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ABSTRACT 
 
Background 
Evidences in literature strongly advocate the potential of immunomodulatory peptides for 
use as vaccine adjuvants. All the mechanisms of vaccine adjuvants ensuing 
immunostimulatory effects directly or indirectly stimulate Antigen Presenting Cells 
(APCs). While numerous methods have been developed in the past for predicting B-cell 
and T-cell epitopes; no method is available for predicting the peptides that can modulate 
the APCs.  
Methods 
We named the peptides that can activate APCs as A-cell epitopes and developed methods 
for their prediction in this study. A dataset of experimentally validated A-cell epitopes 
was collected and compiled from various resources. To predict A-cell epitopes, we 
developed Support Vector Machine-based machine learning models using different 
sequence-based features.  
Results 
A hybrid model developed on a combination of sequence-based features (dipeptide 
composition and motif occurrence), achieved the highest accuracy of 96.91% with 
Matthews Correlation Coefficient (MCC) value of 0.94 on the training dataset. We also 
evaluated the hybrid models on an independent dataset and achieved a comparable 
accuracy of 94.93% with MCC 0.90.  
Conclusion 
The models developed in this study were implemented in a web-based platform 
VaxinPAD to predict and design immunomodulatory peptides or A-cell epitopes. This 
web server available at http://webs.iiitd.edu.in/raghava/vaxinpad/ and 
http://crdd.osdd.net/raghava/vaxinpad/ will facilitate researchers in designing peptide-
based vaccine adjuvants. 
 
Keywords: immunomodulatory peptide, Antigen Presenting Cells, A-cell epitopes, 
Support Vector Machine, adjuvants. 
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Introduction 
Peptide subunit vaccines are hailed as an advancement over live or inactivated whole 
organism vaccines due to their ability to minimize adverse reaction [1]. Yet, antigenic 
peptides by themselves are poorly immunogenic since they lack the capability of 
activating the innate immunity. Activation of the innate immune system is required for 
stimulation of whole immune system including adaptive immunity. Hence, there is a need 
for inclusion of immunostimulants known as adjuvants in the subunit vaccine 
formulations. Conventionally, empirical approaches were used for adjuvant discovery, so 
far limited adjuvants have been approved and licensed for clinical use like alum, MF59, 
AS03 and AS04 [2]. 
 
Vaccine adjuvants effectuate their action by a variety of mechanisms with all of them 
involving the Antigen Presenting Cells (APCs) particularly the dendritic cells [3]. One of 
these mechanisms is the activation of the pattern recognition receptors (PRRs) on the 
APCs that recognize conserved microbial molecular signatures. PRR ligands shape the 
adaptive immune response mediated by the APCs. A majority of the vaccine adjuvants 
are ligands of PRRs making them potential targets for rational design of vaccine 
adjuvants [2]. Thus, hypothesis-driven adjuvant development relies on the expectation 
that the mechanistic understanding of the immune responses exhibited by PRR ligands 
would enable fine-tuning the specificity of adjuvants to attain vaccine efficacy and safety, 
simultaneously. An important example of a class of molecules that have been shown to 
have immunomodulatory effects and are poised to become safe and cost-effective 
adjuvants in future is – short immunomodulating peptides [4]. Figure 1 is a schematic 
representation of the adaptive immune cell activation by a coordination of antigen 
presentation to the naïve adaptive immune cell with the release of cytokine milieu 
mediated by PRR activation. Keeping in view the role of peptide ligands of PRRs in the 
activation of APCs, we introduce the term ‘A-cell epitopes’ for these immunomodulatory 
peptides. 
 
Cationic Host Defense Peptides (HDPs) were originally discovered as antimicrobial 
peptides produced within the multicellular organisms having a broad-spectrum activity 
against bacteria, viruses, fungi, protozoa, etc [5]. Of late, HDPs and their synthetic 
analogs called Innate Defense Regulators (IDRs) have been realized to cause 
immunomodulatory effects like differentiation and activation of innate and adaptive 
immune cells, modulation of pro- and anti-inflammatory responses, chemo attraction, 
autophagy, apoptosis and enhancement of immune-mediated bacterial killing 
[6][25113635]. Many Host Defense Peptides (HDPs) with known immunomodulatory 
effects are already in clinical trials [7]. IMMACCEL-R is a short synthetic peptide with 
immunomodulatory properties that has been commercialized for use as vaccine adjuvant 
in animals and birds for the purpose of antibody generation [8]. The human Cathelicidin 
antimicrobial peptide (CAMP or LL37) is another well-known antimicrobial peptide 
shown to induce immunomodulatory effects [9] and has been found to be associated with 
immune-related disorders like psoriasis [10] and morbus Kostmann [11]. 
 
