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ABSTRACT 
Pathway enrichment analysis helps gain mechanistic insight into large gene lists 

typically resulting from genome scale (–omics) experiments. It identifies biological 

pathways that are enriched in the gene list more than expected by chance. We 

explain pathway enrichment analysis and present a practical step-by-step guide to 

help interpret gene lists resulting from RNA-seq and genome sequencing 

experiments. The protocol comprises three major steps: define a gene list from 

genome scale data, determine statistically enriched pathways, and visualize and 

interpret the results. We focus on differentially expressed genes and mutated cancer 

genes, however the described principles can be applied to diverse –omics data. The 

protocol is designed for biologists with no prior bioinformatics training and uses 

freely available software including g:Profiler, GSEA, Cytoscape and Enrichment 

Map. 
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INTRODUCTION 
Comprehensive surveys of DNA, RNA and proteins in biological samples are 

now routine. The resulting data are growing exponentially and their analysis helps 

discover novel biological functions, genotype-phenotype relationships and disease 

mechanisms. However, analysis and interpretation of these data is a major challenge for 

many researchers. Analyses often result in long lists of genes that require an impractically 

large amount of manual literature searching to interpret. A standard approach to 

addressing this problem is pathway enrichment analysis, which summarizes the large 

gene list as a smaller list of more easily interpretable pathways. Pathways are statistically 

tested for over-representation in the experimental gene list above what is expected by 

chance. For instance, experimental data containing 40% cell cycle genes is surprisingly 

enriched given that only 8% of human protein-coding genes are involved in this process. 

In a recent example, we used pathway enrichment analysis to help identify histone 

and DNA methylation by the Polycomb repressive complex (PRC2) as the first rational 

therapeutic target for ependymoma, one of the most prevalent childhood brain cancers1. 

This pathway is targetable by available drugs, such as 5-azacytidine, which was used on a 

compassionate basis in a terminally ill patient and stopped rapid metastatic tumour 

growth. In another example, we analysed rare copy number variants (CNVs) in autism 

and identified several significant pathways affected by gene deletions, whereas only few 

significant hits were identified with case-control association tests of single genes or 

loci2,3. These examples illustrate the useful insights into biological mechanisms that can 

be achieved using pathway enrichment analysis. 

This protocol covers pathway enrichment analysis of large gene lists typically 

derived from genome scale (“-omics”) technology. The protocol is intended for 

experimental biologists who are interested in interpreting their -omics data. It requires 

only an ability to learn and use “point-and-click” computer software, although advanced 

users can benefit from automatic analysis scripts we provide. We analyse human gene 

expression and somatic mutation data as examples, however our conceptual framework is 

applicable to analysis of lists of genes or biomolecules from any organism derived from 

large-scale data, including proteomics, genomics, epigenomics and gene regulation 

studies. The protocol uses free, easy to use, updated and well documented software 
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(g:Profiler4, GSEA5, Cytoscape6, Enrichment Map7). We next present the major steps of 

pathway enrichment analysis, describe each in detail and then provide a detailed step-by-

step protocol. 

 

Protocol overview 
Pathway enrichment analysis involves three major steps (Figure 1; See Box 1 for basic 

definitions). 

1. Define a gene list of interest using -omics data. An -omics experiment 

comprehensively measures the activity of genes in an experimental context. The raw 

data generally require computational processing, such as normalization and scoring to 

identify genes of interest, considering the experimental design. For example, a list of 

genes differentially expressed between two groups of samples can be derived from 

RNA-seq data. 

2. Perform pathway enrichment analysis. A statistical method is used to identify 

pathways enriched in the gene list from step 1, relative to what is expected by chance. 

All pathways in a given database are tested for enrichment in the gene list. Several 

established pathway enrichment analysis methods are available and the choice of 

which to use depends on the type of gene list. 

3. Visualize and interpret pathway enrichment analysis results. Many enriched 

pathways may be identified in step 2, often including related versions of the same 

pathway. Visualization can help identify the main biological themes and their 

relationships in this list for in-depth study. 

 

Step 1: Define a gene list of interest using -omics data 
Genome-scale experiments generate raw data that must be processed to obtain 

gene-level information suitable for pathway enrichment analysis. The specific processing 

steps are particular to the -omics experiment type and may be standard or complex. 

Standard processing methods are available for established -omics technologies that are 

most conveniently performed by the core facility that generates the data. Standard 

protocols are available, for example for RNA-seq8, microarrays9, protein expression10, 

genomic variant annotation11, and DNA methylation12. 
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 There are two major ways to define a gene list from –omics data: list or ranked 

list. Certain –omics data naturally produce a gene list, such as all somatically mutated 

genes in a tumor from exome sequencing, or all proteins that interact with a bait in a 

proteomics experiment. Such a list is suitable for direct input into pathway enrichment 

analysis using g:Profiler protocol 1A. Other -omics data naturally produce ranked lists. 

For example, a list of genes can be ranked by differential gene expression score or 

sensitivity in a genome wide CRISPR screen. Early pathway enrichment analysis 

approaches involved applying a threshold to a ranked gene list (e.g. FDR-adjusted p-

value below 0.05 and fold-change above 2); however, this is often arbitrary and thus not 

recommended, especially when meaningful ranks are available for all or most of the 

genes in the genome. Modern approaches, like GSEA, are designed to analyze ranked 

lists of all available genes and do not require a threshold. A ranked list is suitable for 

input into pathway enrichment analysis using GSEA protocol 1B. Alternatively, a partial 

ranked gene list can be analysed using g:Profiler. 

As an example, we describe analysis of raw RNA-seq data to define a ranked 

gene list. DNA sequence reads are quality filtered (e.g. by trimming to remove low 

quality bases) and mapped to a genome-wide reference set of transcripts to enable 

counting reads per transcript. Read counts are aggregated at the gene level (counts per 

gene). Typically, RNA-seq data for multiple biological replicates (three or more) for each 

of multiple experimental conditions (two or more, e.g. treatment vs. control) are available 

(Box 2 – experimental design). Read counts per gene are normalized across all samples 

to remove unwanted technical variation between samples, for example, due to differences 

in sequencing lane or total read number per sequencing run13-15. Next, read counts per 

gene are tested for differential expression across sample groups (e.g. treatment vs. 

control) (Supplementary Protocol 1). Software packages such as edgeR16, DESeq17, 

limma18, and Cufflinks19 implement procedures for RNA-seq data normalization and 

differential expression analysis. Differential gene expression analysis results include: 1) 

the p-value of the significance of differential expression; 2) the related q-value (a.k.a 

adjusted p-value) that has been corrected for multiple testing across all genes (e.g. using 

the Benjamini-Hochberg False Discovery Rate (FDR) procedure20); 3) effect size and 

direction of expression change (expressed as fold-change or log-transformed fold-
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change) so that up-regulated genes are positive and at the top of the list and down-

regulated genes are negative and at the bottom of the list. The list of all genes is then 

ranked by one or more of these values (e.g. -log10 p-value multiplied by the sign of log-

transformed fold-change). This ranked list is provided as input to pathway enrichment 

analysis (ranked gene list, no threshold needed, pathway enrichment analysis using 

GSEA protocol 1B). 

 

Step 2A: Pathway enrichment analysis of a gene list using 
g:Profiler 

The default analysis implemented in g:Profiler and similar web-based tools (e.g., 

Panther21, ToppGene22, Enrichr23, DAVID24) searches for pathways whose genes are 

significantly enriched (i.e. over-represented) in the fixed list of genes of interest, 

compared to all genes in the genome. The p-value of the enrichment is computed using a 

Fisher’s exact test and multiple test correction is applied (Box 3). 

The g:Profiler tool also includes an ordered enrichment test, which is suitable for 

lists of up to a few thousand genes that are ordered by a score, while the rest of the genes 

in the genome lack meaningful signal for ranking. For example, significantly mutated 

genes may be ranked by a score from a cancer driver prediction method25. This analysis 

repeats a modified Fisher’s exact test on incrementally larger sub-lists of the input genes 

and reports the sub-list with the strongest enrichment p-value for every pathway26. 

g:Profiler searches a set of pathway, network, regulatory motif, and phenotype gene sets. 

Major gene set categories can be selected to customize the search. 

Pathway enrichment methods that use the Fisher’s exact test, or related over-

representation tests, require the definition of a set of background genes for comparison. 

All annotated protein-coding genes are often used as default. This leads to inappropriate 

inflation of p-values and false positive results if the experiment can directly measure only 

a subset of all genes. For example, setting a custom background is important in analysing 

data from targeted sequencing or phosphoproteomics experiments. The appropriate 

custom background would include all genes in the sequencing panel or all known 

phosphoproteins, respectively. 
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Step 2B: Pathway enrichment analysis of a ranked gene list 
using GSEA 

Pathway enrichment analysis of a ranked gene list is implemented in the GSEA 

algorithm5. GSEA is a threshold-free method that analyzes all genes based on their 

differential expression rank, or other score, without prior gene filtering. GSEA is 

particularly suitable and recommended when ranks are available for all or most of the 

genes in the genome (e.g. for RNA-seq data), however it is limited or inapplicable when 

only a small portion of genes have ranks available. 

The GSEA method searches for pathways whose genes are enriched at the top or 

bottom of the ranked gene list, more so than expected by chance alone. For instance, if 

the top most differentially expressed genes are involved in the cell cycle, this suggests 

that the cell cycle pathway is regulated in the experiment. In contrast, the cell cycle 

pathway is likely not significantly regulated if the cell cycle genes appear randomly 

scattered through the whole ranked list. To calculate an enrichment score (ES) for a 

pathway, GSEA progressively examines genes from the top to the bottom of the ranked 

list, increasing the enrichment score if a gene is part of the pathway and decreasing the 

score otherwise. These running sum values are weighted, so that enrichment in the very 

top- (and bottom-) ranking genes is amplified, whereas enrichment in genes with more 

moderate ranks are not amplified. The ES score is calculated as the maximum value of 

the running sum and normalized relative to pathway size, resulting in a normalized 

enrichment score (NES) that reflects the enrichment of the pathway in the list. Positive 

and negative NES values represent enrichment at the top and bottom of the list, 

respectively. Finally, a permutation-based p-value is computed and corrected for multiple 

testing to produce a permutation-based FDR q-value that ranges from zero (highly 

significant) to one (not significant) (Box 3). The same analysis is performed starting from 

the bottom of the ranked gene list to identify pathways enriched in the bottom of the list. 

Resulting pathways are selected using the FDR q-value threshold (e.g. q<0.05), and 

ranked using NES. It is also useful to inspect the “leading edge” genes that contribute to 

the increase of the enrichment score before it peaks. 

GSEA has two methods to determine the statistical significance of the enrichment 

score and compute a p-value: gene set permutation and phenotype permutation. For gene 
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set permutation, input is a ranked list and GSEA compares the observed pathway 

enrichment score to a distribution of scores obtained by repeating the analysis with 

randomly sampled gene sets of matching sizes (e.g. 1,000 times). In the phenotype 

permutation mode, input is expression data for all samples along with a definition of 

sample groups (called ‘phenotypes’ - e.g. cases vs. controls, tumor vs. normal) to be 

compared against each other. The observed pathway enrichment score is compared to a 

distribution of scores obtained by randomly shuffling the samples among phenotype 

categories and repeating the analysis (e.g. 1,000 times), including computation of the 

ranked gene list and resulting pathway enrichment score. The gene set permutation mode 

is recommended for studies with limited variability and biological replicates (i.e. 2 to 5 

per condition). In this case, differential gene expression analysis should be computed 

using methods that include variance stabilization, outside of GSEA. If more replicates are 

available (above 6 to 10 per condition), the phenotype permutation should be used, 

offering as a main advantage that it models gene correlations in the gene expression 

matrix, unlike the gene set permutation approach. This protocol only covers gene set 

permutation because it can be accomplished using easy to use GSEA software, whereas 

phenotype permutation for RNA-seq data requires computing the enrichment score and 

differential expression statistics on thousands of phenotype randomizations, which 

currently requires custom programming outside of GSEA. 

By default, the GSEA desktop software searches the MSigDB gene set database 

that includes pathways, published gene signatures, microRNA target genes and other 

gene set types (Box 4). The user can also provide a custom database as a text-based 

‘Gene Matrix Transposed’ (GMT) file where each line defines a pathway, with its name, 

identifier and a list of gene identifiers that match the input gene list. 

 

General recommendations for pathway enrichment analysis 
We recommend searching enrichment only of pathway gene sets at first, as these 

capture familiar normal cellular processes that are easy to interpret. Gene Ontology 

(GO)27 biological process terms and manually curated molecular pathways from 

Reactome28, Panther21, HumanCyc29, and NetPath30 are good resources for human 

pathways (Box 4). GO biological process annotations include a mix of manually curated 
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and electronically inferred sources. We recommend excluding those with the lower 

quality ‘inferred from electronic annotation’ (IEA) evidence code, unless no enriched 

pathways are found. Pathway definitions change rapidly and it is essential to use updated 

databases of gene annotations as outdated databases can lead to missed discoveries31. 

Different types of gene sets help answer a variety of questions. For instance, gene 

sets corresponding to microRNA and transcription factor targets can be used to discover 

important regulators32,33. The use of additional sets must be carefully considered, as 

simultaneously analyzing all available gene sets increases the number of statistical tests 

and leads to more conservative p-values following multiple test correction (Box 3). 

Gene set size is important to consider. Small pathways (e.g. less than ten or 

fifteen genes) should be excluded because these are often numerous, negatively affecting 

multiple test correction, and redundant with larger pathways. For human gene expression 

analysis, large pathways (e.g. over 300 genes) should also be excluded as these are overly 

general (e.g. ‘metabolism’) and don’t contribute to interpretability of results. However, 

for other gene set types and organisms, larger pathways and gene sets may need to be 

included (e.g. up to 1000 genes). 

A pathway enrichment analysis resulting in few or no enriched pathways may be 

caused by suboptimal statistical processing used to define the gene list. If the gene list 

ranks are too noisy (interfering with the signal of having the most important genes at the 

top of the list), all or no genes are highly significant, then enriched pathways are unlikely 

to be found. If the gene list has been correctly defined, increasing the number of 

pathways and gene sets searched or setting more liberal filters may improve results. 

Finally, pathway enrichment analysis results can change based on the parameters used 

(e.g. minimum and maximum pathway size or selected pathway databases), thus the 

robustness of conclusions should be tested by varying these parameters. 

