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Abstract 26 

Incubation represents a life stage of crucial importance for the optimal development of avian 27 

embryos. For most birds, incubation poses a trade-off between investing in self-maintenance 28 

and offspring care. Furthermore, incubation is affected by environmental temperatures and, 29 

therefore, will be likely impacted by climate change. Despite its relevance and readily 30 

available temperature logging methods, avian incubation research is hindered by recognised 31 

limitations in available software. In this paper, a new quantitative approach to analyse 32 

incubation behaviour is presented. This new approach is embedded in a free R package, 33 

incR. The flexibility of the R environment eases the analysis, validation and visualisation of 34 

incubation temperature data. The core algorithm in incR is validated here and it is shown 35 

that the method extracts accurate metrics of incubation behaviour (e.g. number and duration 36 

of incubation bouts). This paper also presents a suggested workflow along with detailed R 37 

code to aid the practical implementation of incR. 38 
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Introduction 51 

Incubation represents a crucial life stage for egg-laying vertebrates, of which birds are a 52 

paramount example. Fine control of incubation is essential and has deep ecological and 53 

evolutionary implications, notably for developing offspring but also for their parents 54 

(Conway and Martin 2000, Durant et al. 2013). For embryos, the thermal environment that 55 

the incubating individual provides is essential for successful development. Suboptimal 56 

incubation temperatures can lead to delayed embryonic growth (Hepp et al. 2006, Nord and 57 

Nilsson 2011), hormonal and immune changes (Ardia et al. 2010, DuRant et al. 2014), and 58 

long-term survival consequences (Berntsen and Bech 2016). However, incubating individuals 59 

need to divide their time budget between incubation and self-maintenance (e.g. foraging) and, 60 

therefore, they allocate time to each activity according to prevalent ecological conditions (e.g. 61 

ambient temperatures (Coe et al. 2015) or food availability (Londoño et al. 2008)). Despite a 62 

long standing scientific interest in incubation, we are still elucidating subtle ecological causes 63 

and consequences of variation in this behaviour (Durant et al. 2013, Smith et al. 2015, Bulla 64 

et al. 2016) which may have important practical implications, for example, in a context of 65 

global climate change (Griffith et al. 2016). 66 

The study of avian incubation is nowadays fuelled by recent technological advances (see 67 

Smith et al. 2015). In particular, the use of iButtons® (Maxim Integrated) and probed 68 

Tinytags (Gemini Data Loggers) allows researchers to measure incubation temperature as 69 

frequently as every second for long periods of time with minimal disturbance. These 70 

technologies have the potential to expand the range of species and scientific questions that 71 

researchers can address. However, the amount of data collected is usually much larger than it 72 

was traditionally available and several analytical hurdles must be overcome. 73 
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Before answering biological questions about incubation patterns, the observer needs to 74 

summarise the data and effectively reduce them to a few variables that can be correlated with 75 

a set of predictors of interest. For example, number of incubation bouts and their duration are 76 

popular metrics in avian studies (Cooper and Voss 2013). The first software for the analysis 77 

of incubation temperatures was released more than 10 years ago: Rhythm (Cooper and Mills 78 

2005). The benefits of Rhythm were immediate as it allowed the automated differentiation 79 

between time periods when eggs were being incubated (Cooper and Voss 2013, Coe et al. 80 

2015). This software made fast and objective an otherwise time-consuming and subjective 81 

activity. However, in a time when incubation data collection is easier than ever before, 82 

Rhythm lacks much of the flexibility required for the handling of big data sets. Rhythm also 83 

has limited analytical and graphical capabilities, which are a desire when thousands of 84 

temperature records may be available. However, apart from Rhythm, no other specialised 85 

software is currently available to analyse incubation temperature data. 86 

To overcome these difficulties, I have developed a new R package, incR. This package 87 

provides a suite of R functions that i) prepare and format a raw temperature time-series (via 88 

the incRprep and incRenv functions), ii) apply an automated algorithm to score 89 

incubation (incRscan), iii) plot the data (incRplot) and iv) calculate biologically 90 

relevant metrics of incubation (e.g. number of incubation bouts) (Figure 1). Users can apply 91 

the whole pipeline or use any of the components of incR separately. incR takes advantage 92 

of the flexibility in data handling and graphical capabilities offered by R. I first explain the 93 

workflow of incR and its automated algorithm to score incubation. Then, I use video-94 

recordings of incubating blue (Cyanistes caeruleus) and great tit (Parus major) females along 95 

with incubation temperature data to validate the automated algorithm. I further show how 96 

incR can accurately calculate several metrics of incubation behaviour. Finally, I discuss the 97 

general application of this new method and its potential limitations. A stable version of the 98 
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package is available on CRAN (v 1.1.0) and a development version can be found on GitHub 99 