Adjuvants have been incorporated into the vaccine formulations for qualitative alteration 
of the adaptive immune responses that are different from non-adjuvanted antigens. For 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2017. ; https://doi.org/10.1101/232025doi: bioRxiv preprint 

https://doi.org/10.1101/232025
http://creativecommons.org/licenses/by-nd/4.0/


	 4	

instance, the adjuvants have been used to skew the immune responses with respect to Th1 
(T-helper 1) cells versus Th2 cells, CD8+ versus CD4+ T cells, specific antibody types, 
etc. [2]. The PRR ligands produce these effects by virtue of the adapter proteins in the 
signaling pathways activated by the PRR. For example, bacterial flagellin protein causes 
adjuvant effect through TLR 5 and produces a mixed Th1 and Th2 response instead of 
polarized Th1 response and requires TLR adapter protein MyD88 for this effect. In 
contrast, monophosphoryl lipid A (MPL) and bacterial lipopolysaccharide (LPS) acting 
through TLR 4 activation lead to production of pro-inflammatory cytokine TNF leading 
to a polarized Th1 response instead of mixed Th1-Th2 response. While MPL signals 
through TRIF adaptor, LPS mediated activation of TLR 4 acts through both TRIF and 
MyD88 adapter proteins. Thus, MPL formulated on alum (AS04) stimulates a polarized 
Th1 cell response and is a component of licensed 
vaccine for HBV and papilloma that has proven to be both safe and effective. 
 
Developing adjuvants based merely on empirical studies without the understanding of 
mechanisms is inadequate [2]. There is a need to develop systematic and rational 
approaches for designing highly potent vaccine adjuvants. One such approach could be 
the development of PRR ligands into vaccine adjuvants since their mechanism is known.  
In such a scenario, in silico models to screen and identify potential vaccine adjuvant 
candidates could prove to be useful as the existing experimental approaches are time and 
resources consuming [12]. Previously, our group developed a method, VaccineDA for 
predicting immunomodulatory oligodeoxynucleotides that can activate innate immune 
system via Toll-like receptor-9 (TLR-9). This tool can be used for designing 
oligodeoxynucleotide-based vaccine adjuvants as well as for genome-wide screening of 
vaccine adjuvants [13]. Recently, we also developed a method imRNA for designing 
single-stranded RNA (ssRNA) based vaccine adjuvants [14]. These methods may play an 
important role in designing DNA and RNA-based therapeutics as these methods allow a 
user to design oligonucleotides of desired immunogenicity. 
  
In the last two decades, numerous method have been developed for predicting potential of 
peptides to stimulate adaptive arm of the immune system that include methods for 
predicting MHC binders, B-cell epitopes [15–23] and T-cell epitopes [24–31]. To the best 
of our knowledge, no method has been developed so far for predicting 
immunostimulatory potential of peptides to activate innate immunity. In this study, we 
made an effort to develop method for predicting immunomodulatory peptides that can 
activate innate arm of immune system or antigen presenting cells.  These peptides 
activate the antigen presenting cells (e.g., dendritic, macrophages); hence, we propose 
that these immunomodulatory peptides be termed as ‘A-cell epitopes’. 
   
In the present work, first we collected experimentally identified immunomodulatory 
peptides from the literature and included them in our positive set named A-cell epitopes. 
Next, we collected the human endogenously circulating peptides to build the negative set 
named A-cell non-epitopes. Combining the positive and the negative sets into a complete 
dataset, we developed Support Vector Machine (SVM) based computational models that 
can classify a new query peptide as A-cell epitope or non-epitope. To benefit the users of 
the scientific community, we provided the best performing SVM-based prediction models 
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in the form of a web-based application called VaxinPAD to be used for identifying and 
designing novel A-cell epitopes. Such peptides identified computationally might serve as 
the starting molecules for designing peptide-based vaccine adjuvants. 
 
