and foraging computations. We showed
that conventional WTA networks are either too slow or fail altogether in concluding
the computation in the presence of noise. We introduced the nWTA network, consist-
ing of neurons competing to win, with each contributing strong inhibition (synaptic
strengths do not scale down as the number of competitors, N , is increased) to the
circuit, but only if their individual activations are higher than a threshold. With
this second non-linearity, networks converge to a WTA state even in the presence
of noise, and the accuracy and speed of the computation matches the benchmark
for efficient parallel computation — N times faster than the optimal serial strategy.
Specifically, we showed that neural nWTA networks can accurately determine and
report the maximum of a set of N inputs with an asymptotically constant decision
time in the noiseless case and with time that grows as O(log(N)) in the presence
of noise. This type of efficiency is a necessary condition for the hypothesis that the
brain performs massively parallel computations.

When applied to psychophysical decision-making tasks [47, 27, 58, 10] involving
much smaller numbers of alternatives (N ≤ 10), the model provides a neural circuit-
level explanation for Hick’s law [27], the observation that the time taken for perceptual
decision-making scales as the logarithm of the number of options. Thus, we interpret
Hick’s law as a signature of efficient parallel computation in neural circuits.

Our work additionally reproduces a number of (sometimes counterintuitive) psy-
chophysical and neural observations, including faster performance on correct than
error trials, a higher pre-decision neural activity level when subjects are pressured to
make faster decisions, and a natural tendency to weight early information over late
(however, the extent of this tendency to impulsivity is tunable).

In this way, our work provides a single umbrella under which systems neuroscience
questions about parallel computation distributed across large numbers of individual
neurons and psychophysics questions about explicit decision making can be answered.

Relationship to past work Parallel and network implementations of max,
argmax have been variously studied in computer science [3, 16] and in both artificial
[65] and biologically plausible neural networks [24, 30, 71, 57].

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2017. ; https://doi.org/10.1101/231753doi: bioRxiv preprint 

https://doi.org/10.1101/231753


In neuroscience, various models of WTA dynamics and aspects of their computa-
tional properties have been fruitfully considered in previous work, including: Condi-
tions for the emergence of a unique winner [73] or groups of winners [25], how the
computation depends on gap size [20], stability of deterministic dynamics [43, 74], de-
pendence on different initial conditions [65, 73, 43], the relative strengths of inhibition
and excitation [37, 20, 57], and the scaling of computation time in deterministic, not
fully-neural models [65]. Some models even considered nonlinear inhibitory contribu-
tions, in the quite different form of shunting inhibition [74], with encouraging results
in the noise-free setting for at least medium-sized N , but high sensitivity to fluctu-
ations, which prohibits accurate WTA for small and large N . The leaky, competing
accumulator model [68, 46] would be mathematically equivalent to the conventional
WTA model, if τη = τ [48] and if the asymptotic state of the dynamics were used as
the decision criterion; instead, the works use the crossing of a pre-determined thresh-
old not tied explicitly to the asymptotic states as the decision criterion, while not
considering the feasibility of WTA for large N or the possible breakdown of WTA
states in the presence of noise. Collectively, these works provide insights into many
individual aspects of WTA dynamics, usually in the noise-free case, and almost in-
variably, for small N .

Our work builds on this body of work, extending it along several directions while
unifying previous results in the context of a single, neurally plausible network model
with self-terminating dynamics in which the network’s asymptotic state is its own
readout. We study WTA performance for both very large numbers of competitors
(in the thousands), and for small numbers (in the range 1-10). We examine network
performance with a focus on the time-complexity of the operations (speed) together
with accuracy. Our treatment centrally considers the role of noise in the dynamics,
as noise is an inescapable property of neural dynamics, sensory processing, and real-
world inputs. Here we find that conventional WTA models fail for large numbers
of competitors, and propose a new model, with a second neural nonlinearity, that
succeeds and matches the efficiency of a parallelism benchmark. The strength of in-
hibition in individual synapses remains fixed, and does not decrease with N , allowing
the same circuit to be used for different N without changing the scaling of synaptic
strength. We ahow that the network automatically (partially) adjusts for gap size
and noise level, increasing its decision time as the ratio of gap to noise, or the signal-
to-noise ratio, shrinks. Moreover, we show what we believe is the first demonstration
of Hick’s law within a neural network decision making model with self-terminating
dynamics.

Biological mechanisms for thresholding inhibitory contributions. WTA
networks converge toward a state with a single winner for large numbers of competi-
tors only if the conventional models are modified with a second neural or synaptic
nonlinearity that prevents weakly active principal cells from contributing inhibitory
feedback to the circuit (Equation (4)). How could this nonlinearity be implemented,
given that inhibitory neurons are not believed to possess nonlinear dendritic mecha-
nisms to differentially gate different inputs?