(v 1.1.0.9000. https://github.com/PabloCapilla/incR). 100 

incR workflow 101 

The method implemented in incR exploits variation in nest (incubation) and ambient 102 

temperature to calculate the presence or absence of an incubating individual in the nest. 103 

Ambient temperature data are ideally collected near the nesting site but can also be obtained 104 

from web-based sources if the latter is not available. Code and advice to replicate the 105 

analyses presented here can be found in Appendix 1 and 2, the package documentation 106 

(https://cran.r-project.org/web/packages/incR/incR.pdf) and in a package vignette (accessible 107 

in R via: browseVignettes(“incR”)). Additionally, incR is distributed with an 108 

example data set that can be explored to understand data structure and the use of each incR 109 

function. For details to install the package, visit: https://github.com/PabloCapilla/incR 110 

Data preparation: incRprep and incRenv 111 

To start working with incR, the user needs to have a file with temperature and time 112 

information for a single nest under study. This file should consist of at least two columns: 113 

date-time and temperature values. Once this initial file is prepared, the first step in the 114 

pipeline is performed by incRprep, which simply prepares the dataset for other pipeline 115 

components. Then, incRenv can be used to automatically assign environmental temperature 116 

to every incubation temperature observation, information required by incRscan to score 117 

incubation (Figure 1). incR is distributed with sample data and, therefore, the user can 118 

check the data structure needed to start the pipeline. 119 

Automated incubation scoring: incRscan 120 

The algorithm implemented by incRscan exploits changes in nest temperature that arise 121 

from the behaviour of the incubating adult considering the difference between incubation (i.e. 122 
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temperature in the nest cup) and environmental temperatures (see Table 1 for definitions of 123 

terms used throughout the paper). 124 

Four possible situations broadly exist regarding the change in nest temperature after the 125 

incubating individual enters (on-bout) and leaves (off-bout) the nest. These four scenarios are 126 

classified as follows: 1) incubation off-bout when nest temperature is high (close to 127 

maximum incubation temperature); 2) incubation on-bout when nest temperature is high 128 

(close to maximum incubation temperature); 3) incubation off-bout when nest temperature is 129 

low (close to environmental temperature); 4) incubation on-bout when nest temperature is 130 

low (close to environmental temperature). See Figure S1 for a visual representation of these 131 

four scenarios. Cases 3 and 4 are especially sensitive to the assumption that environmental 132 

temperature is lower than maximum incubation temperature (see Results and Discussion). 133 

The change in nest temperature that is expected after an incubation on- / off-bout differs 134 

across the four scenarios. 135 

Assuming that environmental temperature is normally lower than maximum incubation 136 

temperature, in scenario 1, when the incubating individual leaves the nest, a sharp drop in 137 

nest temperature is expected to follow (Off-bout(1) in Figure S1). At this point, any increase 138 

in nest temperature would mean that the bird has returned to the nest (scenario 2. On-bout(2) 139 

in Figure S1). If an off-bout occurs when nest temperature is close to the environmental 140 

temperature (scenario 3), the decrease in nest temperature after the event would be small 141 

(Off-bout(3) in Figure S1). When a long off-bout brings nest temperature close to the 142 

environmental one, an incubation on-bout would be reflected in a large increase in nest 143 

temperature (scenario 4. On-bout(4) in Figure S1).  144 

These four scenarios represent simplified extremes in a spectrum of possible situations but 145 

they illustrate the general principle. To explain the analytical approach in more practical 146 
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terms, I here describe the analysis of one day of incubation (day 1), using the terminology 147 

employed in the R package (Table 1).  148 

 149 

For every time point in the incubation time series, incRscan calculates the difference 150 

between nest and environmental temperatures. Then, these differences are compared against 151 

the value of temp.diff.threshold (Table 1), determining whether scenarios 1 and 2 or 152 