 
MATERIAL AND METHODS 
 
Dataset 
The experimentally validated immunomodulatory peptide sequences were obtained from 
16 patents. As an example of the sequences considered immunomodulatory, a set of 
sequences taken from a patent (US20110008318 A1), includes flagellin-derieved peptides 
that exhibit immunomodulatory effect by direct binding to TLR 5 as indicated by assays 
reporting increased NF-κB expression estimated from coupled luciferase activity and 
TNFα production estimated using flow cytometry. In one of the patents (US7462360 B2), 
a class of immunomodulatory peptides, called Alloferons, derieved from the bacteria 
challenged blood of larvae of the insect blowfly, Calliphora vicina, have been found to 
stimulate the cytotoxic anticancer activity of the human NK-cells and lymphocytes. In 
another case, a set of peptides as described in patent US8791061 B2 have been shown to 
enhance innate immunity by modulating the activity of type II transmembrane serine 
protease dipeptidyl peptidase (DPPIV) also known as CD26 or adenosine deaminase 
binding protein, expressed on major immune cells like activated T-Cells, B-Cells, NK-
cells, macrophages and epithelial cells. With two major functions of signal transduction 
and proteolysis, the effects of DPPIV protein-mediated cellular processes include 
modulation of the chemokine activity by cleaving dipeptides from chemokine N-terminus 
that alters the receptor binding and specificity of the processed chemokine. DPPIV is a 
neutrophil chemorepellant and eosinophil chemoattractant too.  
After removing the longer sequences, 304 unique sequences left in the length range of 3-
30 residues were used to constitute the positive dataset named here as the A-cell epitopes. 
The upper bound of length 30 residues was kept as more than 90% of the originally 
collected epitope sequences were retained keeping this criterion used for removing very 
long sequences. In the absence of experimentally verified non-immunomodulatory 
peptides (non-epitopes), the experimentally identified endogenous human serum peptides 
[32, 33] were taken as non-epitopes. We assume these peptides are non-immunogenic as 
they are part of human serum, thus we assign them as non-epitopes. Only the sequences 
of the length 3-30 were taken into the negative dataset. In this manner, the Main dataset 
consisted of 304 A-cell epitopes and 385 non-epitopes. Table S1 (Additional File 1) 
provides the sequences and the source patent/publication for the positive and the negative 
datasets. 
 
Input Features 
In order to develop any in silico model it is important to generate input features 
corresponding to each data point. In this study, a data point is the amino acid sequence of 
a peptide (either A-cell epitope or non-epitope). It is important to generate fixed length 
input features because machine-learning techniques require fixed length vector for 
developing a model. As the length of peptides is variable, thus we computed amino acid 
composition of A-cell epitopes and non-epitopes for developing models. We also 
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computed the average amino acid composition of A-cell epitopes, non-epitopes and the 
human proteins, in order to understand compositional bias in A-cell epitopes. The amino 
acid composition for each sequence constituted the input vector of length 20, which was 
used for developing SVM-based prediction models. Similarly, the dipeptide composition 
vectors of length 400 were generated for A-cell epitopes and non-epitopes with each 
element of a vector corresponding to the composition value of each type of possible 
dipeptide. In addition to compositional features, we also generated binary features for 
developing models using fixed length of amino acids from terminus (N- or C- or both 
terminal) of peptides. In the case of binary feature, an amino acid is represented by a 
vector of 20, where the presence of amino acid is indicated by ‘1’ and the absence is 
presented by ‘0’ [26]. This means a peptide of length N is presented by a vector of length 
N×20 in the case of binary features.  
 
Motif Search 
We used the Motif—EmeRging and with Classes—Identification (MERCI) 
Program[34][] to identify motifs exclusively occurring in the A-cell epitopes [35]. 
Though this program allows searching for gapped and ungapped motifs, but we restricted 
our analysis to the ungapped motifs. It is well established that in the case of T-cell 
epitopes, even a single residue mutation changes its immunogenicity [36] and can even 
eliminate the immunogenicity of the epitope [37]. Hence, intuitively the ungapped motifs 
found to be conserved among the positive sequences are more likely to help identify 
novel A-cell epitopes. Thus, we computed and compared the frequency of occurrence of 
ungapped motifs in A-cell epitopes, non-epitopes and the Swiss-Prot proteins. 
 
Support Vector Machine (SVM) 
All the prediction models in this study were developed using SVM, which has been 
frequently used to develop models for epitope prediction in previous studies [15, 17, 27]. 
SVM has been the method of choice for building epitope prediction models especially T-
cell epitopes [38] due to its ability to provide effective models on high dimensionality 
data with less data points. The dataset used in the current study contains data points 
comparable in number to the dimensionality. Hence, we optimized the prediction models 
on various parameters using the radial basis kernel of a freely available program SVMlight 
[39] to select the best performing models on different sets of features. 
 
Evaluation of models using internal and external validation 
In this study, standard procedure was followed to evaluate the performance of models in 
order to avoid biases in performance due to over optimization. Our Main dataset was 
divided into two categories internal and external dataset, where the internal dataset 
contained ~80% sequences and the external dataset comprised of the remaining 20% 
sequences. In order to perform internal validation, we performed five-fold cross 
validation technique on internal dataset. In this technique, the dataset is divided in five 
sets, four sets are used for training a model, and the remaining set is used for testing the 
model. This process is repeated five times so each sequence is tested only one time. In 
order to perform the external validation of a model, the best model developed using five-
fold cross validation is tested on an external dataset. It is important to assess the 
performance of a model on external or independent dataset because the performance of a 
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model in internal validation may be biased due to optimization of the model [27]. The 
performance of models was measured using standard metrics namely Sensitivity, 
Specificity, Accuracy and Matthew’s Correlation Coefficient (MCC) [19, 35].  
 
