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	37	
Abstract	38	
	39	
Chemogenetic	profiling	enables	the	identification	of	gene	mutations	that	enhance	or	40	

suppress	the	activity	of	chemical	compounds.	This	knowledge	provides	insights	into	41	

drug	mechanism-of-action,	genetic	vulnerabilities,	and	resistance	mechanisms,	all	of	42	

which	 may	 help	 stratify	 patient	 populations	 and	 improve	 drug	 efficacy.	 CRISPR-43	

based	 screening	 enables	 sensitive	 detection	 of	 drug-gene	 interactions	 directly	 in	44	

human	cells,	but	until	 recently	has	 largely	been	used	 to	screen	only	 for	 resistance	45	

mechanisms.	We	 present	 drugZ,	 an	 algorithm	 for	 identifying	 both	 synergistic	 and	46	

suppressor	 chemogenetic	 interactions	 from	 CRISPR	 screens.	 DrugZ	 identifies	47	

synthetic	 lethal	 interactions	 between	 PARP	 inhibitors	 and	 both	 known	 and	 novel	48	

members	of	 the	DNA	damage	repair	pathway.	Additionally,	drugZ	confirms	KEAP1	49	

loss	 as	 a	 resistance	 factor	 for	ERK	 inhibitors	 in	oncogenic	KRAS	backgrounds	and	50	

identifies	 additional	 cell-specific	 mechanisms	 of	 drug	 resistance.	 The	 software	 is	51	

available	at	github.com/hart-lab/drugz.	52	

	53	
	54	
	55	
Introduction	56	

	57	

The	 ability	 to	 systematically	 interrogate	 multiple	 genetic	 backgrounds	 with	58	

chemical	perturbagens	is	known	as	chemogenetic	profiling.	While	this	approach	has	59	

many	applications	in	chemical	biology,	it	is	particularly	relevant	to	cancer	therapy,	60	

where	clinical	compounds	or	chemical	probes	are	profiled	to	identify	mutations	that	61	

inform	on	genetic	vulnerabilities,	resistance	mechanisms,	or	targets	[1].	Systematic	62	

surveys	 of	 the	 fitness	 effects	 of	 environmental	 perturbagens	 across	 the	 yeast	63	

deletion	 collection	 [2]	 offered	 insight	 into	 gene	 function	 at	 a	 large	 scale,	 while	64	

profiling	 of	 drug	 sensitivity	 in	 heterozygous	 deletion	 strains	 identified	 genetic	65	

backgrounds	that	give	rise	to	increased	drug	sensitivity	[3].	Now,	with	the	advent	of	66	

CRISPR	technology	and	its	adaptation	to	pooled	library	screens	in	mammalian	cells,	67	

high-resolution	chemogenetic	screens	can	be	carried	out	directly	in	human	cells	[4-68	

6].	Major	advantages	to	this	approach	include	the	ability	to	probe	all	human	genes,	69	
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not	 just	orthologs	of	model	organisms;	 the	analysis	of	how	drug-gene	 interactions	70	

vary	across	different	 tissue	 types,	 genetic	backgrounds,	 and	epigenetic	 states;	 and	71	

the	 identification	 of	 suppressor	 as	 well	 as	 synergistic	 interactions,	 that	 may	72	

preemptively	indicate	mechanisms	of	acquired	resistance	or	pre-existing	sources	of	73	

resistant	cells	in	heterogeneous	tumor	populations.	74	

	75	

Design	 and	 analysis	 of	 CRISPR-mediated	 chemogenetic	 interaction	 screens	 in	76	

human	 cells	 can	 be	 problematic.	 Positive	 selection	 screens	 identifying	 genes	77	

conferring	resistance	to	cellular	perturbations	typically	have	a	high	signal-to-noise	78	

ratio,	as	only	mutants	 in	resistance	genes	survive.	This	approach	has	been	used	to	79	

identify	 genes	 conferring	 resistance	 to	 targeted	 therapeutics,	 including	 BRAF	 and	80	

MEK	 inhibitors,	 as	 well	 as	 other	 drugs	 [5,	 7-14].	 Conversely,	 negative	 selection	81	

CRISPR	screens	require	growing	perturbed	cells	over	10	or	more	doublings	to	allow	82	

sensitive	 detection	 of	 genes	 whose	 knockout	 leads	 to	 moderate	 fitness	 defects.	83	

Adding	 a	 drug	 interaction	 necessitates	 dosing	 at	 sub-lethal	 levels	 to	 balance	84	

between	maintaining	 cell	 viability	over	 a	 long	 timecourse	 and	 inducing	drug-gene	85	

interactions	beyond	native	drug	effects.	To	our	knowledge,	a	study	by	Zimmerman	86	

et	al.	 [15]	 and	Wang	et	al.	 [16]	 last	 year,	which	 each	used	 an	 early	 version	of	 the	87	

software	described	here,	represents	the	first	such	efforts	in	cancer	cells.	88	

	89	

Several	 algorithms	 currently	 exist	 for	 the	 analysis	 of	 drug-gene	 interaction	90	

experiments	 [17,	 18].	Most	 rely	on	 adapting	methods	originally	developed	 for	 the	91	

analysis	of	RNAseq	differential	expression	data,	which	is	typically	characterized	by	92	

relatively	 high	 read	 counts	 across	 genes.	High	 read	 counts	 enable	 the	 statistically	93	

robust	 detection	 and	 ranking	 of	 differential	 expression	 of	 genes	 (in	 RNA-seq)	 or	94	

abundance	of	guide	RNA	(gRNA,	 in	CRISPR	screens)	using	approaches	such	as	 the	95	

negative	binomial	P-value	model,	a	trend	explored	thoroughly	in	[18].	However,	low	96	

read	counts	per	gRNA	are	common	in	CRISPR	data,	and	are	a	fundamental	feature	of	97	

genes	with	 fitness	 defects,	 leading	 to	 a	 severe	 loss	 of	 sensitivity	when	 applied	 to	98	

