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Evolutionary game theory (EGT) was born from economic game theory through a series of analogies.
Given this heuristic genealogy, a number of central objects of the theory (like strategies, players,
and games) have not been carefully defined or interpreted. A specific interpretation of these terms
becomes important as EGT sees more applications to understanding experiments in microscopic
systems typical of oncology and microbiology. In this essay, I provide two interpretations of the
central objects of games theory: one that leads to reductive games and the other to effective games.
These interpretation are based on the difference between views of fitness as a property of individuals
versus fitness as a summary statistic of (sub)populations. Reductive games are typical of theoretical
work like agent-based models. But effective games usually correspond more closely to experimental
work. However, confusing reductive games for effective games or vice-versa can lead to divergent re-
sults, especially in spatially structured populations. As such, I propose that we treat this distinction
carefully in future work at the interface of EGT and experiment.

In my views of game theory, I largely follow Rubinstein
(2012): game theory is a set of fables. A collection of heuristic
models that helps us structure how we make sense of and com-
municate about the world. Evolutionary game theory (EGT)
was born of classic game theory through a series of analogies.
Given this heuristic genealogy of the field, it is usually alright
to not worry too much about what exactly terms like strategy,
player, or game really mean or refer to. I am usually happy
to leave these terms ambiguous so that they can motivate
different readers to have different interpretations and subse-
quently push for different models of different experiments. I
think it is essential for heuristic theories to foster this diverse
creativity: anything goes.

However, not everyone would agree with Rubinstein and
me; some people think that EGT isn’t “just” heuristics. EGT
is also directly empirically useful for questions in both math-
ematical oncology and the evolution of microorganisms. Mi-
croscopic experimental systems in which EGT has been use-
ful include: Escherichia coli (Kerr et al. 2002), yeast (Gore,
Youk, and Van Oudenaarden 2009; MacLean and Gudelj
2006), bacterial symbionts of hydra (Li et al. 2015a), breast
cancer (Marusyk et al. 2014), pancreatic cancer (Archetti,
Ferraro, and Christofori 2015), and lung cancer (Kaznatcheev
et al. 2017b). But when we actually start doing experiments
like these, it is no longer acceptable to be willy-nilly with
fundamental objects of the theory: strategies, players, and
games. The biggest culprit is the player. In particular, I
think that a lot of confusion stems from saying that “cells are
players”.

In classical game theory, the concepts of player, strat-
egy, and game are intertwined but relatively straightforward.
Players use a rational decision process to select strategies
which are then mapped by the rules of the game to payoffs –
the utility given to the players. Or, as I say more awkwardly
in the first column of table 1: utility is given to a player

based on its strategy which results from a rational decision
process carried out by the player. All of this is summarized
as the game. But, how does this classic picture translate to
evolutionary games?

The easiest place to start is utility: this is almost always
interpreted as changes in fitness. We can take this much as
uncontroversial. But fitness itself has a complicated ontology
and is part of a more general discussion in biological theory
that reaches beyond EGT. Two competing interpretations are
fitness as a property of an individual organism (reductive fit-
ness leading to reductive games; see section 1) versus fitness
as a summary statistic (or emergent property) of a population
of subpopulation (effective fitness leading to effective games;
see section 2). These two readings are summarized in columns
two and three of table 1.

It is helpful to highlight the difference between these two
interpretations with an analogy to physics. The setting of sta-
tistical mechanics mirrors the fitness for individuals view and
defines properties like kinetic energy for individual molecules.
Thermodynamics mirrors the effective fitness view and de-
fines properties like temperate for ensembles of molecules. It
simply doesn’t make sense to talk of the temperature of an
individual molecule. Of course, in simple models like the ideal
gas, temperature is just mean kinetic energy; this would cor-
respond to an unstructured (inviscid) population in biology
where the effective fitness of a (sub)population is just the av-
erage reductive fitness of the individuals that make up that
subpopulation. But this ideal case seldom happens in nature.
In general, there are many ways like recombination systems,
spatial subdivision, and admixture in which structured popu-
lations depart from panmixis (mean-field). This can be very
relevant to how we interpret games, as I discuss in section 3
in the context of spatial structure.

1Since we are primarily interested in fitness differences, it is usually
subpopulations and not the population of all organisms.
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Classic game theory Evolutionary game theory

Utility Fitness

is given to a is a property of an is a summary statistic of a
Player Individual organism Population1

based on its based on its based on its
Strategy Phenotype (pure strategy) Distribution of phenotypes (mixed)2

which results from a which is which results from
Rational decision process Fixed from birth 3 Replicator dynamics

all summarized as a all summarized as a all summarized as an
Game Reductive game Effective game

Table 1: Defining evolutionary game theory by two different analogies to classic game theory.

1 Fitness for individuals & reductive games

Since many evolutionary game theorists are computational
modelers or think in terms of simulations and agent-based
models, we take fitness as a property of an individual organ-
ism. In that case, we can define players as the organisms
that receive the payoff from local interactions that happen
between pairs of organisms (or more for multi-player games).
The summary of this local interaction is what I would call the
reductive game.