RESULTS 
Compositional Analysis 
One of the objectives of this study is to understand the nature of A-cell epitopes 
regarding the residues preferred in A-cell epitopes. Thus, we computed the average 
residue composition of A-cell epitopes and the non-epitopes. The non-epitope dataset 
consists of peptides occurring in the normal human serum assumed to be non-
immunomodulatory. In addition, the average residue composition of the Swiss-Prot 
Human proteins was also computed and compared with that of the A-cell epitopes. 
In the A-cell epitope dataset, the percentage composition of an amino acid residue was 
calculated for each epitope, and the average of these values was plotted in Figure 2 for 
the corresponding amino acid. Similarly, the average percentage composition was 
calculated for all the amino acids in the non-epitope dataset and the Swiss-Prot Human 
proteins. As shown in Figure 2, the residues showing noticeable differences in average 
composition between A-cell epitopes and non-epitopes are C, D, E, I, L, R, S, T, V and 
W. Student’s t-test significance value (p-value) was calculated for each residue type to 
check whether the composition values among A-cell epitopes were different from those 
in the non-epitopes. In decreasing order of significance (increasing adjusted p-value), the 
residues R, E, T, S, D, V, W, L, I and C showed the most significant difference between 
the A-cell epitopes and non-epitopes among all of the residue types with adjusted p-
values 1.76E-39, 1.66E-24, 7.04E-18, 3.59E-17, 3.72E-12, 2.79E-11, 5.21E-10, 7.91E-
10, 1.24E-09, 1.76E-08 respectively (Additional File 1 Table S2). In particular, when 
compared to the human proteins taken from Swiss-Prot; R was found to have a higher 
average composition in A-cell epitopes. The average composition of R in non-epitopes is 
lower than that in the human proteins. Overall, the residues I, R, V and W were found to 
be more abundant in the A-Cell epitopes as compared to the non-epitopes and Swiss-Prot 
Human proteins. 
 
Similarly, the dipeptide and tripeptide compositions of the A-cell epitopes and non-
epitopes were also compared with the Swiss-Prot Human proteins. Table S3 (Additional 
File 1) gives the average composition for each dipeptide in the A-cell epitopes, non-
epitopes as well as the Swiss-Prot Human proteins. After sorting the table according to 
descending order of difference of dipeptide composition between the A-cell epitopes and 
the human proteins, top 10 dinucleotide include the residues I, R and V. But these motifs 
also contain other amino acids that show less significant difference of abundance as 
compared to the non-epitopes and human proteins. Similar analysis of tripeptide 
composition is shown in Table S4 (Additional File 1). In this case too, the top 10 
tripeptide motifs include less abundant residues apart from I, R and V. 
 
Terminal Residue Preference 
We performed position-specific analysis of residues in A-cell epitopes to understand the 
type of residues preferred at different positions in A-cell epitopes. In this study, Two-
Sample Logo (TSL) tool (available at http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi)] 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2017. ; https://doi.org/10.1101/232025doi: bioRxiv preprint 

https://doi.org/10.1101/232025
http://creativecommons.org/licenses/by-nd/4.0/


	 8	

[40] was used to visualize residues preferred or not preferred in A-cell epitopes. Since the 
minimum peptide length in the dataset was 3, the N-terminal 3 residues of both the 
negative and the positive sequences were taken as input to build the N-terminus TSL. C-
terminus TSL was obtained using the C-terminal 3 residues from the dataset. Figure 3 
shows that the residues R, V and I are among the preferred residues in the A-cell epitopes 
at both the N and the C termini. 
 
MERCI Motif Analysis 
The Motif—EmeRging and with Classes—Identification (MERCI) Program is a software 
that helps in finding the motifs exclusive to one class when compared to another class of 
sequences. Table S5 (Additional File 1) provides the MERCI motifs exclusive to the A-
cell epitopes as compared to non-epitopes. Top 10 ungapped motifs with respect to the 
occurrence in the A-cell epitope sequences have a frequent occurrence of I, R and V. On 
the other hand, ungapped MERCI motifs exclusive in non-epitopes (Additional File 1 
Table S6) that are top 10 in abundance contain E, G, P and L. 
 
