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Abstract

Electroencephalography (EEG), magnetoencephalography (MEG) and related tech-

niques are prone to glitches, slow drift, steps, etc., that contaminate the data and

interfere with the analysis and interpretation. These artifacts are usually addressed

in a preprocessing phase that attempts to remove them or minimize their impact.

This paper offers a set of useful techniques for this purpose: robust detrending, ro-

bust rereferencing, outlier detection, data interpolation (inpainting), step removal,

and filter ringing artifact removal. These techniques provide a less wasteful alter-

native to discarding corrupted trials or channels, and they are relatively immune

to artifacts that disrupt alternative approaches such as filtering. Robust detrending

allows slow drifts and common mode signals to be factored out while avoiding the

deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts

on the reference. Inpainting allows corrupt data to be interpolated from intact parts

based on the correlation structure estimated over the intact parts. Outlier detection

allows the corrupt parts to be identified. Step removal fixes the high-amplitude

flux jump artifacts that are common with some MEG systems. Ringing removal

allows the ringing response of the antialiasing filter to glitches (steps, pulses) to

be suppressed. The performance of the methods is illustrated and evaluated using

synthetic data and data from real EEG and MEG systems. These methods, which

are are mainly automatic and require little tuning, can greatly improve the quality

of the data.

1 Introduction

The very weak brain signals picked up by electroencephalography (EEG) or mag-

netoencephalography (MEG) have to compete with multiple sources of noise and

artifact within the body, the environment, and the sensors or electrodes. Of partic-
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ular concern are electrode-specific or sensor-specific sources, because they cannot

be suppressed by combining channels linearly as in ICA, beamforming or other

linear techniques (Parra et al., 2005; Debener et al., 2010). In EEG they include

slow drifts at the electrode/gel/skin interface (Huigen et al., 2002; Kappenman

and Luck, 2010), and in MEG the large amplitude steps that result from a slip

in the flux-lock loop (Gross et al., 2013), as well as various other glitches of di-

verse nature. We will use the terms “artifact” and “noise” interchangeably as the

distinction between them is not well defined.

Many techniques have been proposed to eliminate or palliate artifacts, some of

them well-established and included in standard guidelines and processing pipelines.

These include temporal and spatial filtering, detrending, regression, rereferencing,

rejection of corrupt data, and spatial interpolation. However, many of these meth-

ods are prone to failure for certain combinations of artifact, and in some cases they

may make things worse. As an example, high-pass filtering, a standard method to

deal with drifts, is highly sensitive to the presence of temporally-localized glitches

that trigger ringing of the filter. Here we revisit the issue of preprocessing, and

propose a methodology of robust estimation of regression parameters, including

methods for detrending, outlier detection, inpainting, rereferencing, step removal,

and ringing artifact removal. These methods have in common that they deal with

artifacts that are not easily removed with standard spatial filtering techniques.

We first review some important artifacts that affect EEG and MEG data.

Drifts in EEG. The EEG signal often rides upon a slow drift signal produced

at the skin / electrolyte / electrode interface (Huigen et al., 2002). Figure 1 shows

the time course of a typical sample of EEG data after removal of the mean from

each channel. Each channel seems to follow its own drift pattern, albeit with some

apparent inter-channel correlation. Slow drift can be minimized at the source, by
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Figure 1: Sample of 40-channel EEG data with slow drifts. Data were acquired

with a BioSemi system at a rate of 2048 Hz in the calibration phase of an experi-

ment investigating auditory perception and brain state. The mean of each channel

was subtracted before plotting.

piercing or abrading the outermost layer of the skin, the stratum corneum (Stjerna

et al., 2010; Vanhatalo et al., 2005), but not all experimenters or subjects welcome

this solution. Slow drifts may mask genuine cortical activity in the very low fre-

quency range (Vanhatalo et al., 2005), and furthermore, if the data are epoched,

the drift may misleadingly appear as a pattern reproducible over trials, a tendency

that may be further reinforced by component analysis techniques that emphasize

repeatable components (de Cheveigné and Parra, 2014). Drifts are usually dealt

with by high-pass filtering or detrending, but unfortunately those methods them-

selves may create new artifacts as discussed in the next paragraphs.