 

Step 3: Visualising and interpreting pathway enrichment 
analysis results 

Pathway information is inherently redundant, as genes often participate in 

multiple pathways, and some pathway databases organize pathways hierarchically by 

including general and specific pathways with many shared genes (e.g. ‘cell cycle’ and 
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‘M-phase of cell cycle’). Pathway enrichment analysis often highlights several versions 

of the same pathway as a result. Collapsing redundant pathways into a single biological 

theme simplifies interpretation. We recommend addressing such redundancy with the 

Enrichment Map visualization method7 or similar34. An enrichment map is a network 

representing overlaps among enriched pathways. Pathways are represented as circles 

(nodes) that are colored by enrichment score and are connected with lines (edges) sized 

based on the number of genes shared by the connected pathways. Network layout and 

clustering algorithms are used to automatically display and group similar pathways as 

major biological themes (Figure 1). The Enrichment Map software takes as input a text 

file containing pathway enrichment analysis results and another text file containing the 

pathway gene sets used in the original enrichment analysis. Interactive exploration of 

pathway enrichment score (filtering nodes) and connections between pathways (filtering 

edges) is possible (see visualize enrichment results with Enrichment Map, protocol 

2). Multiple enrichment analysis results can be simultaneously visualized in a single 

enrichment map, in which case different colors are used on the nodes for each 

enrichment. If the gene expression data are optionally loaded, clicking on a pathway node 

will display a gene expression heat map of all genes in the pathway. 

An enrichment map helps identify interesting pathways and themes. First, 

expected themes should be identified to help validate the pathway enrichment analysis 

results (positive controls). For instance, growth related pathways are expected to be 

identified in cancer samples relative to controls. Second, pathways not previously 

associated with the experimental context are evaluated more carefully as potential 

discoveries. Pathways and themes with the strongest enrichment scores should be studied 

first, followed by progressively weaker signals (see navigating and interpreting the 

Enrichment Map, protocol 3). Third, interesting pathways are examined in more detail, 

examining genes within the pathways (e.g. expression heat maps and the GSEA leading 

edge genes). Further, gene expression values can be overlaid on a pathway diagram, if 

available, from databases such as Pathway Commons35, Reactome28, KEGG36 or 

WikiPathways37 using tools such as PathVisio38. If a diagram is not available, tools such 

as STRING39 or GeneMANIA40 can be used with Cytoscape6 to define an interaction 

network among pathway genes for expression overlay. This helps visually identify 
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pathway components (e.g. branches or single elements) that are most altered (e.g., 

differentially expressed) in the experiment. Additionally, master regulators for enriched 

pathways can be searched for by integrating miRNA32 or transcription factor33 target gene 

sets using the Enrichment Map post-analysis tool. Finally, pathway enrichment analysis 

results can be published to support a scientific conclusion (e.g. functional differences of 

two cancer subtypes), used for hypothesis generation or planning experiments to support 

the identification of novel pathways. 

 

Caveats of pathway enrichment analysis 
The following caveats are important to consider when interpreting pathway enrichment 

analysis results. 

• Pathway enrichment analysis assumes that a strong experimental signal of pathways 

reflects the biology addressed by the experiment. For instance, in a transcriptomics 

experiment, we assume that evolution has optimized a cell to express a pathway only 

when needed and these can be identified. Pathway activity not controlled by gene 

expression (e.g. post-translational regulation) will not be observed. 

• Unexpected biological themes may indicate problems with experimental design, data 

generation or analysis. For example, enrichment of the apoptosis pathway may 

indicate a problem with the experimental protocol that led to increased cell death 

during sample preparation. In these cases, the experimental design and data 

generation should be carefully reviewed prior to pathway analysis. 

• Pathway databases, and therefore enrichment results are biased towards well known 

pathways. 

• Multi-functional genes that are highly ranked in the gene list may lead to enrichment 

of many different pathways, some of which are not relevant to the experiment. 

Repeating the analysis after excluding such genes may reveal pathways whose 

enrichment is overly-dependent on their presence or confirm the robustness of 

pathway enrichment. 

• Pathway enrichment analysis ignores genes with no pathway annotations, sometimes 

called “dark matter of the genome”, and these genes should be studied separately. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232835doi: bioRxiv preprint 

https://doi.org/10.1101/232835
http://creativecommons.org/licenses/by/4.0/


 12 

• Most enrichment analysis methods make unrealistic assumptions of statistical 

independence among genes as well as pathways. Some genes may be always co-

expressed (e.g. genes within a protein complex) and some pathways have genes in 

common. Thus, standard false discovery rates, which assume statistical independence 

between tests, are often either more or less conservative than ideal. Nonetheless, they 

should still be used to adjust for multiple testing and rank enriched pathways for 

exploratory analysis and hypothesis generation. Custom permutation tests may lead to 

better estimates of false discovery (Box 3). 

• By representing pathways as gene sets, many biological details such as protein-

protein interactions, biochemical reactions, post-translational modifications, protein 

complexes, and activation and inhibition relationships are ignored. These issues are 

addressed by advanced methods that consider mechanistic pathway details, however 

this is still an active area of research (Box 5). 

 

Working with diverse -omics data 
Pathway enrichment analysis is generally applicable to any experiment that can generate 

a list of genes, though experiment specific issues must be considered: 

• Genes are associated with many, diverse database identifiers (IDs). We recommend 

using unambiguous, unique and stable IDs, as some IDs become obsolete over time. 

For human genes, we recommend using the Entrez Gene database IDs (e.g. 4193 

corresponds to MDM2, http://www.ncbi.nlm.nih.gov/gene/4193) or gene symbols 

(MDM2 is the official symbol recommended by the HUGO Gene Nomenclature 

Committee). As gene symbols change over time, we recommend maintaining both 

gene symbols and Entrez Gene IDs. We recommend UniProt accession numbers for 

proteins (e.g. Q00987 for MDM2, http://www.uniprot.org/uniprot/Q00987) and 

Human Metabolome Database (HMDB) IDs for metabolites (e.g. ATP is denoted as 

HMDB00538, http://www.hmdb.ca/metabolites/HMDB00538). The g:Profiler and 

related g:Convert tool support automatic conversion of multiple ID types to standard 

IDs. 

• Pathway enrichment analysis of short non-coding genomic regions such as 

transcription factor binding sites from ChIP-seq experiments need additional 
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consideration. Genomic regions must be mapped to protein-coding genes and 

corrected for biases such as increased signal in longer genes. Tools such as GREAT41 

automatically perform both tasks. 

• Large genomic intervals that span multiple genes (e.g. from genome-wide 

associations, copy number variation and differentially methylated regions) require 

specialized tests such as the PLINK CNV gene set burden test42 or INRICH43. 

Standard enrichment tests often reveal genes clustered in the genome that are strongly 

statistically inflated due to incorrectly counting each gene as an independent signal. 

These include olfactory receptors, histones, major histocompatibility complex (MHC) 

members and homeobox transcription factors. A simple solution involves selecting 

only one representative gene of each functionally homogeneous genomic cluster prior 

to enrichment analysis. 

• For rare genetic variants, case-control pathway “burden” tests are the most 

appropriate pathway enrichment analysis method (Box 3). 

 

Future perspectives 
Current pathway enrichment analysis methods provide a useful high-level overview of 

the pathways active in a genomics experiment. However, these methods consider a 

simplified pathway view (gene sets). Next generation pathway analysis methods will 

integrate more biological pathway details, build pathway models based on multiple types 

of genomics data measured across many samples, and consider positive and negative 

regulatory relationships in the data (Box 5). For instance, qualitative mathematical 

modeling parameterized with single cell RNA-seq data may enable accurate predictions 

of drug combinations capable of treating a given disease under study. 

 

PROTOCOL 
INTRODUCTION 
This step-by-step protocol explains how to complete pathway enrichment analysis using 

g:Profiler (gene list) and GSEA (ranked gene list), followed by visualization and 

interpretation using Enrichment Map, as explained above in the text. The example data 

provided for the g:Profiler analysis is a list of genes with frequent somatic single 
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nucleotide variants (SNVs) identified in The Cancer Genome Atlas (TCGA) exome 

sequencing data of 3,200 tumors of 12 types25. The example data provided for the GSEA 

analysis is a list of differentially expressed genes in two types of ovarian cancer defined 

by TCGA. 

 
MATERIALS 
Equipment 

Hardware requirements: 

• A recent personal computer with Internet access and at least 8GB of RAM. Note: 

1GB of RAM is sufficient to run GSEA analysis but Cytoscape requires at least 

8GB. 

Software requirements: 

• A contemporary web browser (e.g. Chrome) for pathway enrichment analysis 

with g:Profiler (Protocol 1A). 

• Java Standard Edition. Java is required to run GSEA and Cytoscape. It is 

available at http://java.oracle.com. Version 8 or higher is required. 

• GSEA desktop application for pathway enrichment analysis protocol 1B. 

Download the latest version of GSEA from 

http://www.broadinstitute.org/gsea/downloads.jsp. We recommend the javaGSEA 

desktop application. Free registration is required. 

• Cytoscape desktop application is required for enrichment map visualization. The 

latest version of Cytoscape can be downloaded at http://www.cytoscape.org - 

Cytoscape version 3.5.1 or higher. 

• The following Cytoscape apps must be installed within Cytoscape for enrichment 

map visualization. Go to Apps à  App manager (i.e., open the Apps menu and 

select the item “App manager”).  

o Enrichment Map, version 3.0 or higher, 

o Clustermaker2, version 0.9.5 or higher, 

o WordCloud, version 3.1.0 or higher, 

o AutoAnnotate, version 1.2.0 or higher. 

Data requirements: 
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• We provide example files that are listed following the protocol. We recommend 

saving all files in a personal project folder before starting. 

• A gene list or ranked gene list of interest.  

o Protocol 1A with g:Profiler requires a list of genes, one per line in a text 

file or spreadsheet, ready to copy and paste into a web page. 

§ Example data for Protocol 1A: Genes with frequent somatic single 

nucleotide variants (SNVs) identified in The Cancer Genome Atlas 

(TCGA) exome sequencing data of 3,200 tumors of 12 types25. The 

authors used their MuSiC software to find 127 cancer driver genes 

that displayed higher than expected mutation frequencies (Ref25 

Supplementary Table 4, column B) 

(Supplementary_Table_1_Cancer drivers.txt). Genes are ranked 

in decreasing order of significance (FDR q-value) and mutation 

frequency (not shown). 

o Protocol 1B with GSEA requires a RNK file with gene scores. 

§ A RNK file is a two-column text file with gene IDs in the first 

column and gene scores in the second column. All (or most) genes 

in the genome need to have a score and the gene IDs need to match 

those used in the GMT file. 

§ Example data for Protocol 1B: A list of differentially expressed 

genes in ovarian cancer from TCGA 

(Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rn

k). This cohort was previously stratified into four molecular 

subtypes based on gene expression data, defined as differentiated, 

immunoreactive, mesenchymal and proliferative44,45. We compared 

the immunoreactive and mesenchymal subtypes to demonstrate the 

protocol. Supplementary Protocol 1 shows how this file was 

created. 

• Pathway gene set database 

o In Protocol 1A, g:Profiler maintains an up-to-date set of pathway gene 

sets from multiple sources and no further input from the user is required. 
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o A database of pathway gene sets is required for Protocol 1B (GSEA). 

Human_GOBP_AllPathways_no_GO_iea_July_01_2017_symbol.gmt 

(Supplementary_Table3_Human_GOBP_AllPathways_no_GO_iea_J

uly_01_2017_symbol.gmt) contains a database of pathway gene sets used 

for pathway enrichment analysis in the standard GMT format, downloaded 

from http://baderlab.org/GeneSets. This file contains pathways 

downloaded on July 1, 2017 from seven original pathway gene sets data 

sources: Gene Ontology27, Reactome28, Panther21, NetPath30, NCI46, 

MSigdb47, and HumanCyc29. The latest version of this file can be 

downloaded from http://baderlab.org/GeneSets. 

o A GMT file is a text file where every line represents a gene set of a single 

pathway. Each line includes a pathway ID, name and the list of associated 

genes in a tab-separated format. 

 

Equipment setup 

• Protocol 1A uses web-based software and just requires a web browser. 

• Protocols 1B, 2 and 3 require installation of software on a local computer (see 

Equipment section, above). 

 

PROCEDURE 
Part 1A – Pathway enrichment analysis of a gene list using 
g:Profiler 

1 Open the g:Profiler website at http://biit.cs.ut.ee/gprofiler/ (Figure 2). 

2 Paste the gene list (copy list from Supplementary_Table_1_Cancer drivers.txt) 

into the “Query” field in top-left corner of the screen. The gene list can be space-

separated or one per line. The organism for the analysis, Homo sapiens, is 

selected by default. The input list can contain a mix of gene and protein IDs, 

symbols and accession numbers. Duplicated and unrecognized IDs will be 

removed automatically, while ambiguous symbols can be refined in an interactive 

dialogue after submitting the query. 
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3 Check the box next to "Ordered query". This option treats the input as an ordered 

gene list and prioritizes genes with higher mutation enrichment scores at the 

beginning of the list.  

4 Check the box next to "No electronic GO annotations". This option will discard 

less reliable Gene Ontology (GO) annotations (IEA – inferred from electronic 

annotation) that are not manually reviewed. 

5 Set filters on gene annotation data using the legend on the right. We recommend 

that the first pathway enrichment analysis only includes biological processes (BP) 

of GO and molecular pathways of Reactome. Keep the two checkboxes checked 

and uncheck all other boxes in the legend.  

6 Click on "Show Advanced Options" to set additional parameters.  

7 Set the dropdown values of "Size of functional category" to 5 (‘min’) and 350 

(‘max’). Large pathways are of limited interpretative value, while numerous small 

pathways decrease the statistical power because of excessive multiple testing.  

8 Set the dropdown "Size of query/term intersection" to 3. The analysis will only 

consider more reliable pathways that have three or more genes in the input gene 

list.  

9 Click "g:Profile!" to run the analysis. A graphical image will be shown with 

detected pathways from top to bottom and associated genes of the input list left to 

right. Resulting pathways are organized hierarchically into related groups. 

g:Profiler uses graphical output by default and switches to textual output when a 

large number of pathways is found. g:Profiler returns only statistically significant 

pathways with p-values adjusted for multiple testing correction using a custom 

pathway-focused procedure. By default, results with corrected q-value below 0.05 

are reported.  

10 Use the dropdown menu "Output type" and select the option "Generic Enrichment 

Map (TAB)". This file is required for visualizing pathway results with Cytoscape 

and Enrichment Map.  

11 Click "g:Profile!" again to run the analysis with the updated parameters. The 

required link "Download data in Generic Enrichment Map (GEM) format" will 

appear under the g:Profiler interface. Download the file from the link and save it 
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on your computer in your project folder. Example results are contained in 

Supplementary_Table4_gprofiler_results.txt. 

12 Download the required GMT file by clicking on the link "name" at the bottom of 

the Advanced Options form. The GMT file is a compressed ZIP archive that 

contains all gene sets used by g:Profiler (e.g., gprofiler_hsapiens.NAME.gmt.zip). 

The gene set files are divided by data source. Download and uncompress the ZIP 

archive to your project folder. All required gene sets for this analysis will be in 

the file hsapiens.pathways.Name.gmt 

(Supplementary_Table5_hsapiens.pathways.NAME.gmt). 