In a the most common EGT setting, what the organisms
do in the game is fixed by their genes. Under this reduc-
tive interpretation players don’t alter their strategies. This
makes it easy to present classic vs evolutionary game the-
ory as two extremes on the spectrum of decision making. In
classic game theory, players are unbounded rational decision-
makers. In evolutionary game theory, players are the most
bounded possible: they make no decisions at all; their behav-
ior is genetically fixed. Or, as I say more awkwardly in the
second column of table 1: fitness is a property of an individual
organism based in its phenotype, which is fixed from birth.
All of this is summarized as the reductive game.

The proportion of agents in the population is then updated
according to an evolutionary process like replicator dynam-
ics. In particular, in the section I’ll discuss how two different
implementations of reductive fitness can both give us replica-
tor dynamics. In section 1.1, I will focus on fixed population
sizes with fitness as probability to reproduce. In section 1.2,
I will consider exponentially growing populations with fitness
as number of offspring.

2If the fitness functions are linear then interpreting the distribution
of phenotypes as a mixed strategy is straightforward. However, fitness
functions are not necessarily linear; see Li et al. (2015b) for a clear
example. In the case of a fitness function given by a m-order polyno-
mial, we can still interpret the distribution of phenotypes as a mixed
strategy in an (m + 1)-player game.

3Fixed from birth is the typical case but it is also natural for the
evolutionary game theorists to gradually build up the decision mak-
ing capacities of the player (McNamara 2013). For example, tag-based
models can be seen as taking a minimal step upwards by allowing the
focal to decide to cooperate of defect conditioned on the tag of the
alter. Although this characterization behavior is simple, it can allow
for a rich analysis as a form of minimal cognition (Beer 2003) and
we can associate a cognitive cost for this extra decision-making abil-
ity (Kaznatcheev 2010). Or push this genotype to behavior map even
further (Kaznatcheev, Montrey, and Shultz 2014) by having evolving
agents act rationally on their evolved perceptions of the game payoffs
and (potentially-biased) estimates of other’s probability to cooperate
(for this direction, see also Masel (2007)).

1.1 Moran: fitness as probability to reproduce

In a Moran process (Moran 1958; Taylor et al. 2004), we
imagine that a population is made up of a fixed number N
of individuals. An agent is selected to reproduce in propor-
tion to their game payoff, and their offspring replaces another
agent in the population, chosen uniformly at random. This
gives us a very clear individual account of fitness as a measure
of the probability to place a replicate into the population.

Traulsen, Claussen, and Hauert (2006) wrote down the
Fokker-Planck equation for the above Moran process, and
then use Ito-calculus to derive a Langevin equation for the
evolution of the proportions of each strategy xk. The fluc-
tuations in this stochastic equation scale with 1/

√
N and so

vanish in the limit of large N . This reduces them to a de-
terministic limit of the replicator equation in Maynard Smith
form (Maynard Smith 1982), with the fitness functions as the
payoff functions:

ẋk = xk
wk − 〈w〉
〈w〉 (1)

where 〈w〉 is the average fitness and the extra condition of
〈w〉 > 0 is introduced.4

Alternatively, we might be interested in directly getting the
Taylor form (Taylor and Jonker 1978) of replicator dynamics:

ẋk = xk(wk − 〈w〉) (2)

Traulsen, Claussen, and Hauert (2006) show how to achieve
this, too. Instead of birth-death, they consider an imitation
process. Two agents are selected uniformly at random, and
individual if the payoff of the first individual is w1 and the
second is w2 then the first copies the second with probability
p = 1

2
+ s

2
w1−w2

∆w
where ∆w is the maximum possible gap in

the payoff of two agents in the model. With this version, they
get the Taylor form, with the fitness as payoff, again. They
are not the first to derive the Taylor form replicator equation
from imitation processes. In fact, Schlag (1998) went further
by showing that with the proportional imitation rule (only
copy those that have higher payoffs, in proportion to how
much higher the payoff is), you not only get the Taylor form

4In the limit of weak-selection, this form is equivalent to the Taylor
form. Even without weak-selection, the two systems of equations differ
only by dynamic time rescaling and thus have the same fixed points,
orbits, and paths. If we only care about this in our analysis then we
can use the equations interchangeably.
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replicator equation in a large population limit but also that
this local update rule is optimal from the individual agent’s
perspective in certain social learning settings.

1.2 Exponential: fitness as number of offspring

One of the biggest difference between ecological modeling in
micro- vs. macro- organisms is that macro-organisms seldom
have the opportunity to undergo exponential growth; they
are almost always at carrying capacity. So what if we want
to model this ecological difference – the fact that the total
population grows or that the cell density in the Petri dish
changes?

Populations don’t have to be constant to achieve replica-
tor dynamics. Consider m types of cells with N1, ..., Nm in-
dividuals each, leaving w1, ..., wm offspring each for the next
generation. These offspring numbers wk could be functions of
various other parameters. The population dynamics are then
described by the set of m differential equations: Ṅk = wkNk
for 1 ≤ k ≤ m. Now, with N = N1 + ... + Nm, we can look
at the dynamics of xk = Nk/N :

ẋk =
Ṅk
N
− NkṄ

N2
(3)

=
wkNk
N

− Nk
N

∑m
i=1 wiNi

N
=
Nk
N

(wk −
m∑
i=1

wi
Ni
N

) (4)

= xk(wk − 〈w〉) (5)

which is just the replicator dynamics. If the wk are functions
of proportions then replicator dynamics can perfectly describe
an exponentially growing population.