CRISPR	screens	for	synthetic	chemogenetic	interactions.	99	

	100	
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In	this	study,	we	describe	drugZ,	an	algorithm	for	the	analysis	of	CRISPR-mediated	101	

chemogenetic	 interaction	 screens.	 We	 apply	 the	 algorithm	 to	 identify	 genes	 that	102	

drive	normal	cellular	resistance	to	the	PARP	inhibitor	olaparib	in	three	cell	lines.	We	103	

demonstrate	 the	 greatly	 enhanced	 sensitivity	 of	 drugZ	 over	 contemporary	104	

algorithms	by	 showing	how	 it	 identifies	more	hits	with	higher	enrichment	 for	 the	105	

expected	 DNA	 damage	 response	 pathway,	 and	 further	 how	 it	 identifies	 both	106	

synergistic	 and	 suppressor	 interactions.	We	 further	 demonstrate	 the	 discovery	 of	107	

both	 synergistic	 and	 suppressor	 interactions	 in	 a	 single	 experiment	 with	 KRAS-108	

mutant	pancreatic	cancer	cell	lines	treated	with	an	ERK	inhibitor,	and	with	several	109	

first-line	 therapeutic	 compounds	screened	 in	RPE1	hTERT-immortalized	epithelial	110	

cells.	We	provide	all	software	and	data	necessary	to	replicate	the	analyses	presented	111	

here	in	our	repository	at	github.com/hart-lab/drugz.	112	

	113	

Results	and	Discussion	114	

	115	

We	created	the	drugZ	algorithm	to	fill	a	need	for	a	method	to	identify	chemogenetic	116	

interactions	 in	 CRISPR	 knockout	 screens.	 In	 a	 pooled	 library	 CRISPR	 screen,	 the	117	

relative	starting	abundance	of	each	gRNA	in	the	pool	is	usually	sampled	immediately	118	

after	 infection	and	selection.	To	 identify	genes	whose	knockout	results	 in	a	 fitness	119	

defect	(“essential	genes”),	the	cells	are	grown	for	several	doublings	and	the	relative	120	

abundance	of	gRNA	is	again	sampled	by	deep	sequencing	of	a	PCR	product	amplified	121	

from	genomic	DNA	 template.	The	 relative	 frequency	of	each	gRNA	 is	 compared	 to	122	

starting	gRNA	abundance	and	genes	whose	targeting	gRNA	show	consistent	dropout	123	

are	considered	essential	genes.	124	

	125	

In	 a	 chemogenetic	 interaction	 screen,	 the	 readout	 is	 different:	 the	 relative	126	

abundance	of	gRNA	in	a	treated	population	is	compared	to	the	relative	abundance	of	127	

an	 untreated	 population	 at	 a	 matched	 timepoint	 (Figure	 1A).	 In	 this	 context,	 an	128	

experimental	 design	 with	 paired	 samples	 should	 be	 particularly	 powerful,	 as	 it	129	

removes	a	major	source	of	variability	across	replicates.	130	

	131	
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To	 benchmark	 the	 method,	 we	 evaluated	 screens	 to	 identify	 modifiers	 of	 the	132	

response	 to	 the	133	

PARP	 inhibitor	134	

olaparib	in	three	cell	135	

lines,	 RPE1-hTERT,	136	

HeLa,	 and	137	

SUM149PT	[15].	The	138	

screens	 were	139	

performed	using	 the	140	

TKOv1	 library	 of	141	

90k	 gRNA	 targeting	142	

17,000	 genes	 [19].	143	

After	 infection	 and	144	

selection,	 each	 cell	145	

line	was	 split	 into	 3	146	

replicates,	 passaged	147	

at	 least	 once,	 and	148	

each	 replicate	 was	149	

further	 split	 into	150	

control	 and	151	

olaparib-treated	152	

populations,	153	

providing	 a	 paired-154	

sample	155	

experimental	 design	156	

(Figure	1A).	157	

	158	

The	drugZ	algorithm	159	

calculates	 a	 fold	160	

change	for	each	gRNA	in	an	experimental	condition	relative	to	an	untreated	control.	161	

A	Z-score	for	each	fold	change	is	calculated	using	an	empirical	Bayes	estimate	of	the	162	

Figure	1.	Workflow.	(A)	Experimental	design.	 In	a	drug-gene	interaction	screen,	
cells	are	transduced	with	a	pooled	CRISPR	library.	Cells	are	split	into	drug	treated	
and	 untreated	 control	 samples,	 grown	 for	 several	 doublings,	 genomic	 DNA	 is	
collected,	 and	 the	 relative	 abundance	of	 CRISPR	gRNA	 sequences	 in	 the	 treated	
and	 control	 population	 is	 compared.	 (B)	 DrugZ	 processing	 steps	 include	
normalizing	 read	 counts,	 calculating	 fold	 change,	 estimating	 the	 standard	
deviation	for	each	fold	change,	Z-score	transformation,	and	combing	guide	scores	
into	 a	 gene	 score.	 (C-E)	 Comparing	 existing	 methods	 vs.	 drugZ	 for	 SUM149PT	
olaparib	screen.	DrugZ	hits	show	strongest	 enrichments	 for	DDR	genes	across	a	
range	of	FDR	thresholds.	 (C)	number	of	raw	hits.	 (D)	number	of	annotated	DNA	
Damage	Response	(DDR)	genes	in	hits.	(E)	-log	P-values	for	DDR	gene	enrichment	
by	hypergeometric	test.		
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standard	 deviation,	 by	 “borrowing”	 information	 from	 gRNA	 observed	 at	 a	 similar	163	

frequency	 (read	 count)	 in	 the	 control	 cells.	 Guide-level	 gene	 scores	 are	 combined	164	

into	 a	 normalized	 gene-level	 Z-scores	 called	 normZ,	 from	 which	 P-values	 are	165	

estimated	 from	 a	 normal	 distribution	 (Figure	 1b).	 	 We	 used	 drugZ	 to	 calculate	166	

normZ	scores,	P-values,	and	false	discovery	rates	in	SUM149PT	breast	cancer	cells,	167	

which	carry	BRCA1	and	TP53	mutations.	We	also	analyzed	the	same	data	with	four	168	

contemporary	methods,	STARS	[7],	MAGeCK	[18],	edgeR	[20],	and	RIGER	[21].	We	169	

noted	 that	 drugZ	 produced	 a	 moderate	 number	 of	 overall	 hits,	 relative	 to	 other	170	

methods,	as	FDR	thresholds	were	relaxed	(Figure	1c).	We	evaluated	 the	quality	of	171	

the	hits	by	measuring	their	functional	coherence.	The	PARP	inhibitor	olaparib	was	172	

developed	specifically	to	exploit	the	observed	synthetic	lethal	relationship	between	173	

