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ABSTRACT 

Objective. ​ Our goal was to create a synthetic dataset and curricular materials to assist in teaching fundamentals of 

translational data science. 

Materials and Methods. ​A literature review was conducted to extract current cardiovascular risk score logic, data 

elements, and population characteristics. Then, clinical data elements in the models were pulled from clinical data and 

transformed to the Observational Medical Outcomes Partnership (OMOP) common data model; genetic data elements 

were added based on population rates.  A hybrid Bayesian network was used to create synthetic data from the logical 

elements of the risk scores and the underlying population frequencies of the clinical data.  

Results.​ A synthetic dataset of 446,000 patients was created. A two-day curriculum was created based on this synthetic 

data with exploratory data analysis and machine learning components.  The curriculum was offered on two separate 

occasions; the two groups of learners were given the curriculum and data, and results were tallied, summarized, and 

compared. Students’ ability to complete the challenge was mixed; more experienced students achieved a range of 

70%-85% in balanced accuracy, but many others did not perform better than the baseline model.  

Discussion ​.  Overall, students enjoyed the course and dataset, but some struggled to consistently apply machine 

learning techniques. The curriculum, data set, techniques for generation, and results are available for others to use for 

their own training. 

Conclusion ​. A realistic synthetic data with clinical and genetic components helps students learn issues in 

cardiovascular risk scoring, practice data science skills, and compete in a challenge to improve identification of risk. 

BACKGROUND AND SIGNIFICANCE 

The promise of data and information - and their related systems - to improve health and well-being has grown in recent 

years, but the ability to use analytics effectively to harness this potential has lagged behind the promise.  For instance, 

heart disease remains the top cause of death in the United States, ​[1]​ accounting for over 30% of yearly deaths, yet 

optimal prediction of cardiovascular risk and addressing risk factors can lower the odds of a heart attack by 80%, of a 

stroke by 69%, and overall mortality by 45%. ​[2]​  Segmenting population by risk, however, has been slow; risk 

prediction scores such as Framingham, the Atherosclerotic Cardiovascular Disease (ASCVD) risk score, and the Mesa 
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score all predict well at the population level, but miss crucial subpopulations such as younger persons, those of 

minority ethnic or racial backgrounds, or those with genetic risks. ​[3]  

For experienced data scientists, there is poor access to real clinical data that can be used to train new classifiers or to 

develop new algorithms. Synthetic data generation approaches attempt to address these issues by using real data as a 

basis for generating and modeling synthetic approaches.  ​[4–6]​ Additionally, despite an unprecedented level of 

investment in prediction capability for cardiovascular disease (e.g, ​[7]​), researchers often lack fundamental skills in 

analytics, including exploratory data analysis (EDA), assessing data quality and fitness for the problem at hand, data 

curation and integration; these gaps lead to significant issues in the validity and reproducibility of research results. 

[8,9]  

As part of the NIH Big Data to Knowledge (BD2K) initiative, we have developed a synthetic dataset and coursework to 

teach students the difficulties of working with both clinical and genetic data for prediction. These difficulties include 

inadequate phenotype mapping, the impact of comorbidities, and low disease prevalence in patient cohorts.  

In light of these difficulties, a growing concern is that students do not spend enough time doing exploratory data 

analysis (EDA) in order to understand how these difficulties can impact their analytical models.  Successful applications 

of machine learning approaches to domains such as clinical and genetic data require students to gauge the difficulty of 

the problem, and understand whether assumptions of the algorithms (such as a balanced cohort for Random Forests) 

used are met for a particular data set. In short, critical thinking, domain knowledge, and curiosity are required for 

effective application of machine learning. 