2 Fitness for populations & effective games

But fitness doesn’t have to be defined individually. An alter-
native perspective is to see fitness as defined only as a sum-
mary statistic or emergent property of populations. This is
the perspective that makes the most sense when operational-
izing fitness in microscopic systems; especially when using
typical fitness measures like growth-rates. In that case, the
player is the (sub)population that receives the payoff of fit-
ness. The game then becomes the macroscopic coupling be-
tween (sub)populations made up of microscopic agents. It is
even misleading to call this coupling an “interaction” since
that suggest something too active and direct; as I show in
section 2.5, the coupling could be as indirect as two popu-
lations feeding on a single resource in batch culture. This
population-level description is what I call an effective game.
Given its roots in operationalization of microscopic systems,
the effective games can be measured directly and we recently
developed a game assay for this purpose (Kaznatcheev et al.
2017b).

This perspective has some curious consequences. Since the
players are populations, the individuals organisms – or behav-
iorally identical classes of them – are the strategies. The dis-
tribution of phenotypes in the population is then interpreted
as a mixed strategy. The player is not static but carries out a
‘decision process’ specified by the rules of the evolutionary dy-
namics. This is usually described by the replicator equation.

Make what you will of the correspondence between replicator
dynamics and Bayesian inference, reinforcement learning and
other forms of rational decision making (Arora, Hazan, and
Kale 2012; Börgers and Sarin 1997). To me, this seems like
both a closer correspondence to the aspirations of classical
game theory and easier to link to experiment.

To summarize as in the third column of table 1: fitness is a
summary statistic of a (sub)population based in its distribu-
tion of phenotypes, which is updated according to replicator
dynamics. All of this is summarized as the effective game.

What does this mean for “cells are players”? For the reduc-
tive game, each individual cell is a player. For the effective
game, the population of cells is a player.

2.1 Replating: fitness as fold change

Consider the following idealized protocol that is loosely in-
spired by Archetti, Ferraro, and Christofori (2015) and the
E. coli Long-term evolution experiment (Lenski et al. 1991;
Ribeck and Lenski 2015; Wiser, Ribeck, and Lenski 2013).
We will (E1) take a new petri dish or plate; (E2) fill it with
a fixed mix of nutritional medium like fetal bovine serum;
(E3) put a known number NI = NI

1 + ...NI
m of m different

cell on the medium (on the first plate we will also know the
proportion of A and B in the mixture); (E4) let them grow
for a fixed amount of time ∆t which will be on the order of
a couple of cell cycles (keeping us in the growth phase); (E5)
scrape the cells off the medium and measure the final num-
bers NF == NF

1 + ...NF
m; and (E6) return to step (E1) while

selecting N cells at random from the ones we got in step (E5)
to seed step (E3).

From comparing steps E3 and E5, we can get the experi-
mental population growth rates as:

wk :=
NF
k −NI

k

NI
k∆t

(6)

this can be rotated into a mapping NI 7→ NF given by NF
k =

NI
k (1 + wk∆t).
From defining the initial and final population sizes

N{I,F} =
∑m
k=1 N

{I,F}
k , we can compare the initial and fi-

nal proportions of each cell type xIk =
NI

k

NI and

xFk =
NF
k

NF
= xIk

1 + wk∆t

1 + 〈w〉∆t (7)

where 〈w〉 =
∑m
k=1 x

I
kwk.

So far we were looking at a discrete process. But we can
approximate it with a continuous one. In that case, we can
define xk(t) = xIk, xk(t+ ∆t) = xFk and look at the limit as
∆t gets very small:

ẋ = lim
∆t→0

xk(t+ ∆t)− xk(t)

∆t
(8)

= lim
∆t→0

xIk
∆t

(
1 + wk∆t

1 + 〈w〉∆t − 1) = lim
∆t→0

xk
wk − 〈w〉
1 + 〈w〉∆t (9)

= xk(wk − 〈w〉) (10)

We recover replicator dynamics as an explicit experimental
interpretation for all of our theoretical terms.
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We didn’t make any assumptions about if things are invis-
cid or spatial; if we are talking about individual or inclusive
fitness; or, if we have growing populations in log phase or
static populations with replacement. All of these micrody-
namical details that we spent so much time debating about
are simply buried in the definition of experimental fitness.
More importantly, we provided a precise description of how
we will measure this quantity. This allows us to hide the
pedantics of microdynamics inside of how we measure. Some-
how, this might seem unsatisfying in that we just named
something but aren’t testing anything. This is where we can
begin to twist our experimental knobs a bit to start under-
standing our system, as I do in section 2.3.

If we are able to peek inside the system more, as – for
example, Kaznatcheev et al. (2017b) do with time-lapsed mi-
croscopy – then we can also replace fold-change by more spe-
cific measurements like inferred growth rates. An advantage
is that the goodness-of-fit of exponential models can provide
a good estimate of the error associated with these measure-
ments. But the cost is a slightly more specific set of as-
sumptions on the microdynamics of our system. However,
since many models can lead to transient exponential growth
curves for various microdynamic implementations, these as-
sumptions still don’t have to be as stringent as the definitions
in section 1.2.