Rare Motif Occurrence 
We compared the occurrence of peptide n-mers (n=3,4,5,6) in the A-cell epitopes and 
non-epitopes. First, the occurrence of each type of n-mer was counted in all of the Swiss-
Prot proteins, and the n-mers were arranged in increasing order of occurrence. In this 
order, the n-mers were divided into 8 bins such that the 1st bin contained the n-mers least 
abundant in Swiss-Prot while the 8th bin contained the most abundant n-mers occurring 
in the Swiss-Prot. Next, the percentage of n-mers in a particular bin that occur in the 
Swiss-Prot was calculated with respect to the total number of n-mers in Swiss-Prot. 
Similar percentage value was calculated for A-cell epitopes and non-epitopes for each 
bin, and the values were presented in the form of a plot in Figure 4. 
Figure 4(a) shows that tripeptides in the first three bins occur more in A-cell epitopes 
while those of 4th, 5th, 6th, 7th and 8th bin (most abundant Swiss-Prot tripeptides) occur 
more in the non-epitopes. For tetrapeptides (Figure 4(b)), the bins having more number of 
tetrapeptides occurring in the A-cell epitopes than non-epitopes are 1st, 2nd, 3rd and 4th. 
Figure 4(c) shows the occurrence of the pentapeptides. The bins having distinctly more 
pentapeptides in the A-cell epitopes than non-epitopes are again the first four bins. On the 
other hand, the percentage occurrence of hexapeptides of A-cell epitopes is lower than 
non-epitopes and Swiss-Prot proteins only in the 8th bin (Figure 4(d)). 
 
Prediction of Immunomodulatory Peptides 
The sequence-based analyses like residue composition preferences; position-wise residue 
preference and motif search indicated that these features could help in discriminating the 
A-cell epitopes from non-epitopes. We developed SVM-based prediction models using 
SVMlight by from the dataset of 304 A-cell epitopes as positive sequences and 385 non-
epitopes as negative sequences. From each of the positive and negative datasets, ~80% 
sequences were kept in the Training-Testing dataset while the remaining ~20% were kept 
in the Independent Dataset. Thus, the Training-Testing dataset had 243 positive and 308 
negative sequences. The prediction models were developed in three categories. 
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Composition-based Models: The amino acid composition (AAC) and dipeptide (DPC) 
composition were used to develop SVM-based models on the Training-testing Dataset. 
On evaluating the performance parameters, the AAC model gave an accuracy of 95.10% 
and the Matthews Correlation Coefficient (MCC) value of 0.90 as given in Table 1. The 
DPC model also gave a similar performance in terms of accuracy (95.64%) and MCC 
(0.91) values. When the AAC and DPC models on the terminal 5 residues of the 
sequences individually (N or C terminus – Nter, Cter) or together (N and C termini 
combined - NCter) were developed, the NCter AAC and DPC models performed closest 
to but not better than the AAC and DPC models with MCC values for NCter AAC being 
0.88 and NCter DPC 0.87 (Table 1). 
 
Binary models: Binary models take the residue position into account by representing 
each residue type as a binary vector. We considered 5 and 10 residue positions from 
either end of the peptide sequences (N and C termini) and developed SVM-based models 
individually and in combination. In case of 5-residue position consideration, the model 
developed on combined 5 residue positions on both the N and C termini (N5C5 bin in 
Table 1) performed the best giving an accuracy value 90.97% and MCC value 0.82 while 
the N10C10 bin model performed the best among the 10-residue position models 
(accuracy 89.66% and MCC 0.78). 
 
Hybrid Model: In the previous motif analysis, motifs exclusive to the A-cell epitopes 
were identified using the MERCI program. We checked whether the motif information 
added to composition could help improve the performance of prediction. Indeed the 
AAC+motif model that combined the information of presence of motifs exclusive to A-
cell epitopes with amino acid composition achieved a better performance than AAC 
model on the Training-Testing dataset giving an accuracy value of 96.37% and MCC 
value of 0.93 (Table 1). Yet, the best model among all the feature combinations was that 
of motif information combined to the DPC (DPC+motif model) that gave an accuracy of 
96.91% and the MCC value 0.94. 
 
Performance of the models on the independent datasets 
The independent dataset consisted of ~20% of the total dataset resulting in 61 positive 
sequences and 77 negative sequences. The performances of the AAC and DPC models on 
the independent dataset were comparable to those on the Training-Testing dataset with 
AAC model giving an accuracy of 92.75% and MCC of 0.85 while DPC model giving an 
accuracy of 95.65% and MCC of 0.91 (Table 2). The MCC values of the NCter AAC and 
NCter DPC models in the independent dataset evaluation (0.92 and 0.90 respectively) 
were also close to those found in the Training-Testing Dataset evaluation (0.88 and 0.87 
respectively). Similar to the Training-Testing Dataset results, the N5C5 bin and N10C10 
bin models performed the best (MCC 0.93 and 0.81 respectively) among the binary 
models on the independent dataset. The hybrid model (AAC+motif and DPC+motif) gave 
accuracies 90.58% and 94.93% respectively, while the MCC values found were 0.81 and 
0.90 respectively when evaluated on the independent dataset (Table 2). Figure 5 is a plot 
of the MCC values of various SVM models on the Training-Testing Dataset shown as bar 
plot along with the MCC values of the models obtained on the Independent Dataset 
drawn as the line graph. The MCC values on both the datasets are comparable for each of 
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the models developed indicating that the models are not over-optimized on the Training-
Testing Dataset. 
 