13 Proceed to Protocol 2. 

 

TIMING: ~3 minutes to run g:Profiler using Chrome on Windows7. 

 

Part 1B – Pathway enrichment analysis of a ranked gene list 
using GSEA  

14 Launch GSEA by double clicking on the downloaded GSEA file (gsea.jnlp) (Tips 

and Troubleshooting – #1 (TT1)) (Figure 3). 

15 Load the required data files into GSEA: 

i Click on “Load Data” in the top left corner in the “Steps in GSEA 

Analysis” section. 

ii In the “Load Data” tab, click on “Browse for files …” 

iii Find your project folder and select the file 

Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rnk. 

iv Also select the pathway gene set definition (GMT) file using a multiple 

select method such as shift-click 

(Supplementary_Table3_Human_GOBP_AllPathways_no_GO_iea_J

uly_01_2017_symbol.gmt (TT2, TT3)). Then click the ‘Choose’ button 

to continue. 

16 Click on “Run GSEAPreranked” in the side bar under “Tools”. The tab “Run 

GSEA on a Pre-Ranked gene list” will appear. 

17 Specify the following parameters: 
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i Gene sets database – click on the button (…) located to the right and wait 

for the gene set selection window to appear. Go to the “Gene matrix (local 

GMX/GMT)” tab using the top right arrow. Click on the downloaded local 

GMT file 

Supplementary_Table3_Human_GOBP_AllPathways_no_GO_iea_Ju

ly_01_2017_symbol.gmt and click on OK at the bottom of the window. 

ii Number of permutations – number of times that the gene sets will be 

randomized to create the null distribution to calculate the p-value and FDR 

q-value (TT4). Use the default value of 1000 permutations.  

iii Ranked List – select the ranked gene list by clicking on the right-most 

arrow and highlighting the rank file 

(Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rnk). 

iv Click on “Show” button next to “Basic Fields” to display extra options. 

v Analysis name – change default “my_analysis” to a specific name, for 

example “Mesen_vs_Immuno”. 

vi Save results in this folder – navigate to the folder where GSEA should 

save the results. By default, GSEA will use gsea_home/output/[date] in 

your home directory. 

vii Max size: exclude larger sets – By default GSEA sets the upper limit to 

500. Set this to 200 to remove the larger sets from the analysis. 

18 Run GSEA – click on the “Run” button located at the bottom right corner of the 

window. Expand the window if the button is not visible. The “GSEA reports” 

panel at the bottom left of the window will show the status “Running”. It will be 

updated to “Success” upon completion (TT5, TT6). 

19 Examine GSEA results – once the GSEA analysis is complete, a green 

notification “Success” will appear in the bottom left section of the screen. All 

output files are available in the folder specified in the GSEA interface. Click on 

“Success” to open the results in your web browser. Pathways enriched in top-

ranking genes (i.e. up-regulated) are shown in the first set (na_pos; 

‘mesenchymal’ in this protocol) and pathways enriched in bottom-ranked genes 
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(i.e. down-regulated) in the second set (na_neg; ‘immunoreactive’) (TT7, TT8) 

(Figure 4A). 

20 In the web browser results summary, click on the “Snapshot” link under the 

results to get an overview of the top 20 findings. The most significant pathways 

for the first phenotype (‘na_pos’) should clearly display enrichment in top-

ranking (i.e. up-regulated) genes. Conversely, the most significant pathways for 

the second phenotype (‘na_neg’) should clearly display enrichment in bottom-

ranked genes (i.e. down-regulated) (TT9) (Figure 4A). 

21 Check the number of gene sets that have q-values below 0.05 to determine 

appropriate thresholds for the enrichment map in the next protocol. If no 

pathways are reported at q<0.05, more lenient thresholds such as q<0.1 or q<0.25 

could be used (Figure 4B). The threshold q<0.25 provides very lenient filtering 

and it is not uncommon to find thousands of enriched pathways at this level. 

Robust analyses should use a cutoff of q<0.05 or lower. Filtering only by 

uncorrected p-values is not recommended. 

 

TIMING: ~20 minutes to run GSEA using Windows7 with 1GB of RAM and Java 8 

(TT4, TT5). 

 

Protocol 2 – Visualize enrichment results with Enrichment Map 
22 Launch the Cytoscape software. Cytoscape introductory tutorials can be found at 

http://tutorials.cytoscape.org 

23 In the menu, click Apps à Enrichment Map. 

24 A "Create Enrichment Map Panel" will appear (Figure 5). Creating enrichment 

maps with g:Profiler and GSEA requires slightly different input files. 

25 For g:Profiler results, files generated in Protocol 1A (Figure 5A): 

i Click on folder icon to navigate to the g:Profiler results 

ii Click on g:Profiler folder created in Protocol 1A. Click on Open. (TT10) 

iii In the right hand panel g:Profiler output files will be auto populated into 

their specified fields. (Alternately, users can click on the “+” to specify 

each of the required files manually). 
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• If desired, modify the ‘dataset’ name. By default, EM will use the 

name of the g:Profiler enrichment results file name (e.g. 

gprofiler_cancer_drivers). 

• Verify the Analysis type is set to “Generic/gProfiler”. 

• Verify the Enrichments results file is the results file downloaded in 

Protocol 1A step 11 (or alternately manually specify 

Supplementary_Table4_gprofiler_results.txt) 

• Verify the GMT specified is the file retrieved from the g:Profiler 

website in Protocol 1A – step 12. Use the file 

hsapiens.pathways.NAME.gmt (or alternately manually specify 

Supplementary_Table5_hsapiens.pathways.NAME.gmt) that 

contains gene sets corresponding to GO biological processes and 

Reactome pathways. 

iv Specify additional files: 

• Expression - (Optional) Upload an expression matrix for the genes 

analyzed in g:Profiler or alternatively an expression data set of all 

genes. If the expression data set contains additional genes not used 

for the g:Profiler search, their expression values will still appear in 

the heat map of the enrichment map (for example file see 

Supplementary_Table6_TCGA_OV_RNAseq_expression.txt). 

• Ranks – (Optional) Ranks for gene list or for the expression data 

can also be specified (for example file see 

Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rnk

). 

• Classes – (Optional) GSEA cls file defining the phenotype (i.e. 

biological conditions) of each sample in the expression file, for 

example file see 

Supplementary_Table9_TCGA_OV_RNAseq_classes.cls. 

Generally, this file is only required when performing phenotype 

randomization in GSEA, but if it is supplied to enrichment map it 
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is used to identify and label the columns of the expression file in 

the Enrichment Map heat map by phenotype. 

• Phenotypes – (Optional) If there are two different phenotypes in 

the expression data, update the phenotype labels so that ‘positive’ 

represents the phenotype associated with positive values 

(Mesenchymal in this example) and ‘negative’ with negative 

values (Immunoreactive in this example) (TT11). 

v Tune parameters in the “Parameters” box: 

• g:Profiler automatically retrieves only statistically significant 

results (q<0.05), so the q-value and P-value cutoff parameters can 

be set in the Enrichment Map Input panel to 1, unless more 

stringent filtering is desired. For this analysis set FDR q-value to 

0.01. 

• Keep the connectivity slider in the center. If the network is too 

cluttered because it has too many connections (edges), move the 

slider to the left to make the network sparser. Alternatively, if the 

network is too sparse (i.e. there are too many disconnected 

pathways), move the slider to the right to obtain a more densely 

connected network (TT12). 

vi Click the “Build” button at the bottom of the Enrichment Map Input panel. 

 

26 For GSEA results generated in Protocol 1B (Figure 5): 

i Click on folder icon to navigate to the GSEA results 

ii Click on GSEA folder created in Protocol 1B. Click on Open. (TT13) 

iii In the right-hand panel, GSEA output files will be auto populated into 

their specified fields. Alternately the “+” can be clicked to specify each of 

the required files manually. Equivalent supplementary files that users can 

specify manually are indicated in brackets. 

• If desired, modify the ‘dataset’ name. By default, EM will use the 

name of the GSEA results folder prior to the first ‘.’ as the 

‘dataset’ name. 
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• Verify the Analysis type is set to “GSEA”. 

• GMT – Verify that the file is set to [data-

directory]/Supplementary_Table3_Human_GOBP_AllPathway

s_no_GO_iea_July_01_2017_symbol.gmt (or alternately 

navigate to the following file: 

Supplementary_Table3_Human_GOBP_AllPathways_no_GO

_iea_July_01_2017_symbol.gmt)(TT14, TT15) 

• Enrichments 1 – Verify that the file is set to 

[path_to_gsea_dir]/Mesen_vs_Immuno.GseaPreranked. [unique 

number]/gsea_report_for_na_pos_[unique number].xls where 

[unique number] is a number generated by GSEA (see TT14) and 

path_to_gsea_dir is the full path to the directory selected in step 

26ii, above, or alternately navigate to the following file: 

Supplementary_Table7_gsea_report_for_na_pos.xls  

• Enrichments 2 – Verify that the file is set to 

[path_to_gsea_dir]/Mesen_vs_Immuno.GseaPreranked. [unique 

number]/gsea_report_for_na_neg_[unique number].xls where 

path_to_gsea_dir is the full path to the directory selected in step 

26ii, above, or alternately navigate to the file: 

Supplementary_Table8_gsea_report_for_na_neg.xls (TT14) 

• Ranks – Verify that the file is set to 

[path_to_gsea_dir]/Mesen_vs_Immuno.GseaPreranked.[unique 

number]/ranked_gene_list_na_pos_versus_na_neg_[unique 

number].xls where path_to_gsea_dir is the full path to the directory 

selected in step 26ii, above, or alternately navigate to the file: 

Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rnk 

iv Specify additional files: 

• Expression – (Optional) 

Supplementary_Table6_TCGA_OV_RNAseq_expression.txt  

• Classes – (Optional) 

Supplementary_Table9_TCGA_OV_RNAseq_classes.cls  
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• Phenotypes – (Optional) In the text boxes replace ‘na_pos’ with 

"Mesenchymal" and ‘na_neg’ with Immunoreactive. Mesenchymal 

will be associated with red nodes as it corresponds to the positive 

phenotype while Immunoreactive will be labeled blue (TT16, 

TT17). 

v Tune parameters in the “Parameters” box: 

• Set FDR q-value cutoff to 0.01 (TT18). 

• Keep the connectivity slider in the center. For networks with fewer 

edges, a sparser network, move the slider to the left. Alternatively, 

for networks with more edges, a denser network, move the slider to 

the right (TT12). 

vi Click the “Build” button at the bottom of the Enrichment Map Input panel 

(TT6). 

27 Figure 6 shows the resulting enrichment maps from the above g:Profiler and 

GSEA protocols. 

 

TIMING: ~5 minutes to create Enrichment Map in Cytoscape using Windows7 with 

8GB of RAM and Java 8. 

 

Protocol 3 – Navigating and interpreting the Enrichment Map 
An enrichment map must be interpreted to discover novel information about a set of data 

and must be refined to create a publication quality figure. 

28 To explore the enrichment map, select the network of interest in the control panel 

located at the left side of the Cytoscape window and navigate it (zoom and pan) 

using Cytoscape controls (Figure7A). Pathways with many common genes often 

represent similar biological processes and group together as ‘themes’ in the 

network. Click on a node to display the corresponding genes in the table below 

the network view (Figure 7B). 

29 To find a gene or pathway of interest, type its name in the search bar located in 

the top right corner (Figure 7C). All pathways containing that gene will be 
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highlighted. For example, TP53 and BGN are the top genes in g:Profiler and 

GSEA analyses, respectively (TT19). 

30 To find the most enriched pathways, find the column named “EM1_fdr_qvalue” 

(for g:Profiler) or EM1_NES” (for GSEA) in the ‘Node’ tab in the table panel 

(Figure 7C and 7D). For GSEA, we specifically recommend using the NES 

(normalized enrichment score) to sort pathways by enrichment strength, whereas 

we recommend using the enrichment p-value for other enrichment methods 

(TT21). Click on the column name to sort the table according to that attribute. 

Click the greatest value to show the pathway most enriched in the data. To 

highlight a subset of the pathways in the network, select pathways of interest, 

right-click on any selected row in the table and select “Select nodes from selected 

rows”. 

31 When a gene expression matrix is provided as input to enrichment map (TT21), 

we can study the enriched pathway gene expression patterns. Click on an 

individual node to generate a gene expression heat map in the table panel (Figure 

8). If the analysis is based on GSEA results and a rank file is supplied, the 

leading-edge genes are highlighted in yellow for individual node selections 

(TT22). To improve the heat map visualization, in the table panel, “Heat Map” 

tab, change: 

i Adjust the Sorting options (Figure 8A) – by default the heat map is sorted 

by ranks if a rank file is supplied. In the absence of a rank file no sort is 

applied. Sorting options include hierarchical clustering, ranks, or no 

sorting (Figure 8F). Additional rank files can be uploaded through the 

settings menu in the heat map panel for comparison. Clicking on any of 

the column names will change the sorting to the selected column. Clicking 

on the arrow next to the currently sorted column will invert the order of 

sorting (TT23). 

ii Define genes you wish to include in the heat map (Figure 8B) – data can 

be viewed for all genes contained in the selected nodes or just for the 

genes common to all selected nodes. By default all genes are shown. 
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iii Change expression value visualization depending on your data type 

(Figure 8C) – data can be viewed as it was loaded (“Values”), or row 

normalized where the row mean is subtracted from every value and then 

divided by the row’s standard deviation (“Row Norm”), or log 

transformed (“log”). 

iv Change Expression viewing options (Figure 8D) – By default, all 

expression values are visible in the heat map for expression sets with 49 or 

fewer samples. Above that, EM will automatically compress the values to 

their median value. Other options include no compression (“-None-”), 

minimum values (“Min”), or maximum value (“Max”). 

v To see the individual expression values, select “show values” (Figure 8E). 

vi Additional fine tuning of the heat map can be done through the settings 

panel that includes functionality to add new rank files, export the heat map 

data as a tab delimited text file or PDF image, change the distance metric 

for hierarchical clustering, or turn on heat map autofocus (Figure 8F).  

The resulting heat map can be seen in Figure 8. Columns headings are colored 

according to sample phenotype. Red color refers to the first phenotype 

(Mesenchymal), and blue to the second phenotype (Immunoreactive) (TT24). 

The heat map can be exported to a text file for further analysis. 