In order to facilitate development of these skills, we have developed a synthetic dataset and curricular materials for a 2 

day workshop modeled on a real patient cohort that includes clinical and genetic covariates. This dataset includes 

realistic dependencies between variables (such as high BMI patients having a higher prevalence of Type 2 diabetes) as 

well as  low disease prevalence for certain cohorts (such as those younger than 40). This dataset can be used for 

multiple purposes: 1) for teaching math, statistics, and computer science students the challenges of using real world 

data, 2) teaching machine learning techniques to biologists and clinicians, and 3) assessing the performance of machine 

learning techniques on a tunable dataset. 
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OBJECTIVE:  TEACHING ROBUST RISK PREDICTION 

Our goal for this effort was to integrate our learning objectives with a realistic synthetic dataset.  We chose 

cardiovascular risk prediction as a problem to model for multiple reasons: 1) high prevalence in the populations of 

interest, 2) identification of possible genetic factors involved, and 3) the difficulty of predicting risk in cohorts.  Overall, 

most risk calculators do not cover the younger population (20-40 year olds), and we believe that teaching the students 

the difficulties of predicting risk in low prevalence populations would highlight many of the issues with modeling 

clinical data. Our goal was to create a dataset that was feasible for novice students to learn on, but realistic enough for 

students to encounter difficulties with. To this end, we needed to simplify the structure and dependencies in the data. 

Learning Objectives ​. There were two learning objectives to our workshop: 1) Assess overall risk in the synthetic data 

and identify a cohort in which to predict CVD risk for, and 2) given this cohort, select appropriate covariates to predict 

risk using machine learning techniques. The use of active learning methods in our workshop addresses key areas 

identified for statistics education by both Garfield and Kaplan, such as construction and ownership of learning, allowing 

students to become aware of their own mistakes and confront errors in their reasoning. ​[10] 

Objective 1 was implemented via a R/Shiny interactive dashboard (see Figure 1) to assess covariates, their interactions, 

and their predictive value in predicting CVD. Shiny is a lightweight interactive visualization framework written in R and 

was used to conduct Exploratory Data Analysis of our synthetic cohort. The Shiny interface gives students a high level 

view of the data, allowing them to identify a cohort of interest and assess associations between variables. 

Objective 2 was implemented as a simplified programming exercise in R using three different modeling techniques 

(logistic regression, linear discriminant analysis, and classification and decision trees). In order to facilitate discussion, 

we used an online scoreboard so students could compare their cohorts and the performance of their models on those 

cohorts. We followed up the modeling results with a discussion of their findings and the true structure of the data.  

We targeted the workshop to students and staff at our neighboring university (Portland State University), who had 

basic familiarity with R and statistics. The majority of the audience who signed up were graduate students (86.4%), but 

also included some undergraduate students (9.1%) and one staff member (4.5%).  We also assessed whether 

participants had knowledge of statistical techniques such as t-tests, ANOVA/linear modeling, and multivariate 

regression. 
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Additionally, we used a reduced set of the covariates and data as a modeling exercise for students in our data analytics 

course, whose backgrounds ranged from clinical (including cardiology and emergency medicine) to those with 

computational biology backgrounds. We expected overall better metrics from this second group, due to their domain 

knowledge and greater familiarity with data analysis. 

MATERIALS AND METHODS 

Mapping clinical cohort to a common data model.​ We used clinical data from a OHSU cohort to seed the clinical data. 

Specifically, we extracted data from patients who had at least yearly visits with primary care or medical subspecialities 

in ambulatory clinics over a 2 year period.  We chose concepts to extract based on a review of the data needed for 3 

common risk models (ASCVD, Mesa, and the updated Framingham models).  Key concepts from demographics (age, 

gender, race, ethnicity), diagnoses, medications (antihypertensives),  vital signs (Body Mass Index, or BMI; Systolic and 

diastolic blood pressure), and laboratory values (Total, High density, and low density cholesterol) were extracted and, 

where necessary, coded into standard terminologies and groups that appeared to match the risk score definitions.  We 

then transformed the source clinical data into the Observational Medical Outcomes Partnership (OMOP) common data 

model maintained by the Observational Health Data Sciences and Informatics (OHDSI) collaborative ​[11]​ to our cohort 

in order to assess our cohort data quality and to utilize pre-made queries to pull covariates appropriate to our synthetic 

data.  To assess data quality, we ran the ​Automated Characterization of Health Information at Large-scale Longitudinal 

Evidence Systems (ACHILLES) ​tool maintained by OHDSI using R; we addressed any significant findings from ACHILLES. 

[12]​ Then, we further transformed the data to simplify the structure for teaching.  