VaxinPAD: The web Interface for prediction of A-cell epitopes 
For providing the SVM-based A-cell epitope prediction methods developed in the present 
study to the scientific community, we designed an in silico platform VaxinPAD 
(available at http://crdd.osdd.net/raghava/vaxinpad). The platform has a couple of utilities 
that may help the user in designing peptide-based adjuvants as well enhance or diminish 
the immunomodulatory potential of the query sequence. 
Designing of vaccine adjuvants: The ‘PREDICTION’ module of the VaxinPAD platform 
allows the user to check whether the query sequence would be immunomodulatory on the 
basis of SVM score. It allows the virtual screening of the A-cell epitopes among a library 
of input peptide sequences. 
 
Immunomodulatory regions in a protein: The ‘PROTEIN ADJUVANTS’ module of 
VaxinPAD does a window search across the length of a query protein sequence to 
identify immunomodulatory patches, the window size being user-defined. LL37, a well-
known immunomodulatory peptide is a 37 amino acid peptide derived from human 
Cathelicidin. This menu may help the researchers in identifying more such peptides that 
are immunomodulatory. 
 
Peptide Sequences Dataset: Finally, VaxinPAD includes a menu ‘DATASET’ that is a 
list of immunomodulatory peptides collected from literature. Among the sequences in the 
database only the peptides of length 3-30 were used for development of prediction 
models in the current work. 
 
DISCUSSION 
Previously, peptide-based vaccine adjuvants were largely being developed as ligands of 
innate immunity receptors like TLR-4 and TLR-2 [41] or as self-assembling 
nanostructure forming entity [42]. Recently, it has been realized that short 
immunomodulatory peptides can be developed as potential vaccine adjuvants [4]. 
Cationic Host Defense Peptides were previously known to have antibacterial activity by 
direct killing of the pathogen [43]. Of late, these peptides have been found to evoke the 
innate immunity by a variety of mechanisms [6]. A majority of these mechanisms involve 
pattern recognition receptors (PRRs) playing important roles especially in the Antigen 
Presenting Cells (APCs) like Dendritic cells, macrophages, etc. Since these peptides 
activate APCs, we call these peptides as ‘A-cell epitopes’ (Antigen Presenting Cell 
epitopes). The A-cell epitopes undertaken in the present study were collected from the 
patent literature that included host defense peptides as immunomodulatory sequences. To 
the best of the authors’ knowledge, the present study is the first attempt to develop an in 
silico tool for designing immunomodulatory peptides as the first step towards engineering 
novel peptide-based vaccine adjuvants. 
 
An important finding in this study was that the residues preferred in A-cell epitopes 
include arginine (R). Arginine enrichment of the peptide sequences is an important aspect 
of increasing the cellular uptake of cell-penetrating peptides (CPPs) [44]. Cathelicidins 
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are recognized as an important class of host defense peptides that includes many 
arginine-rich peptides [45]. Further, human Cathelicidin-derived peptide LL37 that is rich 
in basic residues arginine and lysine has been reviewed as a promising 
immunomodulatory peptide with cell penetrating properties [46]. Hence, sequence 
analysis of the A-cell epitopes may indicate cell-penetrating ability to be an associated 
property of the A-cell epitopes. 
 
Another aspect of our sequence analysis is the occurrence of n-mers found sparsely in the 
naturally occurring proteins. Patel et al, 2012 [47] found that peptide pentapeptides 
occurring rarely in the universal proteome when introduced into the end of the antigenic 
sequence enhanced its antigenicity and also suggested that on exogenous addition these 
rare pentapeptides could act as immunomodulators and thus could be developed as 
adjuvants. In our analysis too, we found that tripeptides, tetrapeptides and pentapeptides 
occurring rarely in Swiss-Prot proteins to be present more in the A-cell epitopes than 
non-epitopes. This fits well with the intuition that the immune system is more likely to 
react to rarely encountered sequence motifs than frequent ones. 
 
On evaluating the performance of SVM models based on composition, the dipeptide 
composition showed no improvement over amino acid composition. The binary models 
also showed a lower performance than composition-based models. On the other hand, 
addition of the motif information increased the performance of both the amino acid 
composition model as well as dipeptide composition to achieve the maximum accuracies 
of ~96%. 
 