3 and 4 (see above) are applicable for a given time point. Two cases are possible: i) nest 153 

temperature is higher than environmental temperature by more than 154 

temp.diff.threshold degrees; or, ii) nest temperature is within 155 

temp.diff.threshold degrees of the environmental one. 156 

 157 

Comparing the change in nest temperature between consecutive temperature recordings 158 

against temperature thresholds, incRscan determines whether the incubating individual is 159 

in the nest or an off-bout has occurred. Rather than having a fixed threshold for the entire 160 

analysis, a flexible threshold value is applied among days. Within days, the threshold to 161 

detect off-bouts can also change controlled by temp.diff.threshold and 162 

sensitivity (i.e. to accommodate changes in cooling rates between scenarios 1/2 and 163 

3/4 – see below). No threshold choice is required from the user but they are calculated by 164 

incRscan for each day of analysis. To accomplish this, the user needs to specify some 165 

period of the 24-hour cycle when an incubating bird can be assumed to be incubating eggs in 166 

its nest. This time window is controlled by the arguments lower.time and upper.time, 167 

representing the start and end of the time of day (for instance, for diurnal bird species this 168 

period can be set at night, when the incubating individual rests in the nest). Within this time 169 

window, the maximum decrease in nest temperature between pairs of consecutive points is 170 

calculated and set as a threshold for incubation off-bouts (hereafter, maxDrop) for scenario 171 
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1. Assuming that nest temperatures are above environmental values, maxDrop is thought to 172 

effectively represent the maximum drop in temperature associated with periods when the 173 

incubating individual is in the nest. The threshold for incubation off-bout in situation 3 must 174 

be lower than in scenario 1 (i.e. when nest temperature is close to environmental 175 

temperature); thus, the argument sensitivity, that must be specified by the user (taking 176 

values from 0 to 1), allows for such reduction, setting the off-bout threshold in scenario 3 as 177 

maxDrop � sensitivity. Similarly, maxIncrease is defined as the maximum 178 

increase in temperature between pairs of consecutive points within the lower.time - 179 

upper.time window and is set as a threshold for incubation on-bouts in scenario 4. Any 180 

increase in nest temperature in scenario 2 would mean an incubation on-bout. Note that 181 

maxDrop and maxIncrease do not need to be chosen by the user but are calculated by 182 

incRscan for every day of analysis and reported in an R object named 183 

incRscan_threshold. See Appendix 1 and 2 for a practical example. 184 

Once these thresholds are set, temperature differences between successive pairs of data points 185 

throughout the day and between upper.time and lower.time are calculated. These 186 

values are sequentially compared with the value of maxDrop and maxIncrease, 187 

following a set of conditions:  188 

For scenario 1 and 2,  189 

Τι − Τι−1 < maxDrop (A); Τι − Τι−1> 0  (B).   190 

For scenario 3 and 4, 191 

 Τι − Τι−1 < maxDrop × sensitivity (C); Τι − Τι−1 > maxIncrease (D).  192 

Τι − Τι−1  being the ith and i-1th temperature recordings from i=2 to i=I (I being equal to the 193 

total number of daily data points evaluated). Off-bout periods are, then, defined between Ti’s 194 
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satisfying A or C and the closest subsequent situation in which Tj , when i<j, satisfies B or D. 195 

On-bout periods start after an off-bout finishes and last until A or C is fulfilled again.  196 