Using a hybrid Bayesian network approach to generate consistent clinical and genetic data​. A Bayesian Network 

(Figure 2) was used to encode the dependencies between variables in the dataset, such as patients who do not have 

hypertension (Hypertension = N) should not receive hypertension treatment (Treatment = N). Where possible, we have 

utilized frequency tables from our patient cohort to generate the conditional probability tables (CPTs) for variables. 

When this information is not available, incidence probabilities (such as smoking given age, probability of receiving 

hypertension treatment) were derived from relevant CDC and NHLBI studies. ​[13]​ Our generalized workflow is 

available at the cvdRiskData repository (​http://github.com/laderast/cvdRiskData​). 

In order to simplify the problem, we limited our variables to have no more than five states each. We also limited the 

number of dependencies to any variable in the model to be 2 or less, a common assumption when building Bayesian 
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Networks. These restrictions resulted in a Bayesian Network encoding three sets of dependent variables 

(​Age-Hypertension-Smoking-Treatment ​, ​Race-Genotype-Bmi-TChol-T2D​, ​Gender, Figure 2​). These three sets of variables 

were considered conditionally independent of each other. The Bayesian Network was implemented using the ​gRain 

package in R.  ​gRain​'s ​simulate()​ function allows for the generation of arbitrarily large datasets from a specified 

Bayesian network. 

In our dataset, we needed to simplify the overall dependencies in the data. Overall, CVD risk is mediated through the 

five variables used in the Framingham Risk score (age, systolic blood pressure, hypertension treatment, BMI, Type 2 

Diabetes status). ​[14]​ Other available covariates (race, gender, smoking status, genotype) indirectly influence these 

variables. For example, smoking status affects hypertension, but is not directly linked to CVD risk (Figure 2).  

Implementing the above Bayesian networks resulted in marginal distributions that agreed with our data and US-wide 

distributions (see validation section below). One difficulty we encountered was that attempting to integrate the five 

risk factors to calculate the probability of CVD with our data would have required a large CPT, requiring us to estimate 

1024 conditional probabilities. Instead of coding a large CPT to integrate all five risk factors, we first converted 

categorical data to continuous variables where necessary, and then implemented the Framingham risk score to assess 

risk in the appropriate variables. For each synthetic patient, we calculated risk and used this risk as a probability that 

patient had a 10 year CVD risk. We then assessed the overall CVD prevalence in our synthetic population, which was 

high compared to our real data.  In order to address this, we then downsampled the number of CVD cases in our dataset 

to adjust the prevalence of our dataset. Overall, our data has a higher prevalence (8.7%) compared to our observed 

data.  

Integration of Genetic Covariates​. We integrated the genetic covariates as an aggregate genotype of 4 SNP variants 

(Figure 2). Because of the limited workshop time, we chose just 4 SNPs to teach students about the basics of genetic 

structure and inheritance. Two of these SNP variants (rs10757278 and rs1333049) were chosen to co-occur (due to 

linkage disequilibrium), providing the same information. We assigned three SNPs (rs10757278, rs1333049 and 

rs4665058) to be associated with elevated total cholesterol in our dataset (by providing the appropriate CPT), and one 

SNP (rs8055236) directly influences overall risk (homozygous variant = 4 x Risk).  Individual SNP genotypes were 

limited to either homozygous wild-type or variant. To simplify the problem, we limited the number of observed 

aggregate genotypes to six overall. The frequency of each SNP was dependent on race (derived from SNPedia ​[15]​), and 

we calculated the aggregate genotype frequency for each race by multiplying the individual SNP probabilities for each 
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race. This resulted in different aggregate genotype frequencies across the cohort.  Essentially, for three of these SNPs, 

genetic contribution to the risk score was mediated through other variables (total cholesterol and race), with only one 

SNP directly mediating risk in the total population. 

We limited supplying these genetic covariates to a smaller cohort, about 10% of the original population. We did this to 

simulate the likelihood of a patient receiving a genetic screen. However, the full dataset includes risk that is mediated 

by these genetic covariates. Because of these missing covariates, building a predictor to predict CVD risk perfectly is not 

possible for the larger dataset.  

Validation of synthetic dataset​. We used an iterative process for validating the realism of the clinical dataset. Once 

the data was generated, we examined marginal probabilities to ensure they fit our expectations, and visualized the data 

using our dashboard (see below) in order to assess the strength of the associations in our data. A critical part of the 

validation process was achieved by identifying key questions that students might have of the data, such as “Is there an 

association between race and BMI?”, and assessing whether these questions had realistic associations in our dataset. 