In circuits with separate excitatory and inhibitory neurons [14], there are multiple
candidate mechanisms for nonlinear inhibition. These can be divided by whether
inhibitory interneurons are selectively tuned to particular principal cell inputs, or

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2017. ; https://doi.org/10.1101/231753doi: bioRxiv preprint 

https://doi.org/10.1101/231753


whether they are non-selective and pool inputs from many principal cells. In the
former case, to maintain global inhibition in the circuit, the inhibitory neurons would
have to send outputs broadly across the network.

If inhibitory neurons are selective, then a simple threshold nonlinearity in its input-
output transfer function, like the type-II firing rate responses in inhibitory neurons
[28], is sufficient. A similar effect could be achieved by fast-spiking inhibitory in-
terneurons that act as coincidence detectors rather than integrators [2]: these cells
would respond at most weakly to low firing-rate inputs, while firing reliably when the
inputs have a high rate, transmitting an inhibitory output based on effectively thresh-
olding the activity of the input principal cell. Finally, if interneurons target pyramidal
cells dendrites, then dendritic nonlinearities [39] could gate the selective inhibitory
input, effectively only transmitting the inhibition when it exceeds a threshold.

If inhibitory neurons are non-selective, then the nonlinearity must be present in
the excitatory-to-inhibitory synapse so that the drive from the low-activity principal
cells is specifically ignored. If the excitatory to inhibitory synapses have low release
probability and are strongly facilitating, only high firing rate inputs would make it
through [75].

Since WTA is likely performed in many neural circuits across the brain, differ-
ent circuits may use different mechanisms for thresholding inhibitory contributions,
especially if they have different evolutionary histories.

Structure and properties of neural networks for noisy WTA The paral-
lelism speed-up for max, argmax relative to the optimal serial strategy in the neural
WTA circuits is achieved by trading time for space: Specifically, the network size
(in neurons) and number of memory states grows linearly with N – each neuron or
neuron group integrates its input over time, but the computation is performed N
times faster. By contrast, the optimal serial strategy requires holding only a single
item in memory, since each input item is integrated, compared to the single item in
memory, and then discarded (if it is smaller) or used to update the item in memory
(if it is larger).

Another form of spatial complexity is in the structure of synaptic connections.
The neural WTA model can be viewed as N principal cells or groups, all inhibiting
each other (e.g. through a local interneuron private to each cell), which requires ∼ N2

synapses. This connectivity is both dense and global. Alternatively, one can think of
all cells as driving a single global inhibitory neuron, which requires only∼ N synapses,
a much sparser connectivity (only O(1) synapse per neuron), that is nevertheless still
global. We wonder whether it is possible to replace the global sum of excitatory
activities by a set of local inhibitory neurons pooling local excitatory inputs. However,
local inhibition typically produces pattern formation [15], and consensus formation
with local connections can be unstable [4], thus it is an interesting open question
whether WTA across a population of neurons can be implemented with purely local
connectivity.

The neural circuit model considered here produces impulsive or uniform integra-
tion over time. It cannot, without modification, arrive at a self-terminating WTA
state while performing leaky integration: Leaky integration requires α+β < 1, which
violates the condition for the existence of WTA states. Similarly, in tasks where ev-
idence is provided in discrete pulses, the WTA network can integrate across pulses
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as the interval between pulses is varied [31], if it is tuned for near-perfect integration
without lateral competition (α ≈ 1, β ≈ 0; data not shown); however, it does not
then display WTA dynamics (or convergence to a WTA state is slow). Different non-
linearities could permit the co-existence of leaky or near-perfect long-time integration
with self-terminating decision dynamics, for instance: starting each trial in the leaky
or near-perfect integration setting, but using a generalized urgency signal to increase
the strength of feedback over time, so that the network becomes more competitive
and performs WTA later in the trial; or modeling the system as 2-stage network with
leaky integration in the first stage and decision dynamics (e.g. through WTA) in
the second. In addition, a network could be simultaneously leaky and display WTA
dynamics, if the threshold-linear neural activations are replaced by a more nonlinear
function [72].

It will be interesting to more explicitly relate the neural architectures required
in decision-making models with impulsive, near-ideal, or leaky integration with the
distributed architecture of decision circuits in the brain [23].

Extensions and generalizations Distributed decision making is a feature of
many collective societies or colonies, including quorum sensing in bacteria [49], forag-
ing and house-hunting in ants and bees [5, 18], social and political consensus formation
[38], and various economic choice behaviors. While our model is based on neural dy-
namics, the ingredients (self-amplification; recurrent nonlinear inhibition) are simple
and should have analogues in other distributed decision-making systems. Thus, al-
though we are not aware of theoretical studies in these systems that investigate how
decision time scales with N , our results suggest a scaling of O(log(N)), where N
is the number of options, and the existence of a thresholded or otherwise nonlinear
inhibition if N is large.