PARP1	and	the	BRCA1/BRCA2	genes	[22,	23].	Subsequent	studies	have	shown	it	to	174	

be	 effective	 against	 a	 general	 deficiency	 in	 homologous	 recombination	 repair,	175	

known	as	HRD	[24].	We	therefore	calculated	the	enrichment	of	each	hit	set	for	genes	176	

in	the	DNA	damage	response	(DDR)	pathway	as	annotated	in	the	Reactome	database	177	

[25]	 and	 found	 that	 drugZ	 hits	 show	 strong	 enrichment	 for	 DDR	 genes	 across	 a	178	

range	of	FDR	thresholds	(Figure	1d,e),	while	 the	other	methods	show	consistently	179	

lower	enrichment.	We	observed	similar	 trends	 in	an	olaparib	 screen	 in	HeLa	cells	180	

(Supplementary	Figure	1A)	but	 less	overall	effect	 in	RPE1	wildtype	epithelial	cells	181	

(Supplementary	 Figure	 1B).	 The	 combination	 of	 larger	 sets	 of	 hits	 and	 greater	182	

enrichment	 for	 expected	 results	 indicates	 that	 drugZ	 accurately	 and	 sensitively	183	

identifies	chemogenetic	interactions.	184	

	185	

The	 drugZ	 algorithm	 can	 also	 be	 used	 to	 identify	 suppressor	 interactions;	 that	 is,	186	

genes	whose	perturbation	reduces	drug	efficacy.	While	BRCA1	mutation	is	synthetic	187	

lethal	 with	 PARP1,	 subsequent	 mutation	 of	 TP53BP1	 is	 associated	 with	 acquired	188	

resistance	to	the	PARP	inhibitor	[26].	Drug-gene	interactions	resulting	in	positive	Z-189	

scores	 reflect	 such	 suppressor	 interactions.	 Indeed,	 TP53BP1	 is	 the	 8th-ranked	190	

suppressor	 interaction	 in	BRCA1-deficient	 SUM149PT	cells,	with	a	normZ	score	of	191	

3.05.	Similarly,	newly	described	resistance	gene	C20orf196,	now	called	SHLD1	 [27-192	

30],	is	the	top	ranked	suppressor.	193	
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	194	

Robustness	to	Parameter	Choice	and	Experimental	Design.	To	evaluate	the	robustness	195	

of	 the	 drugZ	 approach,	 we	 conducted	 sensitivity	 analysis	 using	 data	 from	 the	196	

SUM149PT	olaparib	screen.	The	algorithm	relies	on	two	major	tunable	parameters,	197	

window	size	for	empirical	Bayes	variance	estimation	and	a	monotone	filter	for	the	198	

variance	 estimator	 (to	 ensure	 non-decreasing	 variance	 as	 read	 count	 decreases).	199	

The	 window	 size	 represents	 the	 number	 of	 neighboring	 gRNA,	 ranked	 by	 read	200	

count,	 to	 use	 to	 evaluate	 gRNA	 fold	 change	 variance.	 To	 evaluate	 the	 effect	 of	201	

varying	window	size,	we	ran	the	drugZ	pipeline	with	window	sizes	in	five	increment	202	

from	 100	 to	 1,000;	 neither	 number	 of	 hits,	 number	 of	 DDR-annotated	 hits,	 nor	203	

enrichment	p-value	were	affected	by	changing	window	size	(Supplementary	Figure	204	

2a).	We	performed	a	similar	analysis	with	and	without	enforcing	the	monotone	filter	205	

and	discovered	marginally	improved	performance	in	the	SUM149PT	olaparib	screen	206	

without	 enforcing	monotonicity	 (Supplementary	 Figure	 2b),	 but	 no	 such	 effect	 in	207	

Hela	(T15)	olaparib	screen	(Supplementary	Figure	2c).	We	therefore	left	the	filter	in	208	

place.	209	

	210	

We	 also	 tested	 the	 drugZ	 pipeline	 against	 a	 more	 statistically	 thorough,	 but	211	

computationally	 demanding,	 approach.	 After	 using	 the	 same	 empirical	 Bayes	212	

approach	 to	 calculate	 a	 Z-score	 for	 each	 guide,	 we	 applied	 Gibbs	 sampling	 to	213	

estimate	 the	 posterior	 distribution	 of	 fold	 changes	 for	 each	 gene.	 This	 method,	214	

which	 we	 termed	 drugGS,	 yielded	 results	 that	 are	 virtually	 identical	 to	 drugZ	215	