• Click on “Export to txt” in heat map settings (Figure 8F) 

• Specify the name and location of the saved file 

• If only an individual node is selected, a dialog will offer to save the 

leading edge only. If “Yes”, only the highlighted genes will be exported, 

and the entire set is exported otherwise (TT25) 

32 Organize and de-clutter the network 

i If the network has too many nodes, increasing the Node cutoff q-value 

will remove less significant nodes (Figure 7E). 

ii If the network is too interconnected, increasing the edge cutoff (similarity) 

threshold will remove less pronounced edges between nodes (Figure 7F). 

iii The network layout may be applied again after adjusting the cutoffs (see 

the Layout menu in Cytoscape). The default layout algorithm is the 
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unweighted prefuse force-directed layout. We also recommend the yFiles 

organic layout or weighted prefuse force-directed layouts. (TT26)  

iv To restore nodes or edges, adjust threshold sliders to their original 

positions. 

v It can be helpful to separate the two different phenotypes (i.e. place all the 

red nodes to one side and all blue nodes to the other). To do this: 

• Click on the select tab in the control panel (Figure 7A) 

• Click on the “+” and select “Column filter” 

• Click on “Choose column…” and select “EM1_NES 

(Mesem_vs_Immuno)” 

• Click on the box next to “between” and change the value to zero. Click 

“Enter” 

• All red nodes should now be selected. Click and hold on any selected 

node and drag selection to the left until it does not overlap any blue 

nodes 

• Click on Layouts menu. Select “Prefuse Force Directed Layout” --> 

“Selected Node Only” à “(none)” (TT26) 

• In the Select tab, adjust slider to select all negative values. Click on 

“Apply” at the bottom of the Select tab 

• All blue nodes should now be selected. Click and hold on any selected 

node and drag selection to the right until it does not overlap any red 

nodes 

• Click on Layouts menu. Select “Prefuse Force Directed Layout” --> 

“Selected Node Only” à “(none)” (TT26) 

33 Define major themes. Enrichment maps typically include clusters of similar 

pathways representing major biological themes. Clusters can be automatically 

defined and summarized using the AutoAnnotate Cytoscape app. AutoAnnotate 

first clusters the network using the clusterMaker app and then summarizes each 

cluster based on word frequency within the pathway names via the WordCloud 

app (TT27, TT28). 
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i Launch AutoAnnotate by selecting Apps à AutoAnnotate à New 

Annotation Set… in the Cytoscape menu bar. The “AutoAnnotate” tab 

will appear in the Cytoscape control panel. 

ii Click on “+” in the AutoAnnotate panel. 

iii The “AutoAnnotate: create Annotation Set” panel will appear. 

iv In the “Quick Start” tab click on “Create Annotations” (TT29). 

v Each cluster in the network will have a circle annotation drawn around it 

and will be associated with a set of words (by default three) that appear 

most in the node description fields. Moving individual nodes within a 

cluster will automatically resize the surrounding circle annotation and 

moving an entire cluster will redraw the annotations in the new cluster 

location (TT30). 

vi Manually arrange clusters to clean up the figure. Move nodes to reduce 

node and label overlap. Figure 9 shows the results of this process. 

34 Create a simplified network view (Figure 10). This creates a single group node 

for every cluster with a summarized name and provides an overview of the 

enrichment result themes that is useful for enrichment maps containing many 

nodes. 

1. In the Cytoscape Control Panel select the “AutoAnnotate” Tab. 

2. Click on the Menu icon in the upper right hand corner. 

3. Select “Collapse All” (TT31, TT32, TT33). 

4. Scale collapsed network for better viewing: 

i. In the Cytoscape menu bar, select: View → Show Tool Panel. 

ii. Go to Tool Panel located at the bottom of the Control Panel. 

iii. Click on the “Scale” Tab. 

iv. Move slider left to tighten the node spacing. 

35 Manually arranging the network nodes and custom labeling the major themes is 

required for the clearest network view and for a publication quality figure.  

i For instance, it is useful to bring together similar themes, such as signaling 

or metabolic pathways, even if they are not connected in the map.  
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ii If the focus of the figure is only on a subset of the network, it can be easier 

to work with just the subset. To create this, select the nodes of interest, 

then in the Cytoscape menu bar Select File à New à Network à From 

selected nodes, all edges. 

iii When the purpose of the figure is to show a large network highlight only 

the main themes, clicking on “Publication ready” in the enrichment map 

panel will remove node labels. To revert to the original network, click on 

the “Publication ready” button again. 

36 Create a sub network that highlights a specific theme or data – often enrichment 

maps generated from platforms that measure signals from a large percentage of 

the genome are large and complicated. When generating a figure, it is important 

to highlight specific themes or pathways relevant to the analysis in question. For 

example, we will select the top mesenchymal and immunoreactive pathways and 

create a sub network containing them. 

i Click on the select tab in the control panel (Figure 7A). 

ii Click on the “+” and select “Column filter”. 

iii Click on “Choose column…” and select “EM1_NES 

(Mesem_vs_Immuno)”. 

iv Click on the box next to “between” and change the value to 2.5. Click 

“Enter”. 

v Click on the “+” and select “Column filter”. 

vi Click on “Choose column…” and select “EM1_NES 

(Mesem_vs_Immuno)”. 

vii Click on the box next to “inclusive” and change the value to -2.5. Click 

“Enter”. 

viii Above the two column filters you just added, change the drop down from 

“Match all (AND)” to “Match any (OR)”. 

ix Click on Apply. Under the apply button, it should say “Selected 32 nodes 

and 0 edges in Xms”. The exact number of seconds specified will depend 

on your computer speed. 

x Select File à New à Network à From selected nodes, all edges. 
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xi A new smaller network should appear. Manually move nodes around for 

optimal layout. 

xii Annotate network as described in step 6 (Figure 11). 

37 Export the image (TT34) 

i In the Cytoscape menu bar, select File → Export as Image… 

ii Set “Select the export file format” to PDF (TT35). 

iii Click on “Browse…” to specify file name and location. 

iv Click on “Save” to close the browser window and then on “OK”. 

v A window “Export Network” will appear, click on the “OK” button. 

38 Get network creation parameters. In the previous step we exported the network as 

an image but there is information that either needs to be included in the text 

legend or as a pictograph within the image itself so the network can be easily 

interpreted. It is important to include the thresholds used when creating the map. 

i In the Enrichment Map Input panel click on the cog (settings) icon in the 

top right hand corner. 

ii Click on show legend. 

iii In the EnrichmentMap Legend panel click on the “Creation Parameters…” 

iv In the displayed panel you will find the thresholds to be added to the 

figure legend. Add FDR q-value, similarity metric and threshold to text 

legend of figure. For example: “Enrichment map was created with 

parameters q < 0.01, and combined coefficient >0.375 with combined 

constant = 0.5 (TT36)”. 

39 Create a legend – there are many different node and edge attributes used in the 

enrichment map to represent different aspects of the data. It is important to add 

their meaning in the text legend or as a pictograph in the figure. Although 

Cytoscape has the ability to export a legend of the current style, it is not easily 

transferrable as a legend for the resulting figure. Figure 12 shows the basic 

legend components (available as SVG and PDF images at 

http://baderlab.org/Software/EnrichmentMap#Legends) that can be used for an 

enrichment map figure. Only include components relevant to the given analysis. 

See bottom of Figure 9 for components used for current analysis. 
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40 Save Cytoscape session (TT37). File à Save as. Navigate to the directory you 

wish to save the session and specify the desired file name. 

 

TIMING: ~4 hours to analyze and annotate Enrichment Map using Cytoscape on 

Windows7 with 8GB of RAM and Java 8 (TT38). 
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TROUBLESHOOTING 
TT1. On launching GSEA on macOS for the first time, you may get the error “‘gsea.jnlp’ 

can’t be opened because it is from an unidentified developer”. Click on “Ok”. Instead of 

double clicking on the gsea.jnlp icon/file, right click and select “open”. The same error 

“’gsea.jnlp’ can’t be opened because it is from an unidentified developer” will appear but 

this time it will give you the option to “Open” or “Cancel”. Click on “Open”. After this 

initial opening, subsequent double clicks on gsea.jnlp will launch GSEA without any 

errors or warnings. If GSEA still fails to launch through the Java Web Start downloaded 

from the GSEA website, GSEA can be alternatively be launched from the command line. 

Go to the GSEA download site and download javaGSEA JAR file (the second option on 

the download site). Open a command line terminal. On macOS, the terminal can be found 

in Applications -> Utilities -> Terminal. On Windows type “cmd” in the windows 

program files search bar. Then navigate to the directory where the file javaGSEA.jar was 

downloaded using the command cd. For example, on macOS run “cd ~/Downloads” if 

you downloaded the GSEA jar to your downloads folder. Run the command java –Xmx4G –

jar gsea-3.0.jar where –Xmx specifies how much memory is given to GSEA. 

TT2. It may take 5-10 seconds for GSEA to load input files. The files are loaded 

successfully once a message appears on the screen “Files loaded successfully: 2/2. There 

were no errors”. 

TT3. GSEA also supplies its own gene set files that are accessible directly through the 

GSEA interface from the MSigDB resource47,48. These files do not need to be imported 

into GSEA. When you define the GMT file, the MSigDB gene set files can be found in 

the first tab “Gene Matrix (from website)” of the “Select one or more genesets” dialog. 

The latest versions of the MSigDB gene set files are in bold but previous versions can 

also be accessed. To select multiple gene set files, use multi-file select by simultaneously 

clicking on the desired files and holding the control key on Windows or command on 

macOS.  

TT4. The higher the number of permutations the longer the analysis will take. To 

calculate the FDR q-value for each gene set, the data is randomized by permuting the 

genes in each gene set and recalculating the p-values for the randomized set. This 

parameter specifies how many times this randomization is done. The more 
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randomizations are performed, the more precise the FDR q-value estimation will be (to a 

limit, as eventually the FDR q-value will stabilize at the actual value). On a Windows 

machine with 16G of RAM and i7 3.4 GHz processor, an analysis with 10,100, 500, or 

1000 randomizations on our example set with above defined parameters takes 155, 224, 

544, and 1012 seconds, respectively. 

TT5. GSEA has no progress bar to indicate estimated time to completion. A run can take 

a few minutes or hours depending on your data size and computer speed. Click on the “+” 

in the bottom left corner of the screen to see messages such as “shuffleGeneSet for 

GeneSet 4661/4715 nperm: 1000” (circled in red at the bottom of Figure 2). This 

message indicates that GSEA is shuffling 4,715 gene sets 1,000 times each, 4,661 of 

which are complete. Once the permutations are complete, GSEA generates the report. 

TT6. The error message “Java Heap space” indicates that the software has run out of 

memory. Another version of GSEA is needed in case you are running the Web Start 

application. There are multiple options available for download from the GSEA website. 

You can download a webstart application that launches GSEA with 1, 2, 4, or 8GB. 

Upgrade to a webstart that launches with more memory. If you are already using the 

webstart that launches with 8GB then you require GSEA JAVA jar file which can be 

executed from the command line with increased memory (see TT1 for details). 

TT7. If the GSEA software is closed, you can still see the results by opening the working 

folder and opening the ‘index.html’ file. Alternatively, you can re-launch GSEA, and 

click on “Analysis history”, then “History” and then navigate to date of your analysis. 

Although all analyses, regardless of where the results files were saved, are listed under 

history, it is organized by date the analysis was run. If you can’t remember when you ran 

a specific analysis, then you may have to manually search through a few directories to 

find the desired analysis. 

TT8. When running GSEA with expression data as input (instead of a pre-calculated rank 

file), a phenotype label (i.e. biological condition or sample class) is provided as input for 

each sample and specified in the GSEA ‘cls’ file. When running GSEA, the two 

phenotypes to compare for differential gene expression analysis are specified and these 

phenotypes are used in the pathway enrichment result files. In contrast, in a GSEA 

preranked analysis (i.e. when a ranked gene list is provided by the user), GSEA 
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automatically labels one phenotype “na_pos” (corresponding to enrichment in the genes 

at the top of the ranked list, where ‘na’ means the phenotype label ‘not available’) and the 

other “na_neg” (corresponding to enrichment in the genes at the bottom of the ranked 

list). This convention is also used by the Enrichment Map software, designating the first 

phenotype as “positive” and the second phenotype as “negative”. 

TT9. Check the number of gene sets that were analyzed. If the number is low (e.g. low 

hundreds), it could indicate gene ID mapping problems. 

TT10. To simplify loading g:Profiler results into Enrichment Map and populating the 

correct fields in the EM interface, place the g:Profiler results file and gene set file (i.e. 

Supplementary_Table4_gprofiler_results.txt and 

Supplementary_Table5_hsapiens.pathways.NAME.gmt) into a directory together. 

TT11. Although an individual g:Profiler analysis only has one phenotype, it is possible to 

modify a single results file to contain two analyses. This is relevant when the phenotypes 

are mutually exclusive. For the analysis you want to associate with the additional 

phenotype (which would correspond to down-regulated genes in GSEA PreRanked, thus 

encoded as “negative”) open the g:Profiler results file (preferably in a spreadsheet so you 

can easily modify a single column). The fifth column specifies the phenotype. Update the 

column to have the value of “-1” for each result in the file. Open the second analysis file. 

Copy all the results from the second file and paste them into the updated negative 

g:Profiler file. Save the file and use it as the g:Profiler enrichment results file in the EM 

interface instead of the original results files. Pathways corresponding to two phenotypes 

will be colored red and blue in the resulting enrichment map. One limitation with this 

approach is that a pathway cannot be included in both positive and negative sets. 

TT12. Moving the slider to the left (or right) will adjust the underlying similarity statistic 

threshold to make the resulting network sparser (denser). The slider is set with predefined 

defaults but users can fine-tune the similarity metric by selecting ‘Show advanced 

options’ at the bottom of the ‘Create Enrichment Map’ panel. Predefined values appear as 

tick marks on the slider and include Jaccard > 0.35, Jaccard > 0.25, combined > 0.375, 

overlap > 0.5, overlap > 0.25. 

TT13. If you specify a directory that contains multiple GSEA results rather than an 

individual GSEA results folder, EM will treat every GSEA results folder as its own data 
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set. This enables easy multi-data set analyses. If you only wanted one data set but 

inadvertently selected the directory containing multiple GSEA results instead of selecting 

an individual folder, simply select the data sets you do not want to use and click on the 

trash can at the top of the EM input panel. 

TT14. Every GSEA analysis generates a random number that is appended to the names 

of the files and directories. The number will be different for every new analysis. 

TT15. If Enrichment Map cannot find the original GMT file used in the GSEA analysis, 

it will use a filtered GMT file found in the GSEA ‘edb’ results directory. Enrichment map 

will not be able to find your original GMT file if you have moved it since running GSEA 

analysis. Although it is a GMT file, it has been filtered to contain only genes found in the 

expression file. If you use this filtered file, you will get different pathway connectivity 

depending on the expression data being used. We recommend using original GMT file 

used for the GSEA analysis and not the filtered one in the results directory. 

TT16. To annotate the phenotypes in the Enrichment Map heat map, the specified 

phenotype labels need to exactly match the GSEA CLS file. 

TT17. If you load the CLS file prior to specifying the phenotypes, EM will automatically 

guess the phenotypes from the class file. If your class file specifies more than two 

phenotypes, EM will choose the first two phenotypes defined in the file. 

TT18. To set the threshold to a small number, select ‘Scientific Notation’ and set a q-

value cutoff such as 1E-04. 