Day 1 Workshop: Interactive visualization for exploratory data analysis​. After a brief overview of cardiovascular 

risk prediction scores, we had the students explore the dataset to identify a smaller cohort of interest. In order to 

accomplish this, we implemented a dashboard for examining the data using R and Shiny, an interactive visualization 

framework. The dashboard enables students to ask questions of association using a number of helpful tools (such as 

data summaries and crosstables) and visualizations (such as histograms and boxplots). For example, the Proportion 

Explorer allows students to ask questions of association of our outcome variable (CVD risk) with categorical variables, 

such as (​ageCategory​, ​hypertension​, or ​race​) (Figure 1a). Boxplots allow students to stratify the continuous data ( ​sbp​, 

numAge​) by categorical variables (Figure 1b). A version of the EDA dashboard (including the synthetic dataset) is 

available here: ​https://tladeras.shinyapps.io/cvdnight1/​. 

Day 2: Assessment of Machine Learning on a selected cohort​. We gave the students the options of using 3 machine 

learning methods (logistic regression, linear discriminant analysis, and classification and regression trees (CART)) to 

predict CVD risk in their selected cohort (examples include patients over 55, women over 60, and patients under 40). 

Students were supplied with Rmarkdown documents with R code to modify for this purpose. ​[16]​ We required students

to justify why they included specific covariates in the model. One advanced student used a different machine learning 

tool, SuperLearner, for their modeling of the cohort. ​[17]​ We used a scoreboard (implemented as a Google Sheet) to 

compare predictions by cohort prevalence using three different metrics: ​sensitivity​, ​positive predictive value​ (PPV), and 
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balanced accuracy​. We chose these metrics because they favor the low prevalence positive case (CVD=1), whereas 

metrics like ​accuracy​ favor the high prevalence negative cases (CVD=0) (Figure 3). 

RESULTS  

Demographics of our patient cohort and synthetic data​. Table 1 shows the descriptive statistics of the populations 

used to estimate each risk score, compared with our clinical dataset, and the final synthetic cohort.  The initial clinical 

data had significantly lower frequencies of the key outcome (heart attack or stroke), had a larger proportion of 

caucasian patients, and lower rates of reported Hispanic ethnicities.  These matched local clinical populations.  The 

synthetic data had similar proportions to the clinical data with variations < 10% of means. 

Examination of variable dependencies in data​. We show the clinical covariates with the dashboard 

(​https://tladeras.shinyapps.io/cvdnight1/​) so that interactions between variables can be examined. As expected, 

hypertension treatment (treat) is not done for those who do not have hypertension. As age category increases, there is 

a higher prevalence of CVD disease. In high risk CVD patients, there is a higher mean BMI. In building the dataset, 

examining the distribution of outcomes among our categorical variables was a valuable sanity check. 

Modeling results from both student cohorts.​ We show results from both the short course and the analytics course 

students (Figure 3). Overall, for the short course students, which included the cohort selection step, positive predictive 

value of their models was correlated with prevalence of CVD in their selected cohorts. A few of the models built by the 

students in this cohort did not converge (such as Cohort: HTN and covariates: smoking, or Cohort: Age = 20-40 years), 

indicating that the student may have lacked understanding of the inherent issues in the modeling. Two students did 

tackle the genetic covariates and higher sensitivity and balanced accuracy than the others, which was as expected. 

Analytics course students, who received more training in logistic regression and clinical backgrounds, had higher 

overall mean sensitivity, positive predictive value, and balanced accuracy than the short course students, indicating 

that more training and domain knowledge led to better overall models and results.  

DISCUSSION 

Mapping Clinical Covariates from OHDSI. ​Mapping clinical covariates, such as estimating number of hypertension 

cases, number of Type 2 Diabetes cases, was challenging even given value sets for these diseases. Much of this difficulty 

may have arisen from the mapping process into the OHDSI model.  The original clinical data had not previously been 
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mapped into a common data model, and the ability to identify all instances of the important concepts from the data may 

have been incomplete, either through issues mapping or through data incompleteness. These difficulties in mapping 

into the common data model resulted in underestimates for many of our marginal probabilities; however, they do 

provide a realistic problem for learners to address, as incompleteness and potential inaccuracies in data quality have 

limited generalizability of many models. 