(rho=0.99;	 Supplementary	 Figure	 3B)	 at	 ~50x	 the	 computational	 cost	216	

(Supplementary	 Figure	 3C).	 DrugGS	 is	 also	 available	 on	 github	 at	217	

https://github.com/hart-lab/druggs	.	218	

	219	

Experimental	 design	 considerations.	Highly	 effective	 CRISPR	 knockout	 screens	 are	220	

done	with	 a	 variety	 of	 experimental	 designs,	 with	 varying	 numbers	 of	 replicates,	221	

degree	 of	 library	 coverage,	 determination	 of	 endpoint,	 and	whether	 intermediate	222	

timepoints	are	included	[5-7,	19,	31-37].	The	olaparib	drug-gene	interaction	screens	223	

described	 here	 were	 performed	 in	 triplicate	 in	 15cm	 plates	 and	 passaged	 every	224	
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three	days,	with	drug	added	at	day	6	and	samples	collected	for	sequencing	at	each	225	

passage	starting	at	day	12.	Using	the	optimized	drugZ	pipeline,	we	evaluated	each	226	

timepoint	 in	 the	 SUM149PT	 screens.	 The	 screen’s	 ability	 to	 resolve	 specific	 DNA	227	

damage	 response	 genes	 increased	 steadily	 from	 day	 12	 to	 day	 18	 (Figure	 2a-c),	228	

highlighting	 the	 importance	of	 low-dose	drug	 treatment	(e.g.	LD20).	The	extended	229	

timeframe	for	the	experiment	allows	greater	resolution	of	negative	selection	hits	as	230	

they	disappear	from	the	population	over	several	doublings.	231	

	232	

Nevertheless,	 the	233	

screens	 are	 still	234	

quite	 noisy,	235	

necessitating	236	

several	 replicates	237	

for	 accurate	238	

assessment	 of	239	

drug-gene	240	

interactions.	241	

Paired-sample	242	

analysis	 of	 three	243	

replicates	 in	 the	244	

olaparib	 screen	245	

clearly	246	

outperforms	 one-	247	

or	 two-replicate	248	

designs	(Figure	2d-249	

f).	 Surprisingly,	250	

however,	 the	paired-sample	approach	does	not	appear	 to	offer	significant	benefits	251	

over	 an	 unpaired	 approach:	 when	 calculating	 fold	 change	 as	 the	 log	 ratio	 of	 the	252	

means	 of	 three	 experimental	 and	 three	 control	 samples,	 the	 results	 are	 nearly	253	

identical	to	analysis	of	three	paired	samples	(Figure	2d-f).	Indeed,	treating	samples	254	

Figure	2.	Experimental	design	effects.	(A-C)	DrugZ	performance	across	different	
time	points	for	SUM149PT	olaparib	screen.	 (A)	number	of	raw	hits.	(B)	number	of	
annotated	 DNA	Damage	 Response	 (DDR)	 genes	 in	 hits.	 (C)	 -log	 P-values	 for	 DDR	
gene	enrichment.	(D-F)	DrugZ	performance	based	on	varying	number	of	replicates.	
(D)	 number	 of	 raw	 hits.	 (E)	 number	 of	 annotated	 DNA	 Damage	 Response	 (DDR)	
genes	in	hits.	(F)	-log	P-values	for	DDR	gene	enrichment.	Rep1,2,3:	all	combinations	
of	 one,	 two,	 or	 three	 replicates,	 +/-	 s.d.	 Mean:	 comparing	 mean	 of	 drug-treated	
samples	to	the	mean	of	control	samples	(unpaired	approach).	
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as	paired	or	unpaired	produced	highly	correlated	results	 (rho>=	0.96)	 in	all	 three	255	

olaparib	screens	(Supplementary	Figure	4a-d).	256	

	257	

A	 general-use	 algorithm	258	

for	drug-gene	interactions.		259	

To	 ensure	 that	 the	 drugZ	260	

algorithm	 is	 not	261	

overspecialized	 for	 the	262	

strong	 chemogenetic	263	

profile	of	PARP	inhibitors,	264	

we	applied	it	to	a	separate	265	

set	 of	 drug	 interaction	266	

screens	 in	 pancreatic	267	

cancer	cell	 lines	using	the	268	

ERK1/2	 inhibitor	269	

SCH772984.	 Oncogenic	270	

mutations	 in	 KRAS	 drive	271	

constitutive	 signaling	 in	272	

the	 MAP	 kinase	 pathway	273	

and	 are	 associated	 with	274	

proliferation	 and	 survival	275	

signals.	 Consistent	 with	276	

current	 models	 of	 RAS	277	

pathway	 activation,	278	

knockout	 of	 inhibitor	279	

target	 MAPK1	 and	 its	280	

downstream	 target	281	

RPS6KA3	 have	 strong	282	

synthetic	 sick/lethal	 or	283	

negative	interactions	with	284	

Figure	 3.	 ERK	 inhibitor	 screens	 in	 pancreatic	 cancer	 cell	 lines.	 (A)	
drugZ	 NormZ	 score	 is	 plotted	 vs.	 gene	 rank	 for	 SCH772984	 screen	 in	
HPAF-II	 pancreatic	 cancer	 cells.	 Red,	 synergistic	 (synthetic	 lethal)	
interactions	 at	 FDR<0.1.	 (B)	MiaPaca	 cells.	 Blue,	 suppressor	 (resistance)	
interactions	at	FDR<0.1.	(C)	Panc-1	cells.	(D)	YAPC	cells.	(E)	Network	view	
of	 ERK	 inhibitor	 screens.	 Red,	 synthetic	 lethal	 interactions.	 Blue,	
suppressor	interactions.	Insets,	gene	expression	of	target	genes	across	the	
four	cell	lines.	
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ERK	inhibitor	in	two	of	the	cell	 lines,	MiaPaca	and	YAPC	(FDR	<	0.1;	Figure	3a).	In	285	

the	 third	 cell	 line,	 HPAF-II,	 the	 top	 synthetic	 interactors	 were	 drug	 transporter	286	

ABCG2	and	MAPK3.	 Activity	 of	 this	 drug	 resistance	 gene	may	 account	 for	 this	 cell	287	

line’s	 resistance	 to	ERK	 inhibition	 and	 the	 lack	of	 other	 synthetic	 effectors	 in	 this	288	

screen.	 Drug	 transporter	 ABCC4	 is	 synthetic	 lethal	 in	 MiaPaca	 cells,	 suggesting	289	

multiple	 context-dependent	 routes	 of	 drug	 resistance	 for	 this	 molecule.	 Epoxide	290	

hydrolase	EPHX2	and	ubiquitin	ligase	adapter	KEAP1	are	the	top	two	suppressors	of	291	