 197 

This algorithm can be sensitive to highly variable temperatures or marked drops in 198 

temperature within the lower.time - upper.time window. To make incRscan 199 

conservative and robust against these two potential sources of error, whenever 200 

|maxDrop|>maxNightVariation is fulfilled for a particular day of study, the value of 201 

maxDrop and maxIncrease of the previous day of incubation is instead used. 202 

maxNightVariation represents the maximum drop in temperature allowed in a period of 203 

constant incubation (i.e. within the lower.time - upper.time window). When this 204 

value is set too high, real off-bouts will be missed by incRscan.  205 

 206 

The result of this algorithm is a temporal sequence of 0’s and 1’s representing on-bouts (1’s) 207 

and off-bouts (0’s). Using these sequences, other functions within incR can be used to infer 208 

incubation behaviour. 209 

Additional functions to visualise nest temperatures and extract biological metrics of 210 

incubation 211 

Regardless of whether or not incRscan has been used to score incubation, the incR 212 

package offers a suite of functions that can be applied to any binary time-series representing 213 

incubation. The current package version (1.1.0) allows the user to visualise the results of 214 

incRscan (incRplot generates a plot similar to graph 3 in Figure 1 and Figure S1), 215 

calculate onset and offset of daily activity (incRact), percentage of daily time spent in the 216 

nest (incRatt), number and average duration of on/off-bouts per day as well as individual 217 

off-bout duration and timing (incRbouts) and nest temperature mean and variance for a 218 

customised time window (incRt). The implementation of these functions is straightforward 219 
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as they only require a variable with binary data for on and off-bouts. These data are provided 220 

by incRscan under the column name incR_score. The function argument 221 

incubation.vector in incRact, incRatt, incRbout and incRt allows the user 222 

to manually specify the name of the column with binary data for incubation scores (see 223 

Appendix 2 and package documentation in R). 224 

 225 

Validation of incR using temperature and video-recording data 226 

To show the potential of this approach to yield meaningful metrics of incubation, I assessed 227 

the performance of the core functions in incR. First, I carried out a sensitivity analysis in 228 

which I evaluated the accuracy of incRscan over different values of its main arguments. I 229 

then chose the optimal values for these arguments and showed that the combination of 230 

incRscan and other incR functions can yield accurate measures of incubation behaviour. I 231 

applied the whole pipeline to incubation temperatures collected using iButton® devices. For 232 

the same incubation events, I used video footage of these nests to visually score incubation 233 

and then compared these results to the automatic algorithm implemented in incRscan. 234 

Field protocol and incubation data collection 235 

Incubation temperatures were recorded during 2015 and 2016 using iButton® devices in two 236 

blue tit and six great tit clutches. Blue tit data came from an urban and suburban  population 237 

in Glasgow city (n = 2 clutches; 55° 52.18’N 4° 17.22’W and 55º 9'N 4º 31'W) (Pollock et al. 238 

2017), whereas great tit incubation data were recorded in an oak forest at the Scottish Centre 239 

for Ecology and the Natural Environment (n = 2 clutches; SCENE, 56° 7.73’N 4° 36.79’W) 240 

(Pollock et al. 2017) and in a mixed forest (dominated by oak, birch and pine trees) near the 241 

Netherlands Institute for Ecology (NIOO) (n = 4; ~52º 7' N 6º 59' E) (Spoelstra et al. 2015). 242 

Each iButtons® was wrapped in a piece of black cloth and placed in the nest cup, above the 243 

lining materials and among the eggs. Nest temperatures were recorded by iButtons® every 2 244 
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or 3 minutes. Video cameras inside the nest-boxes were used to monitor individual females 245 

and visually score incubation (see Pollock et al. 2017 for a general explanation about video 246 

camera deployment). In total, 12 days of incubation were completely or partially monitored 247 

using both iButtons® and recording cameras. Environmental temperatures for the same period 248 

in Scotland were recorded using iButtons® placed outside nest-boxes. For the Dutch clutches, 249 

environmental temperatures from a weather station approximately 18 Km away from the 250 

nest-box population were used. Data from the iButtons® were downloaded in the field using 251 

portable devices and a single file per nest was compiled in preparation to use incR.  252 

Data analysis 253 

Using video footage, I determined whether or not the incubating female had been present in 254 

the nest at every iButton® temperature time point. After preparing incubation temperature 255 

data using incRprep and incRenv, I applied incRscan to score incubation and 256 

compared its results to the footage-based scoring. I tested the performance of incRscan to 257 

changing values of its three key arguments, i) maxNightVariation (testing values from 258 