TT19. Multiple genes separated by spaces can be entered into the search bar. Any 

pathway that contains the gene will be selected and highlighted in the network. Adding 

keywords “AND” into the search bar will show only pathways that contain all genes in 

the search query. If the analysis was not done using gene symbols then you will not be 

able to search by gene symbols. Instead use the identifier the analysis was based on, for 

example Entrez gene ID or Ensembl gene ID.  

TT20. If there are very few records in the node table make sure that no nodes are selected 

in the network. Click on the gear icon and change the setting from “Auto” to “Show all”. 

TT21. If no expression file is given to Enrichment Map it will automatically create a 

dummy expression file where any gene found in the enrichment file will be given a 

placeholder expression value of 0.25, and any gene found in a pathway but not found in 
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the enrichment results file be assigned a placeholder expression value of NA. Therefore 

clicking on any node in the enrichment map will show the genes used for the analysis as 

well as genes in the pathway but not part of the query set. 

TT22. The leading edge can be displayed only if the rank file is provided when the 

network is built. The rank file supplied needs to be identical to the one used for the 

GSEA analysis for the leading edge calculation to be accurate. 

TT23. In case of multiple conditions or conditions with variable expression profiles (e.g. 

cancer patient samples), hierarchical clustering tends to generate a more informative 

visualization. 

TT24. If the heat map columns are not colored for a GSEA analysis, make sure the 

phenotype names specified in the Enrichment Map input panel match the class names 

specified in the class file (MesenchymalvsImmunoreactive_RNA-Seq_classes.cls) 

TT25. Leading edge is only available for GSEA analyses. The option will only appear if 

the Enrichment map was built with GSEA results and a rank file was specified. 

TT26. There are many different layout algorithms available in Cytoscape that can be 

used for Enrichment Map. We recommend using an edge weighted layout, which 

considers the overlap score between pathways. Most layouts offer the ability to organize 

just the selected nodes (except for yFiles layouts). Experiment with different layouts to 

see which works best with your data. If you do not like layout results simply press 

command-Z on macOS or ctrl-Z on Windows or click on Edit --> Undo to revert to the 

previous view. 

TT27. If particular non-informative words keep appearing in the labels generated by 

AutoAnnotate, try adjusting the WordCloud normalization factor. The significance of 

each word is calculated based on the number of occurrences in the given cluster of 

pathways. This causes frequent words such as “pathway” or “regulation” to be prominent. 

By increasing the normalization factor, we reduce the priority of such recurrent words in 

cluster labels. If that doesn’t help you can add the non-informative words to the 

WordCloud word exclusion list. 

TT28. If a specific character is used to separate words besides space (for example “-“ or 

“|”), it should be added as a delimiter in the WordCloud app. Launch the WordCloud App 

(Apps à WordCloud). In the WordCloud input panel expand Advanced options. Click 
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on “Delimiters…”. Add your delimiters. Click on OK. In the AutoAnnotate input panel 

click on the menu button. Select “Recalculate Labels…” for this change to take effect. 

TT29. The default parameters are likely to work well with Enrichment Map, however 

there are many parameters within the AutoAnnotate app that can fine-tune the results. See 

the AutoAnnotate user manual at 

http://www.baderlab.org/Software/AutoAnnotate/UserManual. 

TT30. The number of nodes in a cluster determines label size by default. Thus, the 

cluster size may related to pathway popularity instead of importance in the experiment. 

Annotation labels can all be set to the same size by unchecking the option “Scale font by 

cluster size” in the AutoAnnotate results panel. 

TT31.  Once you click on “Collapse All” a pop-up window will show the message 

“Before collapsing clusters please go to the menu Edit->Preferences->Group preferences 

and select “Enable attribute aggregation”. There is no need to adjust this parameter 

repeatedly. Click on “Don’t ask me again” and “OK” if you have set this parameter 

previously. 

TT32. For large networks, collapsing and expanding may take time. For a quick view of 

the collapsed network you can create a summary network by selecting the “Create 

summary Network…”. There are two options for the summary network: “clusters only” 

which creates a summary network with just the circled clusters, or “clusters and 

unclustered nodes” which creates a summary network that also includes the singleton 

nodes not part of any cluster. 

TT33. If the nodes in the resulting collapsed network are grey then you forgot to enable 

attribute aggregation. Expand clusters and refer to TT31 before collapsing again. 

TT34. In image export, only the visible part of the map will be exported. Make sure that 

the entire network is visible on your screen before exporting. 

TT35. Vector-based PDF and SVG formats are recommended for publication quality 

figures because they can zoom without losing quality. Either file type can be edited using 

software packages such as Adobe Illustrator or Inkscape. The PNG file format is 

recommended for high-quality online images while the JPG format is not recommended 

because it may lead to visual artefacts due to compression. 
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TT36. The creation parameters panel only shows the parameters that were used at 

network creation. If you modified the network using filters or the EM slider bars you will 

have to update the changed thresholds accordingly. 

TT37. If a session is saved that contains a collapsed Enrichment Map, it will 

automatically be expanded before it is saved. Depending on the size of the network this 

might take a few minutes. Enrichment Map will not automatically collapse nodes that 

were previously collapsed when reopening the session. To keep them collapsed, re-

collapse them using the AutoAnnotate app as done previously. 

TT38. The time required for this protocol depends on the amount of manual curation and 

visual organization spent on the enrichment map. Smaller networks are generally easier 

to organize. Before spending the time laying out the final network, it is worth revisiting 

the enrichment analysis, exploring the network fully and selecting the parts to emphasize 

in a final publication quality figure. 
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BOX 1 – Definitions  
Pathway – genes that work together to carry out a biological process.  

Gene set – A set of related genes. A ‘pathway gene set’ includes all genes in a pathway. 

Gene sets can be based on various relationships between genes, such as cellular 
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localization (e.g., nuclear genes) or enzymatic function (e.g., protein kinases). Details 

such as protein interactions are not included. 

Gene list of interest – the list of genes derived from an –omics experiment that is input 

to pathway enrichment analysis. 

Ranked gene list – In many –omics data (e.g. RNA-seq for gene expression) genes can 

be ranked according to some score (e.g. level of differential expression) to provide more 

information for pathway enrichment analysis. Pathways enriched in genes clustered at the 

top of a ranked list would score higher than if the pathway genes are randomly scattered 

across the ranked list. 

Pathway enrichment analysis – a statistical technique to identify pathways that are 

significantly represented in a gene list or ranked gene list of interest.  

Multiple testing correction – Thousands of pathways may be individually tested for 

enrichment and this could lead to significant enrichment p-values appearing by chance 

alone. Multiple testing correction is a statistical technique to correct the p-values from 

individual enrichment tests to address this problem and reduce the chance of false 

positive enrichment (Box 3). 

 

BOX 2 – Experimental design and data quality 
Pathway enrichment analysis benefits greatly from careful experimental design. 

Otherwise the analysis may reveal apparently meaningful results caused by experimental 

biases or other confounders. 

Experimental conditions. The experimental conditions must be well defined such that 

the major variations observed are responses which the experimenter would like to 

monitor, related to the biological question of interest (e.g., tumour vs. normal, treated vs. 

untreated, comparison of four disease subtypes, time series). 

Number of replicates. Biological replicates are independently processed samples 

obtained from distinct organisms or cell lines that are required for measuring variability 

across samples and to compute statistics (e.g., p-values). Lack of replication (i.e. one 

sample per group) will not permit robust estimation of the significance of the signal. 

Insufficient replication may result in lack of signal in the data (e.g. no significant 

differentially expressed genes). The larger the variation in the set of samples, the more 
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biological replicates are needed to accurately measure signal. For systems with lower 

variability (i.e. model organisms with the same genetic background in controlled 

laboratory conditions, or stable cell lines derived from the same clone), at least 3-4 

biological replicates are recommended per condition for differential analysis with 

variance stabilization normalization. Variance stabilization uses a global statistical model 

to “stabilize” gene-wise variance estimates to reduce inaccuracies resulting from few 

replicates. For experiments with higher variability (e.g. tumor samples), more replicates 

are required; ideally, a pilot experiment followed by formal power calculations should be 

used to determine the minimal number of replicates required to identify signal of 

differentially expressed genes or enriched pathways. Technical replicates comprising 

repeated experiments of the same samples are usually not needed for well-established 

experimental techniques that have low technical variability, like RNA-seq, but can be 

helpful for novel techniques. 

Confounding factors. Differences in factors not related to the experimental question 

should be avoided or at least balanced across conditions so that statistical techniques such 

as generalized linear models can correct for each factor. Common factors include 

sequencing batch, nucleic acid extraction protocol, subject age and many others. 

Otherwise it may be impossible to accurately separate the experimental signals coming 

from the experimental response and confounding factors. Knowing important factors in 

advance supports correct experimental design. Statistical exploratory analyses such as 

clustering or principal component analysis (PCA) can help identify unknown factors. For 

example, cases and controls are expected to cluster separately and not by processing 

batch. 

Outliers. Outlier samples may considerably differ from others because of major 

experimental or technical problems, such as contamination or sample mix-up. 

Alternatively, they may present extreme biological features, such as tumour samples with 

exceptionally aggressive phenotypes. Unbiased identification of outlier samples is 

possible using statistical techniques such as PCA or clustering. Pathway enrichment 

analysis should be performed with and without outliers to ensure robust results. 

Systematic removal of outliers may be justified to reduce variability in the experiment. 
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Experimental sensitivity. Some experimental methods can be tuned to be more or less 

sensitive. For instance, the number of reads in RNA-seq experiments influences 

downstream analysis. For quantifying gene expression in a biological system with modest 

variability and testing differential expression with variance stabilization, at least three to 

five replicates and ten million mapped reads are required49. Substantially greater 

sequencing depth, such as 50-100 million mapped reads, is required to investigate splice 

isoforms, to detect low-expressed genes or for samples with complex cellular mixtures 

such as surgical resection specimens. 

 

BOX 3 – Statistical Tests used in Pathway Enrichment Analysis 
A common statistical test used for pathway enrichment analysis of a gene list is a Fisher’s 

exact test, based on the hypergeometric distribution. It determines whether the fraction of 

genes of interest in the pathway is higher compared to the fraction of genes outside the 

pathway (i.e. background set). Since this test was first introduced50, many improved tests 

have been developed51 that take advantage of continuous experimental scores and avoid 

applying arbitrary thresholds. We categorize types of statistical enrichment tests as 

follows:  

1. Ranked vs. non-ranked tests. Ranked tests take as input a ranked gene list, while 

non-ranked tests such as Fisher’s exact test take as input a gene list of interest. 

Ranked tests are preferable for experiments that produce meaningful ranks such as 

differential gene expression, because arbitrary thresholds can be avoided. Non-ranked 

tests are preferable for experiments that naturally generate a gene list of interest (e.g., 

somatic mutations in cancer, proteins that interact with a bait protein). Examples of 

ranked tests include the modified Fisher’s exact test implemented in the g:Profiler 

‘ordered query’ option, and the modified Kolmogorov-Smirnov test implemented in 

GSEA. 

2. Exact vs. permutation-based tests. Exact tests employ a mathematical model (e.g. a 

distribution) to directly compute an exact p-value. Permutation-based tests utilize data 

resampling to estimate an empirical p-value, typically expressed as number of 

permutations with results as good as or better than the ones observed for real data, 

divided by the number of permutations. For example, in a case-control study, we can 
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randomize the case and control labels 1,000 times, each time repeating the pathway 

enrichment analysis to see how frequently we observe an equal or stronger pathway 

enrichment signal. Permutation tests can be customized to consider specific data 

properties and biases. Exact tests, if applicable, are preferable as these can quickly 

compute accurate p-values. 

3. Competitive vs. self-contained tests. Competitive tests determine whether the gene 

list of interest is enriched in pathways relative to all genes in the background set. 

Thus, each pathway “competes” for enrichment in the gene list against genes of the 

background set. In contrast, self-contained tests calculate statistics uniquely at the 

pathway level, ignoring genes of the background set. For instance, a self-contained 

test can evaluate whether the gene expression within a given pathway is different in 

case samples compared to control samples51. Competitive pathway enrichment 

analysis is most popular and is usually appropriate for gene expression data. 

However, self-contained tests must be used if single gene differences are not 

significant and need to be pooled at the pathway gene set level to identify signal, for 

example when analysing rare gene mutations or other data with low per-gene 

counts52. Hybrid approaches may be preferable to self-contained tests in specific 

circumstances. For instance, for rare copy number variation (CNV) data, correcting a 

self-contained test for global CNV burden leads to more specific biological results42. 

Finally, competitive enrichment tests such as Fisher’s exact test ignore correlation 

among genes while modified competitive tests such as Camera53 consider these and 

thus typically produce more rigorous results. Self-contained tests do not present this 

issue. 

In summary, if genes in your data can be ranked, a ranked test should be used. Fisher’s 

exact test is generally chosen for non-ranked gene lists. A competitive test is adequate in 

most cases, unless the signal at the gene-level is weak. 

Multiple test correction. Repeated statistical testing used in a typical pathway 

enrichment analysis will result in some apparently significant p-values by chance alone. 

To correct this, multiple testing correction methods systematically reduce the significance 

of each p-value derived from a series of tests. The most commonly used method is the 

Benjamini-Hochberg False Discovery Rate (BH-FDR, or often simply FDR)20. It is based 
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on a step-down procedure that estimates the fraction of falsely enriched pathways over 

enriched pathways, using the uncorrected p-value threshold and the number of tests. For 

instance, given that 100 pathways have enrichment p-value < 0.05 having a FDR of 5% at 

p-value < 0.05 means that five of those pathways are expected to be falsely enriched. As 

an alternative, the classical Bonferroni multiple testing correction adjusts the significance 

threshold by dividing it by the number of tests. Practically, the method multiplies each 

uncorrected p-value by the number of conducted tests and applies a significance cut-off 

(e.g., a p-value of 0.001 will become an insignificant q-value 0.1 if 100 pathways have 

been tested). This technique ensures that the probability of selecting at least one falsely 

enriched pathway is below the corrected p-value threshold. Bonferroni correction is 

typically considered overly conservative for differential gene expression and pathway 

enrichment analysis because some fraction of false positive findings can be tolerated. 

Importantly, both Bonferroni and BH-FDR assume tests are independent, while pathways 

are typically not independent because of overlapping genes and cross-talk. Therefore, 

BH-FDR estimates for pathway analysis can be inaccurate, although practically they are 

still useful for filtering and hypothesis generation and thus are routinely used. 

 

BOX 4 – Pathway Enrichment Analysis Resources 
Pathway databases 

We describe a selection of large, open-access and conveniently accessible pathway 

databases that offer the maximal value for pathway enrichment analysis. Hundreds of 

pathway databases are available for many purposes54. 

Databases of gene sets  

• Gene Ontology (GO)27 – GO provides a hierarchically organized set of thousands 

of standardized terms for biological processes, molecular functions and cellular 

components as well as curated and predicted gene annotations based on these 

terms for multiple species. Biological process annotations are the most commonly 

used resource for pathway enrichment analysis. 