ERK	 inhibitor	 activity	 in	 three	 cell	 lines,	 suggesting	 these	 genes	 are	 required	 for	292	

normal	 function	of	 the	 inhibitor	(Figure	3b).	KEAP1	 loss-of-function	was	 identified	293	

as	 a	modulator	 of	MAP	 kinase	 pathway	 inhibitors	 in	 a	 panel	 of	 positive	 selection	294	

screens	 in	multiple	 cell	 lines[11],	 but	EPHX2	 is	 a	 novel	 candidate	 resistance	 gene.	295	

Notably,	the	ERK	inhibitor	screens	yielded	a	small	number	of	discrete	synthetic	and	296	

suppressor	hits,	 in	contrast	with	 the	PARP	 inhibitor	screens,	which	showed	broad	297	

interaction	across	the	HR	pathway,	confirming	the	general	applicability	of	drugZ	in	298	

detecting	drug-gene	interactions.	299	

	300	

We	further	 tested	genetic	response	profile	of	hTERT-immortalized	RPE1	epithelial	301	

cells	 to	 two	commonly	used	chemotherapeutic	drugs,	 gemcitabine	and	vincristine,	302	

plus	HDAC-inhibitor	entinostat	currently	 in	clinical	trials	(Figure	4a).	We	used	our	303	

BAGEL	pipeline	to	 identify	genes	whose	knockout	 leads	to	 fitness	defect	(essential	304	

genes;	 Bayes	 Factor	 >	 10)	 or	 enhanced	 growth	 (tumor	 suppressors,	 BF	 <	 -40)	 in	305	

untreated	 control	 cells	 (Figure	 4b).	 Each	 drug	 reveals	 synthetic	 lethal	 interaction	306	

with	 at	 least	 one	 pathway-specific	 gene.	 Entinostat,	 ostensibly	 an	 inhibitor	 of	307	

histone	 deacetylases	HDAC1	 and	HDAC3,	 is	 synthetic	 lethal	 with	HDAC7	 in	 RPE1	308	

cells.	 Gemcitabine,	 a	 pyrimidine	 nucleoside	 analog,	 is	 synthetic	 lethal	 with	309	

deoxythymidylate	kinase	DTYMK.	DTYMK	phosphorylates	dTMP	to	dTDP,	a	key	step	310	

in	 the	 synthesis-by-salvage	 pathway	 of	 dTTP	 [38].	 Vincristine,	 a	 microtubule	311	

stabilizer,	 is	 synthetic	 lethal	 with	 CLASP1,	 a	 nonmotor	 microtubule-associated	312	

protein	 that	 promotes	 kinetochore-microtubule	 attachment	 [39].	 Vincristine	 is	313	

further	synthetic	lethal	with	drug	transporter	ABCC1	(multidrug	resistance	protein	314	

MRP1),	a	known	marker	of	vincristine	resistance	[40,	41].	315	
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	316	

Two	of	the	three	drugs	appear	to	show	suppressor	interactions	with	known	tumor	317	

suppressors,	 including	 TP53/CDKN1A,	 NF2,	 and	 the	 aryl	 hydrocarbon	 receptor	318	

complex	 AHR/ARNT.	 This	 epistatic	 interaction	 is	 probably	 driven	 by	 the	 drug	319	

treatment	masking	the	growth-enhancing	effect	of	knocking	out	these	genes	rather	320	

than	 a	 clinically	 useful	 drug-gene	 interaction.	 The	 growth-enhancing	 effects	 of	321	

knocking	 out	 tumor	 suppressor	 genes	 in	 responsive	 cell	 lines	 is	 likely	 to	 be	 a	322	

systematic	source	of	false	positives	for	suppressor	interactions	using	this	approach.	323	

	324	

Conclusions	325	

	326	

Identifying	 the	 genetic	 drivers	 of	 drug	 effectiveness	 and	 resistance	 is	 critical	 to	327	

realize	 the	promise	of	personalized	medicine.	Chemogenetic	 interaction	screens	 in	328	

mammalian	cells	using	CRISPR	knockout	libraries	have	so	far	been	primarily	used	in	329	

a	 positive	 selection	 format	 to	 identify	 the	 genes,	 pathways	 and	 mechanisms	 of	330	

acquired	resistance	to	chemotherapeutic	drugs.	However,	negative	selection	screens	331	

Figure	4.	Multiple	drug	screens	in	hTERT-RPE1	cells.	(A)	Experimental	design.	The	TKOv3	lentivirial	library	
was	 transduced	 into	RPE1	 cells,	expanded,	 and	split	 into	 four	 treatment	arms	 (in	duplicate).	 (B)	Control	 cells	
were	 analyzed	 with	 BAGEL	 to	 identify	 essential	 genes	 (purple)	 and	 putative	 tumor	 suppressors	 (green).	 (C)	
NormZ	scores	for	RPE1	entinostat	screen;	colors	as	in	Figure	3.	(D)	NormZ	scores	for	RPE1	gemcitabine	screen.	
(E)	NormZ	scores	for	RPE1	vincristine	screen.	
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to	identify	the	underlying	architecture	of	drug-gene	interactions	have	been	difficult	332	

to	carry	out	and	to	analyze	in	part	due	to	the	lack	of	robust	analytical	tools.	333	

	334	

We	describe	 the	drugZ	algorithm,	which	calculates	a	gene-level	Z-score	 for	pooled	335	

library	CRISPR	drug-gene	interaction	screens.	By	taking	into	account	the	moderate	336	

single	 mutant	 fitness	 defects	 associated	 with	 many	 genes	 involved	 in	 drug-gene	337	

interactions,	 the	 drugZ	 algorithm	 offers	 significantly	 improved	 sensitivity	 over	338	

contemporary	 analysis	 platforms.	 The	 algorithm	 was	 developed	 to	 exploit	 the	339	

additional	resolving	power	we	expected	to	gain	from	a	paired-sample	experimental	340	

design,	but	surprisingly	this	has	virtually	no	effect	on	our	results.	We	demonstrate	341	

the	validity	of	our	hits	by	showing	the	strong	enrichment	for	genes	involved	in	the	342	