Does this mean that just by playing with definitions and
writing down the replicator equation I have shown that
any replating experiment follows replicator dynamics? That
would be ridiculous. But we aren’t far. To actually establish
this, we need only one more piece: we would need to show
that the the replatings have the Markov property. In other
words, that if the protocol is kept fixed then from one plate
to another then the proportion of cells (and maybe a little
noise) is all we need to specify the proportion of cells that we
will have at the end of the grow phase; there is no dependence
of plates that are further back in time. Of course, there are
many ways this Markov property might break down.

The easiest way to break the Markov property is if the
state-space we consider is insufficient. For example, we as-
sume that the ‘pure’ cultures we start with all have the same
strategy. What if the culture is heterogeneous in terms of
their game behavior? In that case, for a two-strategy game,
we need to treat the game as not between type A and type B
but between types A, A’ and B where we don’t have an ex-
perimental procedure to differentiate between type A and A’.
Alternatively, the extra variable we need to add to the state
space might not be an extra cell (sub)type but something like
a toxin that survives between replatings.5

Of course, expanding the state space might be futile in
some cases. The classic examples of this would be cellular or
epigenetic memory, certain kinds of phenotype switching, or
rapid mutations. In that case, our state space will expand
with each replating and it is better to abandon replicator dy-
namics and adopt some technique that was built for handling

5This can be done by binding to the surface of the cells – although
experimentalists often ‘wash’ cells to avoid this specific effect – or by
being absorbed without harm by one cell type to only be actively or
passively pumped out of them later and affect the other cell type – a
typical example in oncology might be a chemo-resistant cell pumping
out the drug after replating and poisoning it’s non-chemo resistant
partners.

historicity. To find this out, though, we would need to first
design careful experimental protocols and run our cells and
see the long-term behavior breaking the Markov property. Al-
ternatively, if we are lucky and nature cooperates by granting
our protocol the Markov property then we will find ourselves
in the fortunate position of having a relatively simple opera-
tionalist theory of evolutionary games.

2.2 Measuring the gain function directly

We don’t necessarily need to measure separate fitness func-
tions for each cell type. It is more important to know the
fitness differences, which we can measure directly instead.

Suppose the proportion of cell line A in a mixture is p, with
cell line B making up 1− p, and the fitnesses of the cells are
wA(p) and wB(p), respectively. Then the replicator dynamics
are given by:

dp

dt
= p(1− p) (wA − wB)︸ ︷︷ ︸

gain function

(11)

Our goal in identifying the game is to measure this gain
function (see Peña, Lehmann, and Nöldeke (2014) and Kaz-
natcheev et al. (2017a) for their importance): the increase
in growth rate from ‘switching’ from strategy A to B with p
held constant. For this we will use a simple calculus trick:
consider the log-odds s = ln p

1−p . Then

ds

dt
=
dp

dt
(
1

p
+

1

1− p ) =
dp/dt

p(1− p) = wA − wB (12)

By looking at the log-odds of p instead of just p, we have
‘factored out’ the logistic growth part of the equation. Now,
to measure the gain function, we just have to measure the
derivative of s. Unfortunately, experimentalists do not have
a derivative detector in the lab, so we have to approximate the
derivative by looking at the change in s over a short period
of time.

In the case of the basic replating experiments you have a
natural discretization of time: pin can be the proportion of
type-A cells at the start of your experiment, and pout can be
the proportion of type-A cells when you replate. You can then
run the experiments for several initial values pin and plot your
results as ∆s = ln pout

1−pout
− ln pin

1−pin
versus pin. This graph is

your gain function.
Here we run into the important question of “how short is

short enough?” If we run the experiment for too short of a
time then the change in p will be overwhelmed by the mea-
surement noise, but if we run for too long before measuring
pout then it doesn’t make sense to say we are measuring the
derivative. To overcome this, we have to focus on the tan-
gent line of our function as a local linearization. If we have
access to high-resolution in time data of the growth during
our preliminary experiments then we can plot the resulting
growth curve as we would normally: proportion versus time.
We then want to take the biggest time-window on which this
growth curve is well-approximated by a constant-fitness lo-
gistic growth. This logistic growth is the linearization of our
function, and as long as it is in approximate agreement, we
can say that we are measuring the derivative.
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Since we are considering experimental data, it is important
to look at the errors associated with our measurements. I
don’t mean the variance between different runs in different
Petri dishes, although that is also important, but the accuracy
of the proportions of our initial seeds and the precision of our
measurements. There are several ways we could propagate
the errors from p to s, but as an estimates:

σ∆s = σp

√
1

p2
in(1− pin)2

+
1

p2
out(1− pout)2

(13)

So the error is amplified by 4
√

2 near pin = pout = 0.5 and
the amplification increases as the proportions approach 0 or
1. For example, for pin = pout = 1/m and large m, it becomes
approximate a factor of m

√
2. Of course, each experimental

set up will serve as a different meter stick, and we will need
to do the metrology more carefully for each.

2.3 Partitioning fitness with mixed media

For a conditioned medium experiment, a petri-dish is filled
with a liquid containing some food (the medium) and then
cells of type X from some established culture are introduced
onto this medium. They spend some fixed amount of time in
that dish, consuming a portion of whatever is in the medium
and potentially releasing their own chemicals into the liquid.
After a relatively short amount of time – something on the or-
der of the cell cycle – the cells are separated from the medium,
usually by running the mixture through a filter that is fine
enough to catch cells but let macro-molecules through. This
gives us the post-X medium in a flask, which we pour out into
a fresh petri-dish and now introduce a known number of cells
of type Y onto it. Again, we grow this mixture for a fixed
amount of time on the order of a cell cycle and then the cells.
This allows us to work with monotypic cultures, which can
be helpful if the tools for marking or sorting cells by type are
unavailable.