Lessons learned in synthesizing the data ​. Implementing the Bayesian Network required multiple levels of tuning and 

adjustment. One complication was that we were unable to estimate many of the CPTs required by our network from our

clinical dataset. In our case, we used estimates of prevalence for the population of the United States.  Additionally, we 

simplified our network considerably to three separate networks to produce our data. Many of the interaction 

probabilities, such as Age/Hypertension, and Race/BMI, had CPTs that had to be carefully tuned by hand.  Ideally, we 

would have estimated these parameters from the original clinical dataset. ​[18] 

Since producing a CPT integrating the five types of influential covariates was difficult, we opted for combining the 

covariates using one of the actual risk prediction equations (Framingham ​[14]​). Using a logistic model to combine 

covariates allowed us to tune the difficulty of the model by adjusting predicted probabilities. Additionally, it allowed us 

to integrate the effects of one of the SNPs to increase overall risk in a realistic fashion. We believe that this hybrid 

approach was appropriate for the problem. 

The structure of the data included a genetic component, which influenced overall risk. However, this component was 

not included as a covariate in the larger dataset.  Thus, building a machine learning or statistical model that perfectly 

predicts the data is not possible with the larger dataset. We believe that this missing explanatory variable actually 

makes the exercise more realistic, as many unmeasured covariates (such as social determinants of health) may 

influence overall risk. 

Workshop and Modeling Results.​ Based on student feedback, we believe that the students who participated in the 

two-day workshop found it informative and challenging, which is also indicated with the overall scores for their model. 

The distribution of our modeling results indicates that the dataset is a challenging, but not too difficult problem, 

especially for students who understand the importance of disease prevalence in the data.  

Students in the short course, who had mainly mathematics and computer science backgrounds, struggled somewhat 

with understanding the importance of particular covariates in prediction. We plan to address this with an exercise in 
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understanding the importance of these covariates in CVD. Some students did build models that did not converge, 

showing a lack of understanding of the inherent issues with the dataset. However, we believe that these models are 

teachable moments, allowing us to assess their understanding of the issues and provide more information to the 

students at the time of the workshop. Overall, the analytics students, who had more clinical or machine learning 

backgrounds, selected more highly predictive models than the short course students. However, one student in the short 

course had very high scores for PPV and Sensitivity for their models. Following up with this student, we found that they 

had used an ensemble approach, indicating that he was more experienced in the machine learning component. 

Other uses for the dataset. ​As shown in Table 1, the dataset has realistic distributions over several key variables, and 

contains realistic outcome assessments for subpopulations of patients defined in the hybrid Bayesian networks.  The 

dataset may be used freely for validating clinical queries, assessing data quality, benchmarking of new machine 

learning algorithms, and assessing risk of key outcomes. We believe that such synthetic datasets that are free of 

proprietary EHR systems will prove key in overcoming obstacles to implementing machine learning algorithms in 

clinical data. In contrast to larger synthetic generation efforts such as SYNTHEA, we do not attempt to model 

longitudinal data nor the interaction of multiple co-morbidities. ​[4]​ Limiting our scope to CVD has helped us make this 

dataset as realistic as possible. 

Limitations.​ Our results are limited to the student cohort at Portland State University and informatics students at 

OHSU, most of which had a fairly strong mathematics or clinical background. We recommend that students have a basic 

understanding of statistical concepts before attending the workshop. Additionally 

Future Directions​. We believe that the data generation framework is highly generalizable to teaching other important 

data science/analysis skills, such as mapping phenotypes using ontologies, data cleaning, and meta-analysis. Biases can 

be introduced into the data to represent issues such as batch/site effects, and other clinical data quality issues. ​[19]​ We 

plan on developing more workshops leveraging this approach and making the course material available as additional 

open educational resources (OERs). 

Data, generation script, and course material availability​. The current version of the synthetic dataset is available as 

an R package called ​cvdRiskData​ on GitHub ( ​http://github.com/laderast/cvdRiskData ​). This package also includes the 

script, Bayesian network, and CPTs used to generate the dataset. Our course materials for teaching the workshop as 
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well as the dataset simulation script are also available (​http://github.com/laderast/cvdNight1​ and 

http://github.com/laderast/cvdNight2​).  