• Molecular Signatures Database (MSigDB)47,48 -MSigDB is a collection of gene 

sets based on GO, pathways, curation, individual -omics studies, sequence motifs, 

chromosomal position, oncogenic and immunological expression signatures, and 
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various computational analyses. Aggregate ‘hallmark’ gene sets are available as a 

relatively non-redundant collection (http://www.msigdb.org). It is created by the 

team that makes GSEA, but can be used with any pathway enrichment method. 

Detailed biochemical pathway databases. These databases are maintained by human 

curators who manually collect detailed pathway information, including biochemical 

reactions, gene regulatory events and other gene interactions. The information can be 

exported or converted to gene set format. 

• Reactome28 – the most actively updated public database of human pathways 

(http://www.reactome.org) 

• Panther21 – human signalling pathways (http://pantherdb.org/pathway)  

• NetPath30 – human signaling pathways with a focus on cancer and immunology 

(http://www.netpath.org/) 

• HumanCyc29 - human metabolic pathways (http://humancyc.org/) 

• NCI PID – human cancer related signaling pathways. No longer updated. 

• KEGG55 - most useful for its intuitive pathway diagrams. Contains multiple types 

of pathways, some of which are not normal pathways, but are rather disease 

associated gene sets, such as “pathways in cancer” (http://www.genome.jp/kegg/) 

Pathway meta-databases. These databases collect detailed pathway descriptions from 

multiple originating pathway databases. 

• Pathway Commons35 – collects information from other pathway databases and 

provides it in a standardized format (http://www.pathwaycommons.org).  

• WikiPathways37 – a community-driven collection of pathways that also includes 

pathways exported from other databases (http://www.wikipathways.org/). 

Pathway Enrichment Analysis Tools 

Hundreds of pathway enrichment analysis tools exist, although many of them rely on out-

of-date pathway databases or do not present any unique feature compared to the most 

commonly used tools. The following are free pathway enrichment analysis software tools 

that we recommend based on their ease of use or unique features: 

• g:Profiler4,26 – analyzes gene lists using Fisher’s exact test and ordered gene lists 

using a modified Fisher’s test. It provides a graphical web interface and access via 
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R and python programming languages. The software is frequently updated and the 

gene set database can be downloaded as a GMT file (http://biit.cs.ut.ee/gprofiler). 

• Gene Set Enrichment Analysis (GSEA)5,56 – analyzes ranked gene lists using a 

permutation-based test. The software runs as a desktop application 

(http://software.broadinstitute.org/gsea). 

• Genomic Regions Enrichment of Annotations Tool (GREAT)41 - analyzes 

genomic regions, such as DNA binding sites, and links them to nearby genes 

(http://bejerano.stanford.edu/great/public/html/) 

• Camera53 – analyzes gene lists and corrects for inter-gene correlations such as 

gene co-expression; available as part of the limma package in Bioconductor 

(https://bioconductor.org/packages/release/bioc/html/limma.html).. 

• GOseq57 (Advanced tool, requires programming) – this R Bioconductor package 

analyzes gene lists from RNA-seq experiments by correcting for user-selected 

covariates such as gene length 

(https://bioconductor.org/packages/release/bioc/html/goseq.html). 

Visualisation tools 

• Enrichment Map7 – this Cytoscape6 app visualizes the results from pathway 

enrichment analysis, eases interpretation by displaying pathways as a network 

where overlapping pathways are clustered together to identify major biological 

themes in the results (http://apps.cytoscape.org/apps/enrichmentmap).  

• ClueGO34 – This Cytoscape app is conceptually similar to Enrichment Map. It 

includes a GO-based pathway enrichment analysis feature using Fisher’s exact 

test.  

• PathVisio38 – this desktop application displays genomic data on a pathway 

diagram (https://www.pathvisio.org). 

 

BOX 5 - Topology-Aware Pathway Enrichment Analysis Methods 
Most pathway enrichment analysis methods treat all genes in a pathway uniformly and 

ignore gene interactions. In contrast, topology-aware methods explicitly model the 

interactions between genes. CePa58, GANPA59, and THINK-Back60 use physical gene 

interactions or co-expression networks to assign a weight to each gene in each pathway. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232835doi: bioRxiv preprint 

https://doi.org/10.1101/232835
http://creativecommons.org/licenses/by/4.0/


 46 

Weights can be derived from measures of the gene importance in the network such as 

degree, the number of gene connections, and betweenness centrality, and can be 

integrated into a traditional pathway enrichment analysis method such as GSEA. Methods 

like SPIA61, Pathway-Express62, and EnrichNet63 generate an enrichment score for the 

entire pathway that considers pathway regulatory interactions, such as activation and 

inhibition. While useful and potentially more accurate, regulatory gene interactions are 

available for fewer genes compared to physical interactions networks and co-expression. 
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Figure legends 
Figure 1 - Protocol overview 
Gene lists derived from diverse ‘omics data undergo pathway enrichment analysis, using 

g:Profiler or GSEA, to identify pathways that are enriched in the experiment. Pathway 

enrichment analysis results are visualized to aid interpretation (using Cytoscape and 

associated apps Enrichment Map, AutoAnnotate, Word Cloud and clusterMaker2). 

Protocol overview is shown on the left, starting from gene list input, and example outputs 

at each stage are shown on the right. 

 

Figure 2 – Screenshot of g:Profiler user interface 
Steps in the protocol and associated g:Profiler interface components. Purple boxes 

indicate relate to files that need to be downloaded. The remaining boxes indicate 

parameters for the analysis.  

 

Figure 3 – Screenshot of GSEA user interface 
Steps in the protocol and associated GSEA interface components (version 3.0), 

highlighted with squares and with indication of the step number.  

 

Figure 4 - GSEA output  
(A) GSEA output overview – Web page summary of GSEA results showing pathways 

enriched in the top or bottom of the ranked list, with “na_pos” and “na_neg” phenotype 

corresponding to enrichment in up-regulated and down-regulated genes. Clicking on 

snapshots under either of the phenotypes will show the top 20 enrichment plots for that 

phenotype. (B) Class/phenotype specific GSEA output in: the web page summary shows 

in purple how many gene sets were found enriched in up-regulated genes regardless of 

significance (purple), the total number of gene sets used after size filtering (cyan), the 

phenotype name (red), the number of gene sets that pass different thresholds (orange). 

 

Figure 5 – Screenshot of Enrichment Map user interface 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232835doi: bioRxiv preprint 

https://doi.org/10.1101/232835
http://creativecommons.org/licenses/by/4.0/


 48 

Input fields in the Enrichment Map interface for (A) g:Profiler and (B) GSEA results. 

Other than the specific input files, the parameters are the same for both analysis types. 

Attributes surrounded by a dashed box should be filled out automatically if the user 

selects a folder for enrichment map to find all analyses in. If the file names are missing, 

then EM was unable to find the specified file, possibly because the original file was 

moved or deleted. Orange boxes indicate optional files. For the examples presented in the 

protocol, optional files are used for the GSEA analysis but not for the g:Profiler analysis 

to demonstrate the two distinct use cases. 

 

Figure 6 – Resulting Enrichment Maps (no manual formatting) 
Unformatted enrichment maps generated from Protocols 1A and 1B. Each node (circle) 

represents a distinct pathway and edges (blue lines) represent the number of genes 

overlapping between two pathways determined using the similarity coefficient. (A) 

Enrichment map of significantly mutated cancer driver genes generated using the 

g:Profiler analysis in Protocol 1A. (B) Enrichment map of pathways enriched in up 

regulated genes in Mesenchymal (red) and Immunoreactive (blue) ovarian cancer 

samples using the GSEA analysis in Protocol 1B. 

 

Figure 7: Overview of Cytoscape panels 
(A) Cytoscape control panel that contains networks, styles and select panels as well as the 

Enrichment Map main panel. (B) The table panel contains tables with node, edge and 

network attributes. An Enrichment map heat map panel displaying expression for genes 

associated with selected nodes and edges is available in this panel. (C) Cytoscape search 

bar. (D) Node table containing values for all variables associated with each node in the 

network.  

 

Figure 8: Example Enrichment Map heat map.  
Heat map created by selecting the Immunoreactive pathway interferon alpha beta 

signaling pathway from Reactome. This heat map is for GSEA results, thus the leading 

edge genes are highlighted in yellow. Additional controls in the heat map panel include: 
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(A) sorting options, (B) genes to include, (C) expression data visualization options, (D) 

data compression options, (E) to show values, and (F) adjust settings. 

 

Figure 9 – Resulting Publication Ready Enrichment Map  
Publication-ready annotated enrichment map (created with parameters FDR q-value < 

0.01, and combined coefficient >0.375 with combined constant = 0.5). Red and blue 

nodes represent mesenchymal and immunoreactive phenotype pathways, respectively, 

and were manually separated to form a clearer picture. Clusters of nodes were labelled 

using the AutoAnnotate Cytoscape app. Individual node labels were removed for clarity 

using the publication ready button in Enrichment Map and exported to PNG and PDF 

files. The figure was resized using illustration software but no additional modifications 

were made to the network. 

 

Figure 10 – Collapsed Enrichment Map  
The network was further summarized by collapsing node clusters using the AutoAnnotate 

app. The network was scaled for better node distribution and manually adjusted to reduce 

node and label overlap. The enrichment map was exported to PNG and PDF. No 

additional modifications were made to the network in any illustration software tools. 

 

Figure 11 - Subnetwork Example 
Sub network of the main Enrichment Map figure (Figure 9) manually created by selecting 

pathways with the top NES values and creating a new network from the selection. Red 

and blue nodes are mesenchymal and immunoreactive phenotypes, respectively. Clusters 

of nodes were automatically labelled using the AutoAnnotate Cytoscape app. 

Annotations in the subnetwork may differ slightly from the main network as word counts 

were normalized on a network basis.  

 

Figure 12 – Generic enrichment map legend 
Enrichment map attributes that can be copied for use in a figure legend. Only include 

components relevant to the analysis depicted in the figure. Post analysis ‘Signature set’ 
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nodes are included in the generic legend even though they are not covered in this 

protocol. Post analysis nodes are used to highlight pathways in the enrichment map that 

contain genes of interest such as drug or microRNA targets.  
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Supplementary Materials: 
1. Supplementary_Table_1_Cancer_drivers.txt 

2. Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rnk 

3. 

Supplementary_Table3_Human_GOBP_AllPathways_no_GO_iea_July_01_2017_symbo

l.gmt 

4. Supplementary_Table4_gprofiler_results.txt 

5. Supplementary_Table5_hsapiens.pathways.NAME.gmt 

6. Supplementary_Table6_TCGA_OV_RNAseq_expression.txt 

7. Supplementary_Table7_gsea_report_for_na_pos.xls 

8. Supplementary_Table8_gsea_report_for_na_neg.xls 

9. Supplementary_Table9_TCGA_OV_RNAseq_classes.cls 

Files for supplementary protocols: 

10. Supplementary_Table10_TCGA_Microarray_rmanormalized.txt  

11. Supplementary_Table11_Microarray_classdefinitions.txt 

12. Supplementary_Table12_TCGA_RNASeq_rawcounts.txt 

13. Supplementary_Table13_RNASeq_classdefinitions.txt 
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Supplementary Protocols 
This protocol processes RNA-seq data using the R programming environment and 

specialized packages from Bioconductor to create genes lists. The scripts are available for 

download and novice users can copy and paste commands into the R console. To create 

gene expression data for Protocol 1B, we downloaded gene expression data from the 

Ovarian Serous Cystadenocarcinoma project of The Cancer Genome Atlas (TCGA)64, 

http://cancergenome.nih.gov via the Genomic Data Commons (GDC) portal65 on 2017-

06-14 using TCGABiolinks R package66. The data includes 544 samples available as 

RMA-normalized microarray data (Affymetrix HG-U133A), and 309 samples available 

as RNA-seq data, with reads mapped to a reference genome using MapSplice67 and read 

counts per transcript determined using the RSEM method68. RNA-seq data are labeled as 

‘RNA-Seq V2’, see details at: 

https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2). The RNA-SeqV2 data 

consists of raw counts similar to regular RNA-seq but RSEM (RNA-Seq by Expectation 

Maximization) data can be used with the edgeR method. 

 

Equipment 

Hardware requirements: 

• A recent personal computer with at least 8 gigabytes of memory (RAM). 

Software requirements: 

• The R statistical computing environment (http://www.r-project.org/). We suggest 

using the integrated development environment RStudio 

(https://www.rstudio.com/). 

• Required R packages: Biobase, Limma and GSA are available from Bioconductor 

(https://www.bioconductor.org/) 

Data requirements: 

• Supplementary_Table10_TCGA_Microarray_rmanormalized.txt corresponds to 

the RMA normalized Affymetrix mRNA transcript expression data for serous 

ovarian cancer samples as downloaded from the GDC portal65. Normalization is 

required to compute differential gene expression values across subtypes, as 

performed in Supplementary Protocol 1A. 
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• Supplementary_Table12_TCGA_RNASeq_rawcounts.txt corresponds to read 

counts per mRNA transcript determined using the RSEM method. These counts 

can be used to compare gene expression between subtypes using the edgeR 

analysis tool, as performed in Supplementary Protocol 1B. The counts are not 

pre-normalized and the normalization step using edgeR is part of the protocol. 

• Supplementary_Table11_Microarray_classdefinitions.txt and 

Supplementary_Table13_RNASeq_classdefinitions.txt define the subtype 

classification of ovarian cancer samples (immunoreactive, mesenchymal, 

differentiated, proliferative) (Verhaak et al.44 supplementary table 1, column 3). 

This information is used to extract two subgroups of interest, mesenchymal and 

immunoreactive. 

 

Equipment Setup 

• Download and install R from http://cran.r-project.org/ 

• Download and install RStudio from https://www.rstudio.com/ (optional, but 

recommended) 

• Launch R or RStudio 

• Install required Bioconductor packages. Enter the following commands in the R 

command line (also see https://www.bioconductor.org/install/): 

o source("http://www.Bioconductor.org/biocLite.R") 

o biocLite("BiocUpgrade") 

o biocLite(c("Biobase","limma",”edgeR”,”GSA”,”locfit”)) 

o install.packages(c(“pheatmap”, ”RColorBrewer”, ”gProfileR”, 

”RJSONIO”, ”httr”)) 

• If the required packages are already installed you may receive a prompt to update 

these. The prompt window will ask you about updating the packages:  

o Update all/some/none? [a/s/n] 

o Type ‘a’ without quotes and hit enter. 

• Load libraries into the R session using the example below. Loading of libraries is 

required every time R is re-opened. 
o library(“limma”) 
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• All R files are available at https://github.com/BaderLab/EM-tutorials-

docker/tree/master/R_scripts 

• Alternately, R notebooks (use R markdown and creates a notebook similar to 

Jupyter notebooks) of this protocol are available at 

https://github.com/BaderLab/Cytoscape_workflows/tree/master/EnrichmentMapP

ipeline 

 

Data setup 

• Download Supplementary Tables 10-13 to a dedicated folder of your computer. 