The peptides designed using the tools developed in the present study might act by various 
mechanisms and receptors for activating the innate immunity owing to the fact that the 
training dataset of the prediction models contains peptides acting by diverse cell signaling 
routes. Hence, the in silico tool presented here could help an investigator to begin with a 
choice of peptides that may be the starting points in the development of vaccine 
adjuvants. Whether these peptides actually prove to be useful as adjuvants, would have to 
be tested experimentally. Another limiting aspect of the present study is the exclusion of 
very long immunomodulatory sequences. With larger datasets and receptor-specific 
ligands made available in future, studies subsequent to the present investigation might 
help design peptides eliciting a specific desired immune response. Nonetheless, 
VaxinPAD developed in this study for predicting the immunomodulatory peptides sets a 
stage for the advancement of rational peptide-based vaccine adjuvant designing. 
 
In silico methods for predicting and identifying DNA and RNA-based 
immunomodulatory molecules have already been developed [13, 14]. The current study is 
the first attempt to develop models for predicting immunomodulatory peptides for the 
development of vaccine adjuvants. Though other biomolecules like lipopolysaccharides 
and glycosaminoglycans also cause activation of innate immunity by binding to the 
PRRs, the literature currently does not hold a sufficient number of molecules for 
developing prediction models in these categories. Future studies might focus on the 
development of in silico tools for predicting such immunomodulatory biomolecules for 
obtaining new vaccine adjuvants. In addition to this, peptides with non-natural chemical 
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modifications might offer better adjuvants too. Correspondingly, computational tools for 
prediction of modified peptides might also become an area of development. 
 
CONCLUSION 
Host Defense Peptides have been realized as promising immunomodulators likely to 
become potential vaccine adjuvants [43]. With immunomodulatory properties, novel 
peptides predicted to be A-cell epitopes using the models developed here are also likely 
to have potential to provide host protection against pathogens. Many Host Defense 
Peptides (HDPs) with known immunomodulatory effects are already in clinical trials 
[43]. Despite the associated toxicity of the A-cell epitopes due to their pleiotropic effects 
on the immune system, rational design of Innate Defense Regulators (IDRs) that are 
synthetic analogs of HDPs is in pressing demand for having immunopotentiators with 
reduced toxicity and increased specificity of immune responses. We have developed 
SVM-based models for prediction of A-cell epitopes that could be used to formulate 
vaccine adjuvants. These models have been implemented in the form of webserver 
VaxinPAD available at http://webs.iiitd.edu.in/raghava/vaxinpad/ and 
http://crdd.osdd.net/raghava/vaxinpad/ freely to the scientific community. 
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Table 1: The performance of SVM-based models developed using various features 
including different types of amino acid composition. This is internal cross-validation 
where models were evaluated on training dataset using five-fold cross-validation.   
 
 
Features Threshold Sensitivity(%) Specificity(%) Accuracy(%) MCC 
AAC 0.00 94.24 95.78 95.10 0.90 
Nter AAC 0.00 89.08 91.50 90.34 0.81 
Cter AAC 0.00 91.27 92.31 91.81 0.84 
NCter AAC -0.10 92.58 95.14 93.91 0.88 
DPC 0.00 95.06 96.10 95.64 0.91 
Nter DPC -0.10 86.03 86.64 86.34 0.73 
Cter DPC -0.10 89.96 94.33 92.23 0.84 
NCter DPC 0.10 92.14 94.33 93.28 0.87 
N5 bin -0.10 87.34 88.26 87.82 0.76 
C5 bin -0.20 86.46 89.47 88.03 0.76 
N5C5 bin 0.00 89.96 91.90 90.97 0.82 
N10 bin -0.20 86.37 85.88 86.21 0.72 
C10 bin -0.20 83.19 88.14 86.21 0.71 
N10C10 bin -0.30 88.50 90.40 89.66 0.78 
AAC+motif 0.00 96.30 96.43 96.37 0.93 
DPC+motif 0.00 95.47 98.05 96.91 0.94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2017. ; https://doi.org/10.1101/232025doi: bioRxiv preprint 

https://doi.org/10.1101/232025
http://creativecommons.org/licenses/by-nd/4.0/


	 19	

Table 2: The performance of A-cell epitope prediction models developed using 
different features on an independent dataset (external cross-validation).  
 
Features Threshold Sensitivity(%) Specificity(%) Accuracy(%) MCC 
AAC 0.00 91.80 93.51 92.75 0.85 
Nter AAC 0.00 85.45 96.92 91.67 0.84 
Cter AAC 0.00 89.09 90.77 90.00 0.80 
NCter AAC -0.10 92.73 98.46 95.83 0.92 
DPC 0.00 95.08 96.10 95.65 0.91 
Nter DPC -0.10 90.16 92.21 91.30 0.82 
Cter DPC -0.10 96.36 90.77 93.33 0.87 
NCter DPC 0.10 95.08 94.81 94.93 0.90 
N5 bin -0.10 87.27 93.85 90.83 0.82 
C5 bin -0.20 92.73 92.31 92.50 0.85 
N5C5 bin 0.00 96.36 96.92 96.67 0.93 
N10 bin -0.10 92.31 79.59 84.00 0.69 
C10 bin -0.20 80.77 91.84 88.00 0.73 
N10C10 bin -0.30 96.15 87.76 90.67 0.81 
AAC+motif 0.00 90.16 90.91 90.58 0.81 
DPC+motif 0.00 93.44 96.10 94.93 0.90 