We can extend the conditioned media experiments to mixed
media experiments: take a beaker of conditioned medium
from cells of type A and another from cells of type B and
mix them in some proportion p. Now we can grow cells of
type X on this mixed medium and the ratio of cells that we
introduced to the cells we count at the end will give us the fit-
ness of X as a function of the proportion p of type A medium
in the A-B mix. By considering different values of mixed me-
dia p added to monoculture, we can do a mixed-media version
of the game assays described in section 2.1 and Kaznatcheev
et al. (2017b).

This gives another operationalization of fitness: experimen-
tal medium-mediated fitness. When we grow cells X on media
conditioned by a proportion p of type A conditioned media in
the A-B mix then we can call the corresponding ratio between
initial and final cells as wMM

X (p).
Now, if we compare the experimental medium-mediated fit-

ness to the experimental fitness wX(p) that we defined above
to wMM

X (p) then for a short enough replating time, we would
expect the two numbers to be nearly identical if the inter-
action between cells is primarily mediated by the medium:
wMM
X (p) ≈ wX(p).6

6 Although even here, we might want to allow for some low complex-

In general these two functions might be very different. In
that case we will have made more than a measurement. We
will have discovered that the experimental fitness function
partitions into a direct interaction part – that could come
from direct predation, very short-term or short-range media-
based signals, spatial competition, or many other micrody-
namical effects – and a medium-mediated part: wX(p) =
wDIX (p) + wMM

X (p).7 In other words, we started by trying
to eliminate all reductionist basis from our work, and yet
learned something about the microdynamical properties of
our system. Although coming at it from the operationalist
perspective forces us to be much more humble and reserved
about our conclusions. If we come up with other experimen-
tal knobs to fiddle with then we can find further partitions
and thus more nuance for the operationalist meaning of the
fitness function.

2.4 Choosing units of size for populations

So far, we mostly considered populations as numbers of indi-
viduals, organisms, or cells. But what is so special about the
number of cells? In this subsection, I want to question the
reasons to focus on individual cells (at the expense of other
choices) as basic atoms.

So, let’s look at what we could mean by ‘size of population’.
The obvious definition is number of cells, and if all we did was
in silico simulations then it is the definition we could stuck to.
Especially for agent-based models, it is very tempting to have
cells as your agents and building everything up around them.
But consider two populations that have the same number of
cells and everything else is equal, except ...

1. ... the cells in the first population are metabolically twice
as active as cells in the second population. In this case,
the more active cells can easily strain their environment
more, as they use more resources to fuel themselves. If
your limiting resource in the petri dish is growth medium
then the more metabolically active cells will consume
more of it.8 With slower metabolic activity, the cell be-
comes less of an effect not only on its own future, but also
on other cells it interacts with – for example, by moving
around less or releasing fewer cytokines and thus inter-
acting with fewer other cells. In this case, the more natu-
ral set of physical units might be the power consumption
in terms of watts-used or ATP-used. This might be more
compatible with the metabolic theory of ecology.(Brown
et al. 2004)

ity interpolation between the two functions, like proportionality, log-
proportionality, or logit-proportionality and accept the approximate
equality if the two functions are equal under this comparison instead
of strict numerical equality which would correspond to the simplest
map: identity.

7Again, the best way to partition might be something other than
’+’ (that corresponds to identity or proportionality) and we might
use another low complexity function to partition like log (wX(p) =

wDI
X (p)wNN

X (p)) or logit (wX(p) =
wDI

X (p)wNN
X (p)

wDI
X

(p)wNN
X

(p)+1
). Whatever

choice is made, should be consistent with the choice for approxima-
tion in footnote 6 so that the domain to which the different ws map
have a consistent mathematical structure.

8The extreme case of this is cells that are completely inactive or
maybe even dead. This doesn’t come up as much in simulation, since
I can just cleanly remove dead agents.
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2. ... the cells in the first population are twice as big as
cells in the second population.9 From the point of view
of games mediated by things like diffusive factors or cell-
cell contact, the bigger cells will have more area to ab-
sorb/release factors or to contact other cells. In we are
working in vitro, larger cells also exhaust the limiting
factor of free space quicker than small cells.10 On top of
this, size feeds back into the first point, with larger cells
usually doing more things metabolically and in terms of
other activity. In this case, the more natural set of phys-
ical units might be area-covered.11

Without individual cells to ground us, reductionist story
telling becomes more difficult; something that can be both a
plus or a minus:

On the one hand, it is hard to imagine how 10 watts-used
by cancer interacts with 10 watts-used by fibroblasts, instead
we are forced to make these measurements experimentally.
Since these measurements are almost always at the level of
populations, we don’t feel a need to make sense of them in
reductionist terms of how a single watt-used interacts with an-
other watt-used. You might have noticed that even the word
‘interaction’ felt awkward in the last two sentences. Watt or
area use invite us to recognize the importance of both the size
of the other population and the environment more generally.
This makes it easier to notice evolutionary games with only
indirect interactions.