DNA	damage	response	in	a	screen	for	interactions	with	the	PARP	inhibitor	olaparib	343	

and	the	precise	detection	of	MAPK	pathway	effectors	in	an	ERK	inhibitor	screen.	We	344	

further	show	that	both	synergistic	and	suppressor	interactions	can	be	identified	in	345	

the	 same	 screen,	 as	 the	 previously	 identified	 PARP	 resistance	 gene	TP53BP1	 and	346	

newly	 characterized	 SHLD1	 (formerly	 C20orf196)	 are	 top-ranked	 suppressors	 of	347	

olaparib	 activity	 in	 BRCA1-mutant	 SUM149PT	 screens.	 Moreover,	 both	 synthetic	348	

targets	 MAPK1/3	 and	 RPS6KA3	 and	 suppressor	 genes	 EPHX2	 and	 KEAP1	 are	349	

identified	in	ERK	inhibition	screens.	KEAP1	deletion	or	mutation	is	frequently	found	350	

in	KRAS-driven	lung	adenocarcinomas	and	may	present	an	obstacle	to	ERK	inhibitor	351	

therapy	in	these	tumors.	352	

	353	

Experimental	 design	plays	 a	 critical	 role	 in	 the	 ability	 to	 accurately	 identify	drug-354	

gene	 interactions.	 	 Negative	 selection	 screens	 for	 synthetic	 lethal	 interactions	355	

require	 that	 cells	 be	 carried	 long	 enough	 for	 dropouts	 –	 typically	 growth	 defects	356	

rather	 than	 full	 synthetic	 lethals	 –	 to	 rise	 to	 statistical	 significance.	 Our	 results,	357	

concordant	 with	 known	 highly	 drug-specific	 differences	 in	 effect	 timing,	 suggest	358	

that	each	there	is	value	in	collecting	multiple	timepoints	to	ensure	that	drug	activity	359	

and	 genetic	 interaction	 are	 detectable,	 and	 that	 traditional	 dose-response	 curves	360	

must	 be	 calculated	 over	 a	 timecourse	 relevant	 to	 the	 screen	 (e.g.	 at	 least	 two	361	

passages	or	several	doublings).	362	
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	363	

Despite	these	technical	idiosyncrasies,	chemogenetic	interaction	screens	extend	the	364	

utility	 of	 CRISPR	 genome-scale	 perturbation	 screens	 by	 enabling	 the	 systematic	365	

surveying	of	the	landscape	of	drug-gene	interactions	across	cancer-relevant	genetic	366	

backgrounds.	Understanding	 this	variation	may	 lead	 to	more	precise	 therapies	 for	367	

patients	as	well	as	the	development	of	synergistic	drug	combinations	for	genotype-368	

specific	treatments.	369	

	370	
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	394	

DrugZ	algorithm	395	

	396	

We	calculate	the	log2	fold	change	of	each	gRNA	in	the	pool	by	normalizing	the	total	397	

read	count	of	each	sample	(to	n=10	million	reads)	at	the	same	timepoint	and	taking	398	

the	log	ratio,	for	each	replicate,	of	treated	to	control	reads.	399	

	400	

𝑓𝑐! =  log![
𝑛𝑜𝑟𝑚(𝑇!,!)+ 𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑢𝑛𝑡
𝑛𝑜𝑟𝑚(𝐶!,!)+ 𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑢𝑛𝑡

]	

Where:		401	

• fc	=	fold	change	402	

• r	=	replicate	indication	403	

• T	=	treated	sample	404	

• C	=	control	sample	405	

• t	=	time	point	406	

• pseudocount	=	default	value	is	5	407	

	408	

	We	estimate	the	variance	of	each	fold	change	by	calculating	the	standard	deviation	409	

of	fold	changes	with	similar	abundance	in	the	control	sample:	410	

	411	

𝑠𝑜𝑟𝑡 𝑓𝑐!  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝐶!  (𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑇𝑟𝑢𝑒)	

𝑒𝑏_𝑠𝑡𝑑!"! =  
1
𝑁 (𝑓𝑐!,! − 𝜇)!

!

!

 	

Where:	412	

• 𝑒𝑏_𝑠𝑡𝑑!"! 	=	estimated	variance		413	

• 𝑁	=	number	of	fold	changes	with	similar	abundance	(default	=	1000)	414	

• 𝑖	=	guide	415	

• 𝑓𝑐!,! 	=	fold	change	for	each	guide	in	a	replicate	416	

• 𝜇	=	0	417	
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	418	

	419	

	420	

and	then	calculate	a	Z-score	for	each	fold	change	using	this	estimate:	421	

𝑍!"!,! =  
𝑓𝑐!,!

𝑒𝑏_𝑠𝑡𝑑!"!,!
	

	422	

	423	

	The	 guide	Z	 score	of	 all	 gRNA	across	 all	 replicates	 is	 summed	 to	 get	 a	 gene-level	424	

sumZ	score,	which	is	then	normalized	(by	dividing	by	the	square	root	of	the	number	425	

of	summed	terms)	to	the	final	normZ	(Figure	1B)	426	

𝑛𝑜𝑟𝑚𝑍!"#"$ =  
𝑍!"!,!!"#"$

𝑛
	

	427	

	A	 P-value	 is	 calculated	 from	 the	 normZ,	 and	 corrected	 for	 multiple	 hypothesis	428	

testing	using	the	method	of	Benjamini	and	Hochberg	[42].	The	open-source	Python	429	

software	can	be	downloaded	from	github.com/hart-lab/drugz.	430	

	431	

DrugGS	algorithm	432	

	433	

After	 Empirical	 Bayes	 variance	 estimation	 approach	 is	 applied	 on	 normalized	 log	434	

fold	 changes	 to	 calculate	 a	 Z-score	 for	 each	 guide,	 we	 applied	 Gibbs	 sampling	 to	435	

generate	posterior	distribution	of	fold	changes	for	each	gene.		436	

	437	

Posterior	~	Likelihood	*	Prior	438	

P(𝜇, 𝜏| data)   =  !(!"#"| !,!) ∗ !(!,!) 
!(!"#")

		posterior	439	

𝑃(𝑑𝑎𝑡𝑎|𝜇, 𝜏)  																												likelihood	440	

𝑃(𝜇, 𝜏)  																														prior	441	

	442	
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Each	gene	has	a	distribution	composed	of	Z-scores	for	guides	targeting	that	specific	443	

gene	across	replicates.	Distribution	is	characterized	as	ℕ(𝜇, 𝜏),	where	𝜏	is		 !
!!
	.	444	