 
* MCC: Matthews Correlation Coefficient, AAC: Amino Acid Composition, DPC: 
Dipeptide Composition, Nter AAC: N terminus (5 residues) amino acid composition, 
Cter AAC: C terminus (5 residues) amino acid composition, NCter AAC: N and C 
terminus (5 residues each) amino acid composition,Nter DPC: N terminus (5 residues) 
dipeptide composition, Cter DPC: C terminus (5 residues) dipeptide composition, NCter 
DPC: N and C terminus (5 residues each) dipeptide composition, N5 bin: Binary profile 
5 residues from N-terminus, C5 bin: Binary profile 5 residues from C-terminus, N5C5 
bin: Binary Profile 5 residues from N-terminus and C terminus, N10 bin: Binary profile 
10 residues from N-terminus, C10 bin: Binary profile 10 residues from C-terminus, 
N10C10 bin: Binary Profile 10 residues from N-terminus and C terminus, AAC+motif: 
amino acid composition with MERCI motif score, DPC+motif: dipeptide composition 
with MERCI motif score. 
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Figure Legends 
 
Figure 1: An illustrative mechanism of Antigen Presenting Cell (APC) activation caused 
by immunomodulatory peptides through innate immune receptors leading to the induction 
of adaptive immune cells. The immunomodulatory peptides are ligands of innate immune 
receptors that evoke cytokine expression through cellular signaling pathways. The 
cytokines lead to the maturation of naïve cells into mature adaptive immune cells such as 
various types of T-lymphocytes. Since the immunomodulatory peptides activate the 
APCs leading to the activation of the adaptive immune cells, they may be used as vaccine 
adjuvants and be called ‘A-cell epitopes’. The figure was drawn using ScienceSlides, 
made available at http://www.scienceslides.com/ by VisiScience. 
 
Figure 2: Bar plots showing the comparison of percent average amino acid composition 
of A-cell epitopes (blue) with non-epitopes (red) and Swiss-Prot Human proteins (green).  
 
Figure 3: Two-Sample Logo of the 3 residue positions at the (a) N-terminus and (b) C-
terminus of the A-cell epitopes and non-epitopes. Enriched label represents the positive 
dataset whereas depleted label represents the negative dataset. In a Two-Sample Logo, 
the height of a symbol at a residue position is proportional to the difference in symbol 
frequency between the positive and the negative datasets at that residue position. In the 
case of A-cell epitopes (as positives) and non-epitopes (as negatives), R is a preferred 
amino acid at terminal positions apart from I and V. The symbol colors are in accordance 
with the WebLogo default color scheme provided by the server available at 
http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi. In the default WebLogo color scheme, 
residues G, S, T, Y and C appear in green color, N and Q are colored purple, K, R and H 
are depicted in blue, D and E are drawn red and P, A, W, F, L, I, M and V are shaded 
black. 
 
Figure 4: Comparison of occurrence of (a) tripeptides, (b) tetrapeptides, (c) 
pentapeptides and (d) hexapeptides divided into 8 bins in the ascending order of 
occurrence (most rarely occurring to most abundant) in Swiss-Prot proteins. 
 
Figure 5: Comparison of the Support Vector Machine-based prediction models on the 
Training-Testing and the Independent Datasets. The striped bars correspond to the 
Matthews Correlation Coefficient (MCC) values obtained for the models on the Training-
Testing Dataset and the solid line joins the MCC values of the models on the Independent 
Dataset. For each model, the MCC values for the Training-Testing Dataset and the 
Independent Dataset are comparable indicating the reliable prediction capabilities of the 
models. 
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Additional File 
 
Additional File 1: Table S1: Dataset (A-cell epitopes and Non-epitope) used for 
training, testing and validation; including suorce of information. Table S1: Dataset (A-
cell epitopes and Non-epitope) used for training, testing and validation; including suorce 
of information. Table S3: The percent dipeptide composition and difference in 
composition in A-cell epitopes, non-epitopes and human proteins. Table S4: The percent 
tripeptide compositions of A-cell Epitopes, Non-epitopes and Human proteins. Rows are 
sorted in decreasing order of values in the 5th column. Table S5: Motifs exclusively 
found in A-cell epitopes and their frequency of occurrence, sorted in the decreasing order  
of counts. Table S6: Motifs exclusively found in Non-epitopes and their frequency of 
occurance, sorted in decreasing order of counts.   
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