On the other hand, these more abstract units and opera-
tionalist perspective can hinder the imagination, and it can
often become more difficult to explain the work or to design
new experiments. The alternative units I considered here also
obscure the discrete nature of cells, a discreteness that is es-
sential to life and can have significant side-effects on model
conclusions (for discussion, see Durrett and Levin (1994) and
Shnerb et al. (2000)). Although in the case of replicator dy-
namics, it is not clear how much this would matter since they
already ignore the discrete nature of life through the use of
ODEs.

2.5 Effective games without interactions

Let p be the proportion of A-cells in the population, and y be
the nutritional content of the medium – normalized so that
the most nutrient rich mix possible has y = 1 and distilled

9In the case of cancer, the tumor corresponding to the more volu-
minous population would be much more burdensome to the patient. In
fact, tumor burden is often measured and reported as volume in x-ray
or other imaging. The number of cells in the tumor is then inferred
from these volumetric measures by assuming (or measuring outside the
body) the size of a typical cancer cell.

10The importance of area has come up in thinking about prostate
cancer metastases to the bone. (Araujo et al. 2014) Osteoclasts and
osteoblasts, take up drastically different amounts of area on the bone,
and they are only of significant consequence to the model if they are in
contact with the bone (else they are not remodeling it). Area-On-Bone
becomes the important variable here.

11Of course, we could try to express the above in terms of individual
cells by converting back and forth between numbers of cells and watts-
used or area-covered. Practically, this would mean finding a conversion
factor which amounts to a measure of how much power or area a typical
cell uses. But in doing so, we have swept some amount of heterogene-
ity under the rug – after all, each cell takes up a different amount of
space or uses a different amount of energy, especially when facing new
circumstances like chemotherapy – and it is not clear what useful thing
we got in return.

water has y = 0. For each cell we will have some (analytic)
feeding function fA(y) and fB(y) which translates between
the nutritional content of the medium and the organism’s
fitness, such that:

ṗ = p(1− p)(fA(y)− fB(y)) (14)

It is important to note that fA and fB are functions of y
and completely independent from p. At this point, we might
be tempted to stop by saying that since experimental step
(E2) uses a fixed mix of nutritional medium, we can just treat
fA(y)− fB(y) as a constant and thus (excluding the neutral
case) we will always have the population converge to all-A
or all-B depending on the sign. We will see no (non-trivial)
evolutionary game dynamics. This is the standard intuition
behind Gaus’ exclusion principle: two species cannot co-exist
on a single abiotic resource (Hardin 1960).

But stopping here would be a bit disingenuous. The rea-
son that we have to renew the medium on each cycle of the
experiment is because it gets consumed between the replat-
ing. Further, the rate of consumption might differ between
the two cell types. Suppose that each cell type consume the
nutrients at rate 2kA and 2kB , such that if yin was our initial
level of nutrients in step (E2) then our final level it step (E5)
is yout = yin(1− 2kAx− 2kB(1− p)).

We can assume that the cell cycle is significantly slower
than the metabolic cycle, and start working with our average
consumption (calling yin just y): 〈y〉p = y(1−kB+p(kB−kA)).

Now, our dynamics become:

ṗ = p(1− p)(fA(〈y〉p)− fB(〈y〉p)) (15)

and suddenly our gain function is no longer independent of
p.12 That is the main slight-of-hand, but let’s take the trick
to its conclusion.

We will expand the gain function, noting that we picked
analytic feeding functions, so fA(y) =

∑∞
n=0 Any

n for some
sequence {An} and similar for fB(y) but with {Bn}:

Γ(p) = fA(〈y〉p)− fB(〈y〉p) (16)

=

∞∑
n=0

(An −Bn)〈y〉n (17)

=

∞∑
n=0

(An −Bn)yn(1− kB + p(kB − kA))n (18)

=

∞∑
n=0

(An −Bn)yn

(kA − kB)n
(p− 1− kB

kA − kB
)n (19)

The last line is the power series of some analytic function
Γ(p) with coefficients {Γn = (An−Bn)yn

(kA−kB)n
} around the point

x0 = 1−kB
kA−kB

. In particular, given any desired (analytic) gain

function Γ(p), there is some choice of feeding functions fA and
fB (thus, their corresponding coefficients {An} and {Bn})
and kA and kB such that the population follows identical
dynamics. In other words, in this experimental set up, we
can recreate any evolutionary game dynamics without having

12It might be helpful to switch to our prior notation by noticing that
in this case w{A,B}(p) = f{A,B}(〈y〉p
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the cells interacting but just based on how they turn nutrition
into reproduction. In particular, we can implement games like
Hawk-Dove to have co-existence of A and B on a single abiotic
resource, thus violating the competitive exclusion principle.

3 Spatially structured populations

Spatial structure in game theory is so important that a par-
ticular approach to it even has its own sub-field name: evolu-
tionary graph theory(Lieberman, Hauert, and Nowak 2005;
Maciejewski and Puleo 2014; Shakarian, Roos, and John-
son 2012; Szabó and Fath 2007). Durrett and Levin (1994)
and Shnerb et al. (2000) provide a particularly good demon-
stration of how much spatial structure and stochasticity can
matter as they build from mean-field approaches (of which
the inviscid replicator dynamics with which we started is an
example) to patch models of discrete individuals to reaction-
diffusion equations to full-fledged interacting particle systems.
We know that space can promote cooperation (Nowak and
May 1992; Ohtsuki et al. 2006), or inhibit it (Hauert and
Doebeli 2004), or complicate the whole discussion around
it (Killingback and Doebeli 1996). Spatial structure can so
drastically change the nature of the reductive game such that
the mean-field analysis in completely inapplicable. In sec-
tion 3.1, I will consider how we might work from the bottom
up, by transforming a reductive game through an incorpora-
tion of spatial structure. But in section 3.2, I’ll consider the
reverse direction: extracting the contribution of space from
an effective game that would normally swallow-up or abstract
the spatial structure into measurement.