	445	

Both	𝜇 𝑎𝑛𝑑  𝜏	have	hyperparameters	(𝜇 ∶  𝜇,𝜎!, 𝜏:𝑎, 𝑏)	that	we	initialize	at	the	very	446	

start	of	sampling.		447	

	448	

P( 𝜏| data)  ~	Γ(a, b)	=	Gamma	prior	with	a	(shape)	and	b	(rate)	hyperparameters	449	

P 𝜇 𝜏, data 	~	ℕ(𝜇,𝜎!)	=	Normal	prior	with	𝜇	(mean)	and		𝜎! (variance)	450	

hyperparameters	451	

	452	

We	then	update	𝜇 𝑎𝑛𝑑 𝜏	with	respect	to	their	priors	in	every	of	1000	samples	that	453	

we	generate	for	each	gene.		454	

	455	

Equations	to	update	𝜇:	456	

	457	

𝜇!"#$%& =
𝑛 ∗ 𝑦 ∗ 𝜏 + (𝜇!"#$" ∗ 𝜏!"#$")

𝑛 ∗ 𝜏 +  𝜏!"#$"
	

𝜎!"#$%& =  
1

𝑛 ∗ 𝜏 +  𝜏!"#$"
	

	458	

Equations	to	update	𝜏:	459	

𝑎!"#$%& = 𝑎!"#$" +  
𝑛
2	

𝑏!"#$%& =  𝑏!"#$" +  (𝑍!"!,! −  𝜇)!	

	460	

Where:	461	

• n	=	number	of	data	points	(guide	Z	scores)	for	each	gene	462	

• 𝑦	=	actual	mean	of	data	points		463	

	464	
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From	 those	 1000	 newly	 sampled 𝜇 𝑎𝑛𝑑 𝜏,	 we	 then	 calculate	 mean	 and	 standard	465	

deviation.	Each	gene’s	𝜇	posterior	distribution’s	mean	is	what	was	converted	into	Z	466	

score	and	used	to	compare	with	the	drugZ	normZ	values.		467	

	468	

𝑍!"#"$ =  
𝜇!!

!!!

𝑆 	

Where:	469	

• S	=	number	of	samples	(in	our	case	1000)	470	

• k	=	sample	471	

	472	

	473	

	474	

Drug-Gene	interaction	screens	475	

	476	

Olaparib	screens	were	described	in	[15].		477	

	478	

Cell	Culture	479	

hTERT	 RPE-1	 (CRL-4000)	 and	 293T	 (CRL-3216)	 cells	 were	 purchased	 from	 the	480	

ATCC	 and	 grown	 in	 Dulbecco’s	 High	 Glucose	 Modified	 Eagle	 Medium	481	

(DMEM;HyClone)	 with	 10%	 fetal	 bovine	 serum	 (FBS),	 1	 X	 GlutaMAX	 (Gibco),	482	

100mM	 sodium	 pyruvate	 (Gibco),	 1	 X	 non-essential	 amino	 acids	 (NEAA),	 1X	483	

penicillin-streptomycin	(Pen/Strep),	and	5ug	ml-1	Plasmocure.	Incubator	conditions	484	

were	kept	at	37oC	with	5%	CO2.	485	

	486	

Lentivirus	Production	487	

For	production	of	the	TKOV3	lentivirus,	9.0	X	106	293T	cells	were	transfected	with	488	

psPAX2	(lentiviral	packaging;	Addgene	#12260),	pMD2.G	(VSV-G	envelope;	Addgene	489	

#12259),	and	TKOV3	(Toronto	KnockOut	CRISPR	Library;	Addgene	#90294)	using	490	

X-tremeGENE	9	DNA	transfection	reagent	(Sigma-Aldrich)	in	medium	with	lowered	491	

antibiotic	concentration	(0.1X	Pen/Strep).	Medium	was	replaced	with	viral	harvest	492	

medium	 (DMEM	 +	 1.1%	 BSA	 +	 1X	 Pen/Strep)	 18	 hours	 post-trasfection.	 Virus-493	
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containing	 supernatant	 was	 collected	 ~24-48	 hours	 post-transfection,	 and	 fresh	494	

viral	harvest	medium	was	added	to	transfected	plates.	Virus-containing	supernatant	495	

was	collected	again	~24	later.	The	virus-containing	supernatant	was	centrifuged	to	496	

remove	cell	debris	and	stored	at	-80oC.	497	

	498	

CRISPR	screening	499	

For	transduction	of	the	hTERT	RPE-1	cells,	the	TKOv3	virus	was	added	with	8ug/ml	500	

Polybrene.	 For	 selection	 of	 the	 transduced	 cells,	 puromycin	 was	 introduced	 at	 a	501	

concentration	of	20	ug/ml	at	24	hours	post-infection	 (the	hTERT	cassette	used	 to	502	

immortalize	 RPE1	 cells	 contains	 a	 puromycin	 resistance	 marker,	 necessitating	503	

extreme	 puromycin	 concentrations	 for	 selection).	 Puromycin	 selection	 continued	504	

for	72	hours	post-transduction	and	completed	upon	the	selection	against	the	hTERT	505	