High-pass filtering artifacts. High-pass filtering is effective to attenuate slow

drifts (typical cutoffs range from 0.1 to 2Hz) but it raises several issues. Most

obvious is the removal of slow cortical activity, whether spontaneous (Vanhatalo

et al., 2005), or stimulus-evoked (Southwell et al., 2017). Processing that blinds

the investigator to such cortical activity is not ideal. Another problem, less often

appreciated, is that transient features too may be distorted due to the filtering

(Acunzo et al., 2012; Vanhatalo et al., 2005). Figure 2 (top left) shows how a
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unipolar pulse (0.5 s duration) is affected by typical high-pass filters (Butterworth

design) of various orders and cutoff. The pulse is attenuated relative to the original

signal, and is followed by multipolar excursions that are purely artifactual, with

a morphology that depends on the cutoff frequency, order, and type of filter. A

transient cortical event would incur similar distortion, which is worrisome as the

additional excursions might masquerade as distinct neural events. The point has

been repeatedly made (Acunzo et al., 2012; Tanner et al., 2015; Widmann et al.,

2015; Tanner et al., 2016), but it escapes consideration in many studies.

In the same vein, Fig. 2 (top right) shows how a step (0.5 s rise time), such as

might occur in the cortical response to a stimulus onset (Southwell et al., 2017),

is affected by the same filters. The sustained plateau is lost and replaced by spuri-

ous signal excursions of both signs that would completely obfuscate the pattern of

cortical electrical response. An offset would trigger a similarly misleading “offset

response” (not shown). Zero-phase filtering is sometimes recommended as con-

ducive to less distortion, but it introduces an additional issue. Figure 2 (top right,

bottommost lines) shows the response of zero-phase filters to the same step. The

presence of spurious deflections is now made worse by the fact that some of them

occur before the event that triggered them. Applied to neural data, non-causal

filters may confuse our understanding of the sequence of events within the brain

and their causal relations.

Figure 2 (bottom) illustrates a high-pass filter response to a descending ramp

(analogous to the EEG data in Fig. 1). After a transient response (due to the im-

plicit step at the onset) the signal is close to zero, as desired. However the transient

fluctuations take time to subside, especially for a filter with a lower cutoff and/or

higher order. They are of particular concern if the high-pass filter is applied after

cutting the data into epochs (not recommended), as the fluctuations can easily be

mistaken for a reproducible neural response. Such fluctuations may be reduced
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Figure 2: Top: pulse (left, black) and step (right black) signals and corresponding

filter outputs for 3 different high-pass filters. Lowermost curves are for non-causal

filters (Matlab filtfilt function). Bottom: descending ramp (black) and filter

output for 3 different Butterworth high-pass filters with cutoff frequency and order

(N) indicated in the legend.

by including more data at the beginning of each epoch, to give time for the tran-

sient to subside, however the response of an infinite impulse response (IIR) filter

never completely dies away. Together, these issues provide strong motivation to

consider alternatives to high-pass filtering.

Detrending artifacts. In detrending, a smooth function, for example a low or-

der polynomial, is fit to the data and then subtracted from it. Figure 3 (top left)

shows one channel of an EEG signal contaminated with a slow drift, together with

a polynomial fit of order 10 (red), and Fig. 3 (top right) shows the same signal after

subtraction of the fit. Slow fluctuations have disappeared, leaving rapid fluctua-

tions on several time scales. The order of the polynomial controls the scale of the

fluctuations that are removed.

Detrending is unfortunately sensitive to the presence of glitches, that are com-
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Figure 3: Top left: sample of EEG signal (black) and order-10 polynomial fit

(red). Right: detrended data. Middle left: same EEG data as top with an artificial

glitch (black) and polynomial fit (red). Right: “detrended” data. Bottom: same

data with robust polynomial fit (red). The fit was weighted using the weighting

function (mask) symbolized in grey. Right: detrended data. Data are from the

same dataset as Fig. 1.
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mon in EEG and MEG. Figure 3 (middle left) shows the same data to which a

glitch has artificially been added. The fit (red) is affected by the glitch, with the

result that the detrended signal now shows high-amplitude fluctuations over an

interval that extends outside the glitch-contaminated part (Fig. 3 middle right).

However, if the extent of the glitch is known, the fit can be restricted to the in-

tact part (indicated by the grey bar). Figure 3 (bottom left, red) illustrates such

a fit, and Fig. 3 (bottom right) shows resulting detrended data. The glitch is of

course still present, but the rest of the data are nicely detrended without spurious

fluctuations. This approach is described in more detail in this paper.

Rereferencing. EEG measures the potential at each electrode relative to some

other electrode (Picton et al., 2000). The signal recorded on any channel obviously

depends on the position of the reference electrode on the skull, and any noise in-