In the present work, we have assumed high bandwidth communication: neurons
exchanging analog signals in continuous time. Real world systems are bandwidth
limited: Neurons communicate with spikes emitted at a finite rate; scout insects
achieve consensus on decisions about competing food sites or competing nesting sites
through brief interactions with subsets of others in the hive [17, 18]. Nevertheless, the
principal cells in our model do not communicate their individual activation levels to
all other cells; other principal cells receive information only about global activity in
the network in the form of a single inhibitory signal, a form of limited communication.
In this sense, our results should generalize to the lower-bandwidth case. Studying the
impact of low-bandwidth communication on WTA and parallel decision making in
more detail, together with constraints on global connectivity as discussed above, is
an interesting direction for future work.
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Methods

Network model and dynamics

Deterministic WTA network We first consider N coupled neurons with activa-
tions xi, i ∈ {1, . . . , N}, and dynamics given by [73]:

τ
dxi
dt

+ xi =

[
bi + αxi − β

∑
j 6=i

xj

]
+

=: ri(t). (5)

The neural nonlinearity is set to be the threshold-linear function: [x]+ = x when
x > 0 and zero otherwise; τ is the neural time constant, α is the strength of self-
excitation and β is the strength of global inhibition. The RHS of Equation (5) may
be viewed as the instantaneous firing rate ri(t) of neuron i.

Each neuron receives a constant external drive bi. Neurons are ordered so that
b1 > b2 ≥ . . . ≥ bN , and it is assumed that the largest input drives just one neuron,
see Figure 1 a. The goal of WTA is to amplify activity in the neuron with the largest
input and to drive the activations and rates of the remaining neurons to zero, Figure
1 b,c. The number of choices bi equals the number of neurons, and spatial complexity
is thus ∼ N .

The full coupling matrix W = ((α + β)I − β11T ) has one eigenvalue λW,hom =
α−(N−1)β with uniform eigenvector 1 = (1, . . . , 1)>, and an (N−1)-fold degenerate
eigenvalue λW,diff = (α+β) whose eigenvectors are difference modes with entries that
sum to zero. When α+ β > 1 the difference modes grow through a linear instability,
and the eventual (non-trivial) steady states involve only one active neuron. If α < 1
and β > 1− α, the network will always select a unique winner for each b and initial
condition [73]. For a discussion of more general constraints on α, β, see S1.1.

After meeting the conditions for stability and uniqueness (α < 1, β > (1 − α)),
there is freedom in the choice of how the strength of global inhibition β scales with N :
We may choose β ∼ O(1), which we call the strong inhibition condition, or β ∼ β0/N ,
the weak inhibition condition. Existing works on WTA dynamics variously use strong
[73] or weak [37, 65] inhibition, usually without explicit justification or explanation
for making one choice over the other. We consider both conditions. When in the weak
inhibition regime, we set α = 1− β0

kN
(with k > 1; specifically, we choose β0 = 1, k = 2

throughout the paper) for stability.
For simplicity, throughout the paper we consider the case where all neurons start

at the same resting activity level x(0) = (x0, . . . , x0)>. In this case, the winner is
the neuron with the largest input. (For heterogeneous initial conditions the situation
is more complex, since the wrong neuron can be pushed to be the winner just by
starting at large enough activity to suppress all other neurons, see also the discussion
in [73].) We further assume x0 = 0 (if x0 > 0 there is an initial transient that scales
logarithmically with N but is unrelated to the actual WTA-computation, see S1.2).

WTA network with noisy inputs A second scenario we consider is the more
biologically common case of noise-corrupted input, and we ask how this impacts the
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performance of WTA. The model dynamics is identical to Equation (5), with the
addition of a time-varying, zero-mean fluctuation term ηi(t) in each input:

τ
dxi
dt

+ xi =

[
bi + ηi + αxi − β

∑
j 6=i

xj

]
+

(6)

We model ηi(t) by statistically identical Ornstein-Uhlenbeck processes, such that

τη
dηi(t)

dt
+ ηi(t) = ση

√
2τη ξi(t) (7)

with Gaussian white noise ξi(t), such that, 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). It

follows that 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = σ2
ηe
− |t−t

′|
τη δij. We set τη � τ so that the

fluctuations η(t) are effectively uncorrelated over the timescale τ of single neurons. For
numerical simulations of Ornstein-Uhlenbeck noise we make use of exact integration
on a time grid with increment ∆t [22], i.e.,

η(t+ ∆t) = η(t) e−∆t/τη + ση
√

1− e−2∆t/τη ξ(t) (8)

If the noise amplitude is below a critical value σ∗η (see S1.5), the winner moves to a
noisy high-activity state close to the deterministic attractor x∞ = bw/(1− α), where
bw is the input drive of the winner (not necessarily the largest bi), while losers are
strongly suppressed. For convenience, we define TWTA as the time some neuron reaches
an activation level greater than or equal to c b2

(1−α)
with c . 1 (we use c = 0.88). We

emphasize that this convergence criterion is set by the dynamics and hence inherently
different from an external arbitrary threshold.
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