The first step of your R script will change the working directory of R to this 

folder.  

• As text editors sometimes add invisible characters to text copied from PDF files, 

copying and pasting from this document is not recommended. The R scripts or the 

R notebook available in the above URLs should be used instead.  

• Setting the current directory and loading packages (libraries) are the required first 

and second steps of each protocol. These are needed each time a new session is 

opened in R. 

 

Supplementary Protocol 1 – create a gene list by analyzing gene 
expression data from RNA-seq using edgeR 
This part of the supplementary protocol demonstrates filtering and scoring RNA-seq data 

using normalized RNA-seq count data with the edgeR R package. The protocol can be 

used to produce input data for pathway enrichment methods like g:Profiler, GSEA and 

others. This RNA-seq analysis protocol follows conceptually similar steps to microarray 

analysis shown above. 

 

1. Load required Bioconductor packages into R. 
library("edgeR") 

 

2. Load the expression data of 300 tumours, with 79 classified as Immunoreactive, 72 

classified as Mesenchymal, 69 classified as Differentiated, and 80 classified as 
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Proliferative samples. The TCGA counts data was retrieved from the Genomic Data 

Commons (GDC)65 database and contained counts per mRNA transcript determined 

using the RSEM method for 19947 transcripts and 300 samples. 
RNASeq <- read.table( "Supplementary_Table12_TCGA_RNASeq_rawcounts.txt”,  

header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE) 

 

3. Load subtype classification of samples. To calculate differential expression, we need to 

define at least two sample classes. A common experimental design involves cases and 

controls but any two classes can be used. The current set of samples is divided into 

mesenchymal and immunoreactive classes (class definitions were obtained from Verhaak 

et al.44 Supplementary Table 1, third column). After loading the matrix, check that the 

column names of the expression matrix and class definitions are equal. 
classDefinitions_RNASeq <- 

read.table("Supplementary_Table13_RNASeq_classdefinitions.txt",  

header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE) 

 

4. Filter RNA-seq reads. RNA-seq data are processed following the edgeR protocol16 that 

filters reads based on the counts per million (CPM) statistic. RNA-seq read counts are 

converted to CPM values and genes with CPM > 1 in at least 50 of the samples are 

retained for further study (50 is the minimal sample size in the classes). This step 

removes genes with very low read counts that are likely not expressed in the majority of 

samples and cause noise in the data. Note, CPM filtering is used to remove low counts 

while differential gene expression analysis is based on normalized read counts which are 

generated below (step 6).  
cpms <- cpm(RNASeq) 

keep <- rowSums(cpms > 1) >= 50 

counts <- RNASeq[keep,] 

 

5. Data normalization, dispersion analysis is performed on the entire data. 
# create data structure to hold counts and subtype information for each sample. 

d <- DGEList(counts=counts, group=classDefinitions_RNASeq$SUBTYPE) 

 

#Normalize the data 

d <- calcNormFactors(d) 

 

#create multidimensional scaling(MDS) plot.  

#The command automatically generates the plot with all samples  
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#each subtype is a different color.  

#Ideally there should be a good separation between the different classes. 

mds_output <- plotMDS(d, labels=classDefinitions_RNASeq$SUBTYPE,  

col= c("darkgreen","blue","red", 

"orange")[factor(classDefinitions_RNASeq$SUBTYPE)]) 

 

#calculate dispersion 

d <- estimateCommonDisp(d) 

d <- estimateTagwiseDisp(d) 

 

6. (Optional) Exclude genes with missing symbols or uncharacterized genes. In this 

example gene entries in the data containing ‘?’ or starting with LOC are excluded as they 

represent non-annotated genes or other loci that are not present in pathway databases. The 

frequency of these and other non-protein coding entries in the input data will depend on 

the database used to align the RNA-seq data. 
#the regular expression below excludes gene names that are ? or that start with LOC 

# any number of additional terms can be added to the regular expression, for example  

# to exclude any genes that start with "His" add |^His to the regular expression 

exclude <- grep("\\?|^LOC", rownames(d), value=T) 

d <- d[which(!rownames(d) %in% exclude),] 

 

7. Differential expression analysis is performed with a simple design as described in the 

edgeR protocol16. 
#calculate differential expression statistics with a simple design 

de <- exactTest(d, pair=c("Immunoreactive", “Mesenchymal")) 

tt <- topTags(de,n=nrow(d)) 

 

#alternately use the glm model can be used with contrasts. For a simple 2 class  

# comparison this is not required but if you want to compare 1 class to the remaining 3  

# classes then this sort of model is useful. 

classes <- factor(classDefinitions_RNASeq[,data_classes]) 

modelDesign <- model.matrix(~ 0 + classes) 

 

contrast_mesenvsimmuno <- makeContrasts(mesenvsimmuno ="classesMesenchymal-

classesImmunoreactive",levels=modelDesign) 

fit_glm <- glmFit(d,modelDesign) 

mesenvsimmuno <- glmLRT(fit_glm , contrast = contrast_mesenvsimmuno) 

tt_mesenvsimmuno <- topTags(mesenvsimmuno,n=nrow(d)) 

 

8a. Create the gene list for use in g:Profiler or another thresholded enrichment tool. The 

list may comprise all genes that have a significant q-value (code shown below), all 

significant and FDR-corrected up-regulated genes and all down-regulated genes 
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separately, or some other combination of thresholds. Also see analogous step in the 

microarray protocol (Supplementary Protocol 2). 
#get the indices of scored data that have FDR < 0.05 

select_genes = which(tt$table$FDR<0.05) 

 

#show the number of genes with FDR<0.05 

length(select_genes) 

 

#gene names from the TCGA set contain gene name and entrez gene ids separated by ‘|’ 

# for all subsequent enrichment analysis we need to have just one id. Separate the names  

# into their two ids and keep the gene symbols 

topgenes_qvalue005 <- unlist(lapply(rownames(tt$table)[select_genes],  

function(data) {unlist(strsplit(data,"\\|"))[1]})) 

 

#output the top 5 entries in the list of top genes (list appears in stdout  

# in R) 

head(topgenes_qvalue005) 

 

#write results out to the file. This is an example of a set that can be used for 

# Protocol 1 

write.table(topgenes_qvalue005,  

"MesenchymalvsImmunoreactive_RNAseq_allsignificantgenes.txt",  

col.names=FALSE, sep="\t", row.names=FALSE, quote=FALSE) 

 

8b. Create a two-column rank (.RNK) file of all gene IDs and corresponding scores for 

input to GSEA pre-ranked analysis. One option is to rank genes by t-statistic of 

differential gene expression. GSEA will look for enrichment in the set of most 

differentially expressed genes at the top of the list as well as those at the bottom of the 

list. Genes at the top of the list are more highly expressed in class A of samples (e.g., 

mesenchymal) while genes at the bottom are highly expressed in class B (e.g., 

immunoreactive). An alternative score that we use here is computed by multiplying 

direction (sign) of fold change and logarithm of p-value for each gene. 
#compute ranks 

ranks_RNAseq = sign(tt$table$logFC) * -log10(tt$table$PValue) 

 

#gene names from the TCGA set contain gene name and entrez gene ids separated by ‘|’ 

# for all subsequent enrichment analysis we need to have just one id. Separate the names  

# into their two ids. 

genenames <- unlist(lapply(rownames(tt$table),  

function(data) {unlist(strsplit(data,"\\|"))[1]})) 

geneids <- unlist(lapply(rownames(tt$table),  

function(data) {unlist(strsplit(data,"\\|"))[2]})) 
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#create ranks file 

ranks_RNAseq <- cbind(genenames, ranks_RNAseq) 

colnames(ranks_RNAseq) <- c("GeneName","rank") 

write.table(ranks_RNAseq, "Supplementary_Table2_MesenvsImmuno_RNASeq_ranks.rnk",  

col.name = TRUE, sep="\t", row.names = FALSE, quote = FALSE) 

 

9a. Create an expression file for the enrichment map and save it to a file in the working 

folder. The optional expression file is similar to the expression matrix except for an 

additional column on the left edge of the matrix. The field often includes gene description 

however any text value can be added. 
normalized_expression_RNAseq <- cpm(d, normalized.lib.size=TRUE) 

 

#From the rownames parse out the gene name and the geneids 

genenames <- unlist(lapply( rownames(normalized_expression_RNAseq),  

function(data) {unlist(strsplit(data,"\\|"))[1]})) 

geneids <- unlist(lapply( rownames(normalized_expression_RNAseq),  

function(data) {unlist(strsplit(data,"\\|"))[2]})) 

 

EM_expressionFile_RNAseq <- data.frame(Name = genenames, 

normalized_expression_RNAseq) 

colnames(EM_expressionFile_RNAseq) <- substring(colnames(EM_expressionFile_RNAseq),1,12) 

 

#Add descriptions instead of geneids 

library(biomaRt) 

mart = useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl") 

 

genes = getBM(attributes = c( 'hgnc_symbol', 'description'), filters='hgnc_symbol',  

              values=genenames, mart=mart); 

genes$description = gsub("\\[Source.*", "", genes$description); 

 

EM_expressionFile_RNAseq <- merge(genes,EM_expressionFile_RNAseq,  

all.y=TRUE,by.x=1, by.y=1) 

colnames(EM_expressionFile)[1] <- "Name" 

colnames(EM_expressionFile)[2] <- "Description" 

 

write.table(EM_expressionFile_RNAseq, 

"Supplementary_Table6_TCGA_OV_RNAseq_expression.txt”,  

col.name=TRUE,sep="\t", row.names=FALSE, quote=FALSE) 

 

#write out a GSEA classes file (optional) 

fileConn <- file("Supplementary_Table9_TCGA_OV_RNAseq_classes.cls") 

writeLines(c(paste(length(classDefinitions_RNASeq[,'SUBTYPE']), "4 1"),  

             paste("# ", unique(classDefinitions_RNASeq[,'SUBTYPE'])[1], " ", 

                   unique(classDefinitions_RNASeq[,'SUBTYPE'])[2], " ", 
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                   unique(classDefinitions_RNASeq[,'SUBTYPE'])[3], " ", 

                   unique(classDefinitions_RNASeq[,'SUBTYPE'])[4])), fileConn) 

write.table(t(classDefinitions_RNASeq[,'SUBTYPE']), 

 "Supplementary_Table9_TCGA_OV_RNAseq_classes.cls",  

col.name=FALSE, sep="\t", row.names=FALSE, quote=FALSE, append=TRUE) 

close(fileConn) 

 

9b. Examine gene expression data using heat maps. Clustered heat maps can easily show 

the separation between sample classes, labeled by colors in the heat map header. By 

limiting to the most significantly differentially expressed list of genes (FDR q<0.05) we 

can verify whether the scoring accurately separates class A from class B. 
library("pheatmap") 

library("RColorBrewer") 

annotation_col <- data.frame(SUBTYPE=factor(classDefinitions_RNASeq[,3])) 

rownames(annotation_col) <- classDefinitions_RNASeq[,2] 

 

ann_colors = list(SUBTYPE = c(Immunoreactive="blue", Mesenchymal="red",  

Proliferative = "orange", Differentiated="darkgreen")) 

col.pal <- rev(brewer.pal(11, "RdBu")) 

 

matrix_for_heatmap <- 

as.matrix(EM_expressionFile_RNAseq[rownames(EM_expressionFile_RNAseq)  

%in% rownames(tt$table)[which(tt$table$FDR<0.05)], 

3:dim(EM_expressionFile_RNAseq)[2] ]) 

class(matrix_for_heatmap) <- "numeric" 

 

matrix_for_heatmap[matrix_for_heatmap == 0] <- 0.0000001 

pheatmap(matrix_for_heatmap, color=col.pal, scale="row",  

kmeans_k=NA, show_rownames=FALSE, show_colnames=FALSE,  

main="heatmap top genes(Mesen vs Immuno)", cluster_rows=TRUE,  

cluster_cols=FALSE, clustering_distance_rows="correlation", 

annotation_col=annotation_col, annotation_colors=ann_colors) 

 

Supplementary Protocol 2 – create a gene list by analyzing gene 
expression data from Affymetrix microarrays with Limma 
This protocol demonstrates the generation of gene lists for pathway enrichment analysis 

using RMA-normalized gene expression data from Affymetrix microarrays for 

downstream pathway enrichment analysis with g:Profiler, GSEA and other similar tools. 

g:Profiler requires a ranked list of differentially expressed genes that are filtered 

according to a significance cut-off. GSEA requires a two-column tab-separated RNK file 
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with a ranked list of all genes in the genome. In the RNK file, the first column specifies 

the gene name and the second column specifies a numeric score representing the level of 

differential expression. For both methods, the first step involves calculating a statistic for 

each gene that represents the difference in its expression levels between the two groups. 

This step is performed using the limma R package. 

 

9. Load required Bioconductor packages into R 
library(“Biobase”) 

library(“limma”) 

 

10. Set the working directory to the location of Supplemental Tables 10-13. The 

function getwd() shows the working directory and dir() shows its files. 
setwd(“/path/to/data”)  

 

11. Load expression data into R. Minimally the expression set requires a gene name for 

each row and typically at least six expression values (three values in each compared 

class). Our data consists of 499 patients with 108 immunoreactive, 112 mesenchymal, 

138 differentiated and 141 proliferative samples. After loading, use the command 

head(expressionMatrix) to verify that the matrix loaded correctly. 
expressionMatrix <- 

as.matrix(read.table("Supplementary_Table10_TCGA_Microarray_rmanormalized.txt",  

header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE)) 

 

12. Load subtype classification of samples. To calculate differential expression, we need 

to define at least two classes of samples. A common experimental design involves cases 

and controls but any two classes may be used. The current data is divided into 

mesenchymal and immunoreactive classes (Supplementary Table 11, third column). 