3.1 Approximating spatial structure

A typical study of space in evolutionary game theory will start
with the reductive game and then simulate that interaction
over a model of space to show a surprising difference in dy-
namics between the spatial model and the mean-field. Excep-
tional works like that of Ohtsuki and Nowak (2006) (more re-
cently, Nanda and Durrett (2017)), provide a general method
for combining a reductive game with spatial structure. Al-
though in its original presentation, Ohtsuki and Nowak (2006)
focused on dynamics on k-regular random graphs, I think it
can be useful to frame their work as a general first-order ap-
proximation of an arbitrary spatial structure.

First, let me present replicator equation as a zeroth-order
approximation of spatial structure. Without knowing any-
thing about spatial structure, the roughest guess we can make
of the probability of interacting with another agent is just to
say that we sample agents from a distribution given by their
proportion in the population – a mean-field approximation.
This gives us a utility function for agents of type i as [Gx]i
where Gij is the payoff of an agent of type i interacting with
an agent of type j and x is a vector of proportions of agents of
each type. From here on in, our hands are tied and the math
forces us to replicator dynamics: ẋi = xi([Gx]i − xTGx).

But the perfect sampling used in the calculation of fitness
effectively makes interactions global. To overcome this, we
can say that instead of the fitness being the mean-field [Gx]i,
we instead sample M interaction partners from the distribu-

tion given by x and use these local interaction groups for our
fitness calculation. This would be our 0.5th-order approxi-
mation. In this case, Hilbe (2011) showed that the result is
still replicator dynamics (although with a different time-scale
that is irrelevant to the functional form) but with a modified
payoff matrix G′ = G + 1

M−2
(G − GT ). Where GT is the

matrix transpose of G. This is a great way to reintroduce
some local effects, but the groups of M agents are constantly
re-sampled and fitness-competition still happens at a global
level; in other words, there is no spatial structure. Hence the
0.5 and not 1.

To get things completely localized, we will assume a fixed
population size, and make our replication procedure more ex-
plicit to make a first-order approximation of spatial structure.
Since the population size is fixed, we can only get a new agent
if an old one dies, this gives us a great way to localize. Once
a focal agent dies, there is some neighborhood of the focal
agent with k agents that compete for the focal spot. Now,
we can have some extra information, instead of just keep-
ing track of the proportion of agents of type i given by xi,
we can keep track of neighbors. More explicitly, we will use
pair-approximation (Matsuda et al. 1987; Van Baalen 2000)
to keep track of proportion xij : the probability of seeing an
agent of type i in the neighborhood of an agent of type j.

This tells us who is competing for for the vacated spot,
but it doesn’t let us calculate their fitness because we would
need to know the probability xijk of seeing an agent of type
i near an agent of type j and k. To update that probability,
we would need to know more long range effects like xijkl,
etc. Hence, for a first-order approximation, we truncate the
series here and approximate the further effects by saying that
xijk = xij .

13 Working under these assumptions, Ohtsuki and
Nowak (2006) showed that we still get replicator dynamics
but with a modified payoff matrix G′′ given by:

ONk(G) = G+
1

k − 2
(~∆~1T −~1~∆T )︸ ︷︷ ︸

assortativeness from local dispersal

+
1

(k + 1)(k − 2)
(G−GT )︸ ︷︷ ︸

finite sampling from
death-birth updating

(20)

where vector ∆ which is the diagonal of the game matrix G,
i.e. ∆i = Gii and ~1 is the all ones vector; thus l∆~1T (~1∆T )
is a matrix with diagonal elements repeated to fill each row
(column). Note that we have k agents competing for a spot,
and each one samples k− 1 other agents (since one spot they
are neighboring was just vacated) so M = k(k−1). Thus, the
last term is Hilbe (2011) finite sampling effect and the first
term is the spatial structure.

13Since we assumed that the neighbors of the perished agent i are
drawn from the same sort of distribution as the neighbors’ neighbors,
we have ignored extra correlations that might arise from looking out
to distance two or more, hence the first order nature of the approxi-
mation. Of course, like any first-order approximation, if higher-orders
are important then it will not agree with experimental data. However,
if we just look at data without a first-order theory then we wouldn’t
even know that higher-order terms are important. Thus, the first-order
approximation is always a good first step; if empirical results contra-
dict it then at least we know where to look, second-order and higher
correlations in the distributions of neighbors.
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To restate: the effective game G′′ = ONk(G) then has the
same mean-field replicator dynamics as the reductive game
G carried out on the spatial structure. This allows us to use
our tools of evolutionary game theory to analyze the trans-
formed game and thus learn something about the system im-
plemented by the reductive game and spatial structure. We
can think of this approach as bottom up: start with the reduc-
tive game, find the corresponding effective game (or other de-
scription of macroscopic population-level dynamics) and then
use these as a prediction to compare against observed phe-
nomena.