CONCLUSION 

We believe that training students in exploratory data analysis using realistic clinical data is a gap in most current data 

science curricula. Without such training, it is difficult to understand the issues in modeling real-world data. In order to 

address this gap, we have created a synthetic dataset modeled on a real patient cohort that presents students 

challenges in EDA and modeling. This dataset is an opportunity for active learning of real issues in the data, especially 

in understanding why it is difficult to predict cardiovascular risk in low prevalence populations, such as 20-40 year 

olds. Our dataset has further utility as a test dataset for machine learning methods on selected cohorts.  We have shared 

our material as Open Educational Resources (OERs), and welcome further refinements to the dataset generation from 

the informatics and data science community. 
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TABLE 

Table 1. ​Descriptive statistics of key cardiovascular risk prediction studies, the original clinical data, and the synthetic 
data set 

 ASCVD ​[20,21] MESA​[22] Framingham​[23] Initial cohort 
from Clinical 
Data 

Synthetic 

N 28,044 6726 8491 100,000 446,203 

Age (Mean​±​SD) 62.6​±6 years 62.1​±10.2 48.5±10.8 (M) 
49.1±11.1 (F) 

47.5 ​±​22 45 ​±​20 years 

% female 58.2% 52.8% 53.2%  56.8% 

Race 
Caucasian 
Black 

 
 
41.6% 

 
38,5% 
27.8% 
 

Not reported 
(NR) 

 
71.0% 
5% 
 

 
75.1% 
5.3% 

% Hispanic NR 22% NR 4% 0% 

SBP (Mean​±​SD) 
 

125.8 126.6​±21.5 129±18 (M) 
126±20(F) 

136​±​28 136​±​28 

Tchol (Mean ​±​SD) 
 
LDL (Mean​±​SD) 
HDL (Mean​±​SD) 

196 
 
117.9 
52.9 

194±36 
 
 
51±15 

202±39 (M) 
192±38 (F) 

 
 
113.8​±​41 
54​±18 
 

187.3​±​ 29.1 

Conditions 
Smoker, % 
HTN, % 
Treated for HTN, % 
 
Diabetes, % 
Outcomes 
ASCVD, 10 year 
incidence* 

 
14.4% 
NR 
47.4% 
 
17.8% 
 
8.5% 

 
13.0% 
NR 
37.2% 
 
12.7% 
 
6.5% 

 
35% (M)/34%(F) 
NR 
10.1 (M)/11.8 (F) 
 
6.5 (M) / 3.8 (F) 
 
13.8% 

 
 
30.1% 
5.0% 
 
5.8% 
 
3.98% 

 
12.1% 
28.6 % 
15.7% 
 
7.5% 
 
8.7% 

* Atherosclerotic cardiovascular disease (ASCVD) 
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FIGURES 
 

 

 
Figure 1. Shiny Visualization Dashboard for Exploratory Data Analysis.​ a) Proportion explorer allows for visual 

exploration of covariates (here, age category) with outcome (CVD). b) Boxplot Explorer for exploration of continuous 

covariates (here total cholesterol) conditioned on categorical covariates (here, race) in order to assess interactions 

between covariates. 
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Figure 2. Bayesian Network Structure of dataset​. Arrows indicate dependencies, modeled with conditional 

probability tables. Nodes in grey directly influence overall risk in dataset (calculated as variation on Framingham risk 

score), whereas white nodes (​race​, ​treat​ (hypertension treatment), ​tchol ​ (total cholesterol)) have indirect effects on 

risk. Categorical data is transformed to continuous data via sampling within a categorical interval. Boxes are genetic 

component of data, calculated but only supplied for 10% of original dataset. Presence of rs80 homozygous variant 

mediates risk in entire patient cohort, increasing risk four-fold for a patient. 
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Figure 3. Metrics for Short Course/Analytics Course.​ Comparison of metrics of Short Course and Analytics Course 

students. Shown are 21 logistic regression models for the analytics course and 11 models built for the short course 

(with different probability thresholds) of students in Analytics class when asked to predict CVD risk with subset of 

dataset (dataset did not include genetic covariates).  
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