After loading the matrix, check that the column names of the expression matrix and class 

definitions are equivalent. 
classDefinitions <- read.table( "Supplementary_Table11_Microarray_classdefinitions.txt",  

header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE) 

identical(colnames(expressionMatrix), classDefinitions$barcode) 
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13. Format data and class definitions for limma. The expression data needs to be 

converted to an object of type ExpressionSet. The ExpressionSet must include a data 

matrix where rows are genes, columns are samples and each cell contains an expression 

value. Classes need to be defined as factors. 
minimalSet <- ExpressionSet(assayData=expressionMatrix) 

classes <- factor(classDefinitions[,"SUBTYPE"]) 

 

14. Create a model matrix with the defined classes. 
modelDesign <- model.matrix(~ 0 + classes) 

 

15. Fit the model to the expression matrix. 
fit <- lmFit(minimalSet, modelDesign)  

 

16. Create the contrast matrix. By specifying Mesenchymal first and Immunoreactive 

second, positive logFC and t-values refer to higher expression levels (up-regulation) in 

the Mesenchymal versus Immunoreactive samples  
contrastnm <- c("classesMesenchymal-classesImmunoreactive")  

contrast.matrix <- makeContrasts(contrasts=contrastnm, levels=modelDesign) 

 

17. Model contrasts of gene expression. The following command models gene expression 

differences of each gene between the two groups of samples using linear regression and 

computes coefficients and standard errors. 
fit1 <- contrasts.fit(fit, contrast.matrix) 

 

18. Compute differential expression statistics. Given a fitted linear regression model, the 

command generates a table containing the log fold change, average expression, t-statistic, 

p-value, adjusted p-value (q-value) and B statistic for each entity in the expression matrix 

using empirical Bayes statistics. The B-statistic represents the log-odds that the gene is 

differentially expressed, but it is based on a prior assumption of how many genes are 

differentially expressed in the data. Because of its reliance on this prior assumption, the 

adjusted p-value is preferentially used as an indicator of significant differential 

expression. 
fit2 <- eBayes(fit1) 
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19. Generate a table with differentially expressed genes and adjust for multiple 

hypothesis testing using Benjamini-Hochberg False Discovery Rate. The table contains 

all genes ranked by p-value and shown with log fold change, average expression, t-

statistic, p-value, adjusted p-value (q-value) and B-statistic. 
topfit <- topTable(fit2, number=nrow(expressionMatrix), adjust="BH") 

 

20a. Create the gene list for use in g:Profiler or another threshold-requiring enrichment 

tool. The list may comprise all genes that have a significant FDR q-value, all up-

regulated genes with a significant FDR q-value, all down-regulated genes with a 

significant q-value, or some other combination of thresholds. 

• To get all significant genes: 
length(which(topfit$adj.P.Val<0.05)) 

topgenes_qvalue005 <- rownames(topfit)[which(topfit$adj.P.Val<0.05)] 

head(topgenes_qvalue005) 

write.table(topgenes_qvalue005,  

"MesenchymalvsImmunoreactive_allsignificantgenes.txt",  

col.names=FALSE, sep="\t", row.names=FALSE, quote=FALSE) 

• Significantly up-regulated genes in mesenchymal samples have positive logFC 

and t-values. 
length(which(topfit$adj.P.Val<0.05 & topfit$t >0)) 

topgenes_qvalue005_mesenchymal <- 

 rownames(topfit)[which(topfit$adj.P.Val<0.05 & topfit$t >0)] 

head(topgenes_qvalue005_mesenchymal) 

write.table(topgenes_qvalue005_mesenchymal,  

"MesenchymalvsImmunoreactive_mesenchymal_significantgenes.txt", 

col.names=FALSE, sep="\t", row.names=FALSE, quote=FALSE) 

• Significantly up-regulated genes in immunoreactive samples have negative logFC 

and t-values. 
length(which(topfit$adj.P.Val<0.05 & topfit$t <0)) 

topgenes_qvalue005_immunoreactive <-  

rownames(topfit)[which(topfit$adj.P.Val<0.05 & topfit$t <0)] 

head(topgenes_qvalue005_immunoreactive) 

write.table(topgenes_qvalue005_immunoreactive,  

"MesenchymalvsImmunoreactive_immunoreactive_significantgenes.txt", 

col.names=FALSE, sep="\t", row.names=FALSE, quote=FALSE) 

 

20b. Create a rank file for GSEA. To run GSEA in pre-ranked mode, you need a two 

column RNK file with gene/protein/probe name (column 1) and the associated score 
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(column 2). The first column should contain the same type of gene IDs used in the 

pathway gene set (GMT) file. GSEA looks for enrichment in the top and bottom parts of 

the list by ranking the file using the t-statistic. The t-statistic indicates the strength of 

differential expression and is used in the p-value calculation. Other scores indicating the 

strength of differential expression may be used as well. GSEA ranks the most up-

regulated genes at the top of the list and the most down-regulated at the bottom of the list. 

Genes at the top of the list are more highly expressed in class A compared to class B, 

while genes at the bottom of the list are higher in class B. In this workflow, a positive t-

value means a higher gene expression in the Mesenchymal samples compared to the 

Immunoreactive samples (variable constrastnm). The following commands create a data 

frame with gene IDs and t-statistics, remove lines with missing gene IDs, and store the 

result as a RNK file. An additional step is usually required in analysis of Affymetrix 

microarray data as genes are represented with multiple probe sets. The most significant 

probe set or average probe set score may be considered for every gene. 
ranks <- data.frame(geneID=rownames(topfit),t_stat=topfit[,"t"], stringsAsFactors=F) 

ranks <- ranks[which(ranks[,"geneID"] != ""),] 

write.table(ranks,"MesenchymalvsImmunoreactive_limma_ranks.rnk", 

col.name=TRUE,sep="\t",row.names=FALSE, quote=FALSE) 
 

21. Create an expression file for the enrichment map and save files to the home folder of 

the analysis. The expression file contains the gene IDs as the first column, gene 

description as the second column, and the expression values for each sample as the 

additional columns. Gene IDs should correspond to the first column of the rank file. 

(Optional: biomart can be used to collect the proper names of all the genes in the 

expression file.) The text files will be saved on your computer in the directory specified 

at the beginning of the script using setwd(). The .rnk, .cls and .txt files are all tab 

delimited files that can be viewed in spreadsheet or in a text editor. 
EM_expressionFile <-  

data.frame(Name = rownames(expressionMatrix), Description = 

rownames(expressionMatrix), expressionMatrix) 

write.table(EM_expressionFile, "MesenchymalvsImmunoreactive_expression.txt",  

 col.name=TRUE, sep="\t", row.names=FALSE, quote=FALSE) 

 

Optional: Add biomart-derived gene descriptions to expression file. 

library(biomaRt) 

mart = useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl") 
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genes = getBM(attributes = c( 'hgnc_symbol', 'description'), filters='hgnc_symbol',  

      values=row.names(expressionMatrix), mart=mart); 

genes$description = gsub("\\[Source.*", "", genes$description); 

 

EM_expressionFile <- merge(genes,expressionMatrix, all.y=TRUE,by.x=1, by.y=0) 

colnames(EM_expressionFile)[1] <- "Name" 

colnames(EM_expressionFile)[2] <- "Description" 

write.table(EM_expressionFile, "MesenchymalvsImmunoreactive_expression.txt",  

 col.name=TRUE, sep="\t", row.names=FALSE, quote=FALSE) 

 

 

Supplementary Protocol 3 – Pathway Enrichment Analysis in R 
using Roast and Camera 
This protocol will demonstrate the use of R packages Roast and Camera to automate 

pathway enrichment analysis. Each method requires an expressionSet that minimally 

contains a matrix of expression values for a set of genes and conditions. The expression 

matrix generated in supplementary protocol part 1 or 2 is suitable for the analysis. 

 

22. Load required Bioconductor packages into R and set working folder to the location of 

Supplementary Files 1-4. 
setwd(“path/to/data”) 

library(limma) 

library(GSA)  

 

23. Load in the gene sets from a GMT file - download the latest pathway definition file 

automatically through R or manually through the website. Only the databases of pathway 

gene sets for human, mouse and rat genes are currently available on the baderlab.org 

downloads site. If you are working with rat or mouse data change the value of gmt_url 

below to specify the correct species. Consult 

http://download.baderlab.org/EM_Genesets/current_release/ to see all available species. 
 

gmt_url = "http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/" 

 

#list all the files on the server 

filenames = getURL(gmt_url) 

tc = textConnection(filenames) 

contents = readLines(tc) 
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close(tc) 

 

#get the gmt that has all the pathways and does not include terms inferred from 

electronic annotations(IEA) 

#start with gmt file that has pathways only 

rx = gregexpr("(?<=<a href=\")(.*.GOBP_AllPathways_no_GO_iea.*.)(.gmt)(?=\">)", 

contents, perl = TRUE) 

gmt_file = unlist(regmatches(contents, rx)) 

 

dest_gmt_file <- paste(working_dir, 

paste(“Supplementary_Table3_”, gmt_file, sep=””), sep="/") 

 

download.file( 

    paste(gmt_url, gmt_file, sep=""), 

    destfile=dest_gmt_file 

) 

 

#if you haven't automatically downloaded the gmt file  

#set the path to the gmt file below. 

gmt_file <- dest_gmt_file 

genesets <- GSA.read.gmt(gmt_file) 
 

24. Camera and Roast expect the pathway gene sets to be a list of vectors where the slot 

name of each vector corresponds to the pathway gene set identifier, i.e. the name of the 

pathway, however the GSA.read.gmt() method loads the GMT file as an object with a list 

of pathway names and a list of pathway gene sets. Add the pathway names to the 

pathway gene sets vector to create a list of vectors required by Roast and Camera. 
names(genesets$genesets) <- genesets$geneset.names 

 

25. Specify the expression data to be used for the analysis. You can use the DGEList 

variable d from Supplementary Protocol 1 (Follow steps 1-6 in Supplementary 

Protocol 1 to regenerate) or MinimalSet from Supplementary Protocol 2 (Follow 

steps 9-13 in Supplementary Protocol 2 to regenerate) or. For our RNA-seq data, each 

row of the expression set is annotated with gene symbol and EntrezGene ID separated by 

“|”. To match the gene set file we need to remove the EntrezGene IDs from the row 

names. We choose to use gene symbols to simplify interpretation of enriched pathways 

and associated genes. 
data_for_gs_analysis <- d 

OR 

Data_for_gs_analysis <- minimalSet 
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26. Camera and Roast require that the pathway gene sets are filtered such that all genes in 

each set have expression values in the data. Use the ids2indices() function in limma to 

convert gene identifiers in the gene set to indices in the data. 
genesets_filtered <- ids2indices(genesets$genesets,  

rownames(data_for_gs_analysis), remove.empty=TRUE) 

 

27. Filter the pathway gene sets according to their size, following the previous step of 

filtering by availability of expression data. Here we only include sets with more than or 

equal to 15 and less than 200 genes. 
geneset_sizes <- unlist(lapply(genesets_filtered, length)) 

geneset_indices <- which(geneset_sizes>=15 & geneset_sizes<200) 

 

28. Create the design matrix and contrast we want to test for. In this example, we are 

looking for differential pathways between the Mesenchymal and Immunoreactive 

subtypes. 
classes <- data_for_gs_analysis$samples$group 

design <- model.matrix(~ 0 + classes) 

 

contrast_mesenvsimmuno <- makeContrasts( 

mesenvsimmuno ="classesImmunoreactive-classesMesenchymal",levels=design) 
 

29. Run enrichment analysis and format the results to the ‘generic’ file format of 

Enrichment Map. This is a tab-delimited file that includes a pathway gene set name, 

pathway description, p-value, FDR q-value, phenotype and a comma-separated list of 

associated genes for every detected pathway. Depending on your data size and computer 

speed, this command could take from a few minutes to an hour to run. If you receive the 

warning “In dnbinom(q, size = size, mu = mu, log = TRUE) : non-integer x”, the software 

has encountered unexpected non-integer values of gene expression, often indicating 

problems with upstream analysis such as suboptimal pre-processing or normalization 

procedures. Simply rounding the gene expression values may fix the error, however it 

should be investigated further to ensure no errors with the workflow. 
data_for_gs_analysis$counts <- round(data_for_gs_analysis$counts) 

 

The following commands will derive results from Roast.  
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mroast_results <- mroast(data_for_gs_analysis, genesets_filtered[geneset_indices], 

design, contrast= contrast_mesenvsimmuno, nrot=10000) 
mroast_descr <- unlist(lapply(rownames(mroast_results),  

function(x){unlist(strsplit(x,"\\%"))[1]})) 

 

30. Inspect the results returned from Roast. The column "Direction" shows whether the 

gene set is enriched for up- or down-regulated genes. To ensure compatibility with 

Enrichment Map, convert these values such that 1 represents up-regulated and -1 

represents down-regulated. 
Phenotype <- unlist(lapply(mroast_results[,"Direction"],function(x) 

 {if(x=="Up"){1}else{(-1)}})) 

genes <- c() 

for(i in 1:length(rownames(mroast_results))){ 

 current_geneset <- unlist(genesets_filtered 

  [ which( names(genesets_filtered) %in% rownames(mroast_results)[i])]) 

 current_genes <- c() 

  for(j in 1:length(current_geneset)){ 

   if(j==length(current_geneset)){ 

    current_genes <- paste(current_genes,  

     rownames(data_for_gs_analysis)[current_geneset[j]],  

sep="") 

   } else { 

    current_genes <- paste(current_genes,  

     rownames(data_for_gs_analysis)[current_geneset[j]], 

",", sep="") 

   } 

  } 

  genes <- rbind(genes, current_genes) 

 } 

rownames(genes) <- rownames(mroast_results) 

 

mroast_results_generic_em <- data.frame( rownames(mroast_results), mroast_descr,  

 PValue=mroast_results[,"PValue"], FDR=mroast_results[,"FDR"], Phenotype, genes) 

write.table(mroast_results_generic_em, "mroast_results_generic_em.txt",  

 col.name=TRUE, sep="\t", row.names=FALSE, quote=FALSE)  
 

31. Run pathway enrichment analysis with the Camera R package. The analysis starts 

with the same files as Roast (see first four steps of Supplementary Protocol 3). 
camera_results <- camera(data_for_gs_analysis,  

 genesets_filtered[geneset_indices], design, contrast= contrast_mesenvsimmuno) 
camera_descr <- unlist(lapply(rownames(camera_results),  

 function(x){unlist(strsplit(x,"\\%"))[1]})) 

camera_Phenotype <- unlist(lapply(camera_results[,"Direction"],  
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 function(x){if(x=="Up"){1}else{(-1)}})) 

 

camera_genes <- c() 

for(i in 1:length(rownames(camera_results))){ 

 current_geneset <- unlist(  

  genesets_filtered[ which( names( genesets_filtered ) %in% 

rownames(camera_results)[i])]) 

  current_genes <- c() 

 for(j in 1:length(current_geneset)){ 

  if(j==length(current_geneset)){ 

   current_genes <- paste( current_genes,  

    rownames(data_for_gs_analysis) [current_geneset[j]], 

sep="") 

  } else { 

   current_genes <- paste( current_genes,  

    rownames(data_for_gs_analysis)[ current_geneset[j]], ",",  

sep="") 

  } 

 } 

 camera_genes <- rbind(camera_genes, current_genes) 

} 

rownames(camera_genes) <- rownames(camera_results) 

 

camera_results_generic_em <- data.frame(rownames(camera_results), camera_descr,  

 PValue = camera_results[,"PValue"], FDR=camera_results[,"FDR"], Phenotype, genes ) 

write.table(camera_results_generic_em, "camera_results_generic_em.txt",  

 col.name=TRUE, sep="\t", row.names=FALSE, quote=FALSE) 

 

32. The results from Camera or ROAST can be input to Enrichment Map, following the 

protocols in the main text. 
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