As an example of the typical study of space in EGT, con-
sider Kaznatcheev, Scott, and Basanta (2015). Here, we
started with the reductive Go-vs-Grow game between invasive
(INV; Go) and autonomously growing (AG; Grow) cells (Bas-
anta, Hatzikirou, and Deutsch 2008). We wanted to know
how the game was effected by different spatial structure in the
bulk versus a static boundry of a tumour, so we transformed
it according to the Ohtsuki and Nowak (2006) transform:

( INV AG

INV 1
2
b+ 1

2
(b− c) b− c

AG b 1
2
b

)
(21)

↓
ONk(◦)
↓ 1

2 b+ 1
2(b− c) b 2k − 3

2(k − 2)
− c2k2 − k − 1

2(M − 2)

b 2k − 5
2(k − 2)

+ c k + 3
2(M − 2)

1
2 b


(22)

where M = k(k − 1).
Unlike the reductive game in equation 21, the effective

game in equation 22 allows for a fully invasive tumour when
k+1
k2+1

≥ c
b
. From this, we drew the surprising conclusion that

a tumour can have much more invasive phenotypes at the
boundary than the bulk.

3.2 Operationalizing spatial structure

But when we apply the typical pipeline: how do we know
that the local interactions of the reductive game are the right
ones to start with? In the example above, how do we know
that the reductive Go-vs-Grow game is given by equation 21?
For macroscopic systems like human or other large animals,
we might be able to directly observe or maybe even design
the reductive game. In microscopic systems like cancer, how-
ever, we tend to guess these games from intuitions acquired
by looking at population level experiments. Unfortunately,
these experiments seldom explicitly account for the effect of
their spatial structure. Hence, they are actually intuitions
about the effective game that we then feed into our models
as the reductive game. This is the common confusion about
spatial structure in microscopic systems. We are taking a
game from a top-level view, feeding it into the bottom level,
getting a different result at the top-level and then publishing
that surprising conclusion.

This is backwards. At best, it is just telling us that our in-
tuitions about the game were wrong – since correct intuitions
about the reductive game should yield the observed effective
games. At worst, this is a type-errors and thus incoherent: we
are feeding in an effective game where we should be putting
a reductive game.

Instead, I propose starting with our measurement of effec-
tive games and pushing it down with an operationalization of
spatial structure. We can achieve this, by giving an experi-
mental definition of the local environment of cells. This local
perspective might be very different from the perspective that
an experimenter has of the system as a whole.

Let’s suppose we are considering a system with two possible
strategies A and B then we can define the following functions:

• Let ρA : N× N → [0, 1] be the distribution over number
of type A and type B partners that a player of strategy
A encounters; i.e. ρ(kA, kB) is the probability of encoun-
tering kA many players of type A and kB many players
of type B during the timescale relevant to the calculation
of local fitness. This is similar to pij in our discussion of
the Ohtsuki-Nowak transform.

• Let ω̂A : N × N → R be the local fitness function for an
agent of type A; i.e. ω̂A(kA, kB) is the local fitness of
an agent of type A that encountered kA many players
of type A and kB many players of type B during the
timescale relevant to the calculation of local fitness.

Define ρB , ω̂B analogously for strategy B. This allows us to
write down the replicator dynamics at the level of the whole
population as ṗ = p(1− p)Γ(p) where the gain function Γ(p)
is given by:

Γ(p) = E(kA,kB) ∼ ρA [ω̂A(kA, kB)]−E(kA,kB) ∼ ρB [ω̂B(kA, kB)]
(23)

Since ρ{A,B} depends on p, let us name this mapping
S(p;~s) 7→ (ρA, ρB) and introduce an extra state vector ~s
which might also change with time according to some general
relationship: ~̇s = T (~s; p). This relationship between p,~s and
ρ is meant to capture the functional role of space or any other
discrepancy between the local and global perspectives. The
hope is that in practical settings, ~s is simple or non-existent
or the dynamics of ~s can be decoupled from the dynamics of
p by something like a separation of timescales, like what hap-
pens from using weak selection in the derivation of Ohtsuki
and Nowak (2006).

Now, suppose that we were able to find a system where the
equations for ~s can be decoupled from p. In that case, this
formalism is that we can start to operationalize space. The
first step to measure the gain function Γ(p) as described in
section 2.2. But measuring S is more difficult because it is
encoding much more information about the microdynamical
structure. A good first guess might be to take something
like a structured core biopsy and define an interaction radius
r. Then go through taking each cell as a focal agent and
count how many cells of type A and B are within distance
r of the focal agent. The result is an empirical estimate for
ρA, ρB . Repeat for different initial p to get as many points of
function S as desired. Clearly, if r is taken as the diameter
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of the slide then S will be basically an identity map since
p = ρA

ρA+ρB
in that case. At the other extreme, taking r

as less than a cell radius will make S into a constant map
with ρA = ρB = 1. For intermittent values of r, we will
potentially have a variance in different local densities for each
focal agent, and picking a good r will depend on trade-offs
between the level of error introduced by this variance versus
the level of error that’s introduced in the propagation from
raw gain function to game.

Unfortunately, just like with other effective concepts, this
operationalized of spatial structure might not always have
clear microdynamic interpretations. However, it does allow
us to go one step closer to experimentally understanding the
effects of spatial structure on populations without confusing
effective and reductive games.
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