0.5 to 10 every 0.5), ii) sensitivity (from 0 to 1 every 0.1) and iii) 259 

temp.diff.threshold (from 0.5 to 10 every 0.5) (see Table 1 for definitions). When 260 

testing one argument, the others were kept to default values of 1.5, 0.15 and 3 for 261 

maxNightVariation, sensitivity and temp.diff respectively. This approach 262 

assumes that there are no interacting effects between parameter values. However, as a 263 

preliminary step in the analysis, I confirmed that that was the case. Therefore, I present here a 264 

1-dimensional grid search (i.e. varying values of one parameter while keeping the others 265 

fixed to a given value).   266 

lower.time and upper.time were always fixed to 10 p.m. and 3 a.m (night time). For 267 

every test, I calculated the percentage of correctly scored incubation time points. After 268 

selecting the best-performing combination of argument values (i.e. highest percentage of 269 
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agreement between incRscan and video footage), I compared daily incubation attendance 270 

(i.e. percentage of time spent in the nest), number of daily off-bouts and mean daily off-bout 271 

duration between incRscan-based and video footage-based incubation scores. I present 272 

Pearson’s correlations coefficients between the two metrics. incR functions, statistical tests 273 

and graphical illustrations (apart from the left-hand side of Figure 1) were produced in R 274 

version 3.4.4 (R Core Team 2018). Detailed practical guidelines to use incR and reproduce 275 

the validation shown in this manuscript can be found in Appendix 1 and 2 as well as in the 276 

package´s vignette (accessible in R via: browseVignettes(“incR”)). 277 

 278 

Results and Discussion 279 

Within nest-boxes, changing values of maxNightVariation did not affect the 280 

performance of incRscan. Similar results were found for sensitivity and 281 

temp.diff.threshold, with only analysis of data from one nest-box being markedly 282 

affected by changes in these arguments (Figure S2A-C). It is important to note that when 283 

maxNightVariation is set to a very low value (effectively not allowing for much 284 

temperature variation in the lower.time - upper.time time window) incRscan 285 

fails to yield any result as no temperature threshold would be available. This result can be 286 

seen in Figure S1A: when evaluating maxNightVariation equal to 0.5°C, data from 287 

only two out of eight nest-boxes were extracted by incRscan. 288 

Consistent variation in incRscan best-performing argument values was found among nest-289 

boxes (Figure 2), suggesting that differences in, for example, iButtons® deployment may be 290 

affecting the accuracy of the incRscan algorithm. This potential effect has been 291 

qualitatively suggested before (Smith et al. 2015) and highlights the importance of collecting 292 

high quality data in the field. However, the percentage of agreement was always high (> 80%, 293 
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Figure 2). Highly consistent results were found within nest-boxes with marked among-box 294 

variation with only one exception (nest-box G178_GT, Figure 2) in which setting 295 

maxNightVariation to 4°C improved the percentage of agreement compared to that 296 

found with the default value (3 °C). The general pattern across the eight nest-boxes is that 297 

values above 1.5°C for maxNightVariation give the highest accuracy (90.27%. Figure 298 

S1D). Similarly, values below 0.3 for sensitivity (90.27%) and a 299 

temp.diff.threshold value of 4°C (91.16%) were found to be the most accurate 300 

argument choices (Figure S2E-F). 301 

 302 

Given these results, I set the parameters to their overall optimal values of 1.5°C, 0.25 and 4°C 303 

for maxNightVariation, sensitivity and  temp.diff.threshold 304 

respectively, yielding a percentage of agreement across nest-boxes of 91.16% (maximum = 305 

98.56%; minimum = 80.42). With these argument values, attendance calculated based on 306 

video footage and inferred by incRscan showed a Pearson’s correlation coefficient of 307 

0.992 (t = 24.81, p < 0.0001, 95% confidence interval = 0.971-0.998. Figure 3A). Likewise, 308 

the algorithm in incRscan was able to provide accurate off-bout information (Figure 3B & 309 

3C). incR-estimated off-bout number and mean daily off-bout duration were highly 310 

correlated with real off-bout number and duration as extracted from video footage (for off-311 

bout number: r = 0.972, t10 = 13.04, p < 0.0001, 95% confidence interval = 0.900-0.992; for 312 

daily mean off-bout duration: r = 0.996, t10 = 34.69, p < 0.0001, 95% confidence interval = 313 