RPE-1	parental	line	as	a	control.	Completion	of	selection	was	considered	the	initial	506	

timepoint	(T0).	The	TKOv3-transduced	cells	were	split	 into	technical	replicates.	To	507	

ensure	 proper	 coverage,	 15	 x	 106	 cells	 across	 11	 x	 15	 cm	 dishes	 were	 used	 for	508	

infection	 with	 the	 TKOv3	 virus	 per	 replicate.	 The	 chemotherapeutic	 drugs	509	

Entinostat	 (2nM),	 Gemcitabine	 (2nM),	 and	 Vincristine	 (0.4nM)	 were	 added	 to	510	

separate	 replicates,	 with	 one	 set	 of	 replicates	 receiving	 no	 drug	 treatment.	 Both	511	

drug-treated	and	untreated	replicates	were	not	allowed	to	reach	confluence	 in	the	512	

15cm	dishes.	Cells	were	lifted,	counted,	and	re-plated	at	the	coverage	stated	above,	513	

and	 the	 excess	 cell	 pellets	were	 frozen	 at	 -20oC	 as	 a	 timepoint.	 Once	 8	 doublings	514	

were	 reached	 from	 T0,	 the	 screens	 were	 terminated	 and	 pellets	 frozen	 at	 -20oC.	515	

Coverage	of	screens	was	kept	at	200	cells	per	gRNA.	516	

	517	

The	QIAamp	Blood	Maxi	Kit	(Qiagen)	was	used	to	isolate	the	genomic	DNA	(gDNA)	518	

from	 the	 frozen	 cell	 pellets.	 Guide	 sequences	 were	 enriched	 using	 PCR	with	 HiFi	519	

HotStart	ReadyMix	(Kapa	Biosystems)	and	primers	targeting	the	guide	region	in	the	520	

genomic	DNA.	A	second	round	of	PCR	was	performed	with	i5	and	i7	primers	to	give	521	

each	condition	and	replicate	a	unique	multiplexing	barcode.	The	final	PCR	products	522	

were	 purified	 using	 the	 E-Gel	 System	 (Invitrogen),	 normalized,	 and	 sequenced	 on	523	
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the	 NextSeq500	 system	 to	 determine	 the	 representation	 of	 guides	 under	 each	524	

treated	and	non-treated	condition.	525	
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Supplementary	Figures	
	

	
Supplementary	 Figure	 1.	 DrugZ	 vs.	 other	methods	 for	 HeLa	 (A)	 and	 RPE1	 (B)	with	
olaparib	screens.	Methods	are	colored	as	in	Fig.1C.	DrugZ	hits	show	strongest	enrichment	
for	DDR	genes	across	a	range	of	FDR	thresholds	in	these	two	screens	as	well	but	less	overall	
effect	in	RPE1	cells.		(A)	Left,	number	of	raw	hits.	Center,	number	of	annotated	DNA	Damage	
Response	(DDR)	genes	 in	hits.	Right,	 log	P-values	for	DDR	gene	enrichment.	 	(B)	All	three	
panels	are	the	same	as	in	(A),	for	RPE1	screen.	
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Supplementary	Figure	2.	DrugZ	tunable	parameters.		
(A)	 DrugZ	 performance	 across	 different	 window	 sizes	 for	 Empirical	 Bayes	 estimation	 of	
variance.	 Left,	 number	 of	 raw	 hits.	 Center,	 number	 of	 annotated	 DNA	 Damage	 Response	
(DDR)	genes	in	hits.	Right,	log	P-values	for	DDR	gene	enrichment.		(B)	DrugZ	performance	
with	correction	that	ensures	monotonicity	in	the	variance	(red)	vs.	drugZ	performance	with	
no	 correction	 that	 ensures	 monotonicity	 in	 the	 variance	 (blue)	 in	 SUM149PT	 olaparib	
screen	 (panels	 same	 as	 in	 (A)).	 (C)	 DrugZ	 performance	 with	 correction	 that	 ensures	
monotonicity	 in	the	variance	(red)	vs.	drugZ	performance	with	no	correction	that	ensures	
monotonicity	in	the	variance	(blue)	in	HeLa	olaparib	screen	(panels	same	as	in	(A)	and	(B)).		
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Supplementary	Figure	3.	DrugZ	vs.	DrugGS	
(A)	DrugGS	Computational	Diagram.	DrugGS	processing	step	are	same	as	in	the	DrugZ	until	
the	step	where	the	gene-level	scores	are	generated.	After	guide	level	Z-scores	are	obtained,	
they	 are	 used	 as	 a	 prior	 distribution	 for	 gene-level	 score	 in	 Gibbs	 sampler.	 The	mean	 of	
generated	 samples	 of	 means	 is	 considered	 as	 new	 gene	 score.	 (B)	 Comparison	 between	
drugGS	 (x-axis)	and	drugZ	 (y-axis)	gene	scores.	 	High	correlation	between	 the	 two	(rho	=	
0.99).	 (C)	 Comparison	 between	 drugGS	 (top)	 and	 drugZ	 (bottom)	 time	 and	 memory	
performance.	DrugZ	drastically	outperforms	drugGS	in	terms	of	time	and	memory	used.	
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Supplementary	 Figure	 4.	 High	 correlation	 between	 paired	 and	 non-paired	
approaches	in	there	olaparib	screens.	(A)	Correlation	between	paired	samples	(control	A	
–	treated	A,	control	B	–	treated	B,	etc.)	vs.	non-paired	(mean	(control	A,	B,	C)	–	mean	(drug	
A,	 B,	 C.))	 for	 Sum149	 olaparib	 screen	 (rho	 =	 0.98)	 (B)	 Same	 as	 in	 (A)	 for	 HeLa	 olaparib	
screen	 (rho	 =	 0.96)	 (C)	 Same	 as	 in	 (A)	 for	 RPE1	 olaparib	 screen	 (rho	 =	 0.98)	 (D)	
Comparison	between	paired	and	nor-paired	approaches	across	number	of	significant	genes,	
DDR	genes	and	normalized	p-values	in	SUM149PT	olaparib	screen.		
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