0.985-0.999).  314 

 315 

These results show that the method presented here can yield accurate metrics of incubation 316 

behaviour. Based on the validation of Rhythm presented in Bueno-Enciso et al. (2017), incR 317 

performs better than that software and yields higher correlations between video and iButton® 318 
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data (Bueno-Enciso et al. 2017);  however, note the possible influence of different 319 

environmental temperatures across studies. In this study the difference between nest 320 

temperatures and ambient temperatures ranged from a minimum of -0.98 (i.e. ambient 321 

temperature 0.98 degrees higher than nest temperature) to a maximum of 32.49, with a mean 322 

value across nest-boxes of 20.34°C (standard deviation = 5.18) (Table S1). For number of 323 

off-bouts, the discrepancies between incR and video footage seem to arise from incR 324 

slightly over-estimating the number of off-bouts (Figure 3B). This effect was mainly caused 325 

by data from two nest-boxes (G178_GT and GT173_GT) which were collected in the same 326 

year and location. However, the magnitude of this discrepancy was small (six off-bouts of 327 

maximum differences between estimates for whole days; estimated regression slope ± SE = 328 

0.926 ± 0.071) and the magnitude and direction of this error is unlikely to differentially affect 329 

comparisons across groups of nests (e.g. experimental versus control in an experimental 330 

setup). Additional metrics to those presented here can be calculated using incR (Figure 1 331 

and see package documentation), for which high reliability is expected given the results of 332 

this validation. 333 

 334 

Benefits of incR 335 

The benefits of incR are multiple. It represents a quantitative improvement over other 336 

methods. The results of the validation suggest that incR may perform better than other 337 

approaches (see validation of Rhythm in Bueno-Enciso et al. 2017). No assumptions about 338 

minimum off-bout time or off-bout temperature reductions are needed and the assessment of 339 

different parameter values for incR_scan is straightforward (see Appendix 1 and 2). 340 

incRscan uses changes between consecutive temperature points, rather than total 341 

temperature reduction during an off-bout, making the detection of short off-bouts possible. 342 

Furthermore, the inclusion of data on environmental temperatures informs the analysis, 343 
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allowing for off-bout detection when nest and environmental temperatures are similar. In 344 

Appendix 1 and 2, I offer detailed instructions to reproduce the analysis presented here. More 345 

generally, using a script-based approach will improve repeatability and will ease 346 

collaboration. incR embraces the philosophy of the R project: it is completely free and is in 347 

constant improvement. Further developments in the method to score incubation could be 348 

embedded in or used jointly with incR to extract metrics of incubation. 349 

 350 

Limitations 351 

The capability of incR, or very likely of any other analytical tool to study incubation 352 

temperatures, to yield accurate results will certainly correlate with data quality. Optimal 353 

placement of the logging device among the eggs (i.e. close to the incubating adult and not 354 

buried inside nest materials) and data validation are, therefore, crucial. Two key assumptions 355 

underlie the use of incRscan. First, the incubating individual is assumed to rest in the nest 356 

in the lower.time - upper.time time window. This assumption holds for most 357 

species in temperate and tropical zones, for which activity outside the nest is paused during 358 

night time (a reversed pattern is expected in nocturnal species). However, careful 359 

consideration of this assumption will be needed when the species of interest do not have a 360 

rhythmic incubation pattern or rhythms differ from 24 h (Bulla et al. 2016). Secondly, the 361 

accuracy of incRscan will also depend on the difference between maximum incubation 362 

temperature and environmental temperature. Small differences between them will lead to 363 

subtle temperature changes after the incubating individual enters and leaves the nest, 364 

affecting the detectability of such events. The validation presented here encompasses a wide 365 

range of values for the difference between nest and environmental temperatures (Table S1) 366 

but further tests would need to be carried out to evaluate the accuracy of incR in hot 367 

environments. Under these conditions, apart from maximising the percentage of agreement 368 
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between incRscan incubation scores and the data set for validation, researchers should pay 369 

careful attention to maximise agreement in other incubation metrics of such as number of 370 

incubation off-bouts. Comparing the performance of incRscan for data collected on the 371 

same species at different latitudes (and thus with likely large or small differences between 372 

environmental and nest temperatures) might provide valuable information on the general 373 

applicability of incRscan.  374 

 375 

Conclusions 376 

We have developed a method that accurately extracts behavioural and temperature 377 

information from series of incubation temperature recordings. This method can potentially be 378 

used to study incubation in a broad range of species and ecological contexts and, therefore, 379 

assist the wide community of researchers studying incubation in the wild. For different 380 

species and environments, validation will be needed but we also provide detailed practical 381 

advice to carry out such validation. In order to aid its application, two appendices show in 382 

detail how researchers can easily adapt and calibrate this method to their data.  383 
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Figure Captions 485 

Figure 1. incR workflow and visualisation of corresponding analysis of nest temperature 486 

data at each step of the workflow. After the user collates information from a single nest, 487 

incR can be used. incRprep prepares raw data time series for the pipeline (1) and 488 

incRenv adds environmental temperatures to the initial data table (shown as green lines in 489 

the plot 2). incRscan classifies data points into absence (purple) or presence (light red) of 490 

the incubating individual in the nest (3). From a sequence of 0´s and 1´s calculated by 491 

incRscan, incRbouts, incRatt, incRact and incRt extract information about 492 

on/off-bouts, nest attendance, start and end of activity and averaged nest temperatures for 493 

customised time windows. incRplot can be used to visualise the results of incRscan 494 

and produce the graph shown in panel 3. 495 

 496 

Figure 2. Percentage of agreement between incRscan and video-footage across eight 497 

different nest-boxes. Colour codes represent individual nest-boxes and each point within nest-498 

box illustrates the percentage of agreement for each of the three 1-dimensional grid searches, 499 

after the best values were selected for maxNightVariation, sensitivity and 500 

temp.diff.threshold. Consistent results are found within nest-boxes with one 501 

exception (G178_GT) in which setting maxNightVariation to 4°C improved the 502 

percentage of agreement compared to that of the default value. Points are slightly offset in the 503 

x axis to aid visualisation of overlaying points.  504 

 505 

Figure 3. Correlations between video-footage and incR estimates of incubation attendance 506 

(percentage of daily time spent in the nest (A), number of daily off-bouts (B) and daily mean 507 

off-bout duration in minutes (C). Colour codes represent individual nest-boxes and each point 508 

illustrates one day of incubation. Dashed black line was drawn following an intercept of 0 509 

and a slope of 1.  510 

 511 
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Tables 524 

Table 1. Glossary of terms used in this manuscript. 525 

Term Type Description Chosen by the 
user? 

Incubation temperature or 
nest temperature 

- 

Temperature inside the nest cup at any 
given time point. By this term I refer to 
a variable value that depends on 
whether, and for how long, the 
incubating individual is in or out the 
nest 

- 

Environmental  
temperature 

- Air temperature outside nest - 

incR_scan R function 

Calculates presence or absence of the 
incubating individual in the nest based 
on nest and ambient temperature 
variation 

- 

temp.diff.threshold 
incR_scan 

argument 
Difference allowed between nest and 
environmental temperatures 

Yes 

lower.time 
incR_scan 

argument 

Start of a time window when the 
incubating individual is assumed to be 
in the nest 

Yes 

upper.time 
incR_scan 

argument 

End of a time window when the 
incubating individual is assumed to be 
in the nest 

Yes 

sensitivity 
incR_scan 

argument 

Reduction in off-bout threshold when 
nest temperature is close to 
environmental temperature 

Yes 

maxNightVariation 
incR_scan 

argument 

Maximum variation allowed in the 
lower.time – upper.time window. It 
controls for big drops in temperature 
within this temporal window (i.e. 
night-time incubation off-bouts) 

Yes 

maxDrop 
Internal 

calculation in 
incR_scan 

Maximum drop in temperature 
between two consecutive time points 
within the lower.time – upper.time 
window 

No. Calculated 
and reported by 
incRscan 

maxIncrease 
Internal 

calculation in 
incR_scan 

Maximum increase in temperature 
between two consecutive time points 
within the lower.time – upper.time 
window 

No. Calculated 
and reported by 
incRscan 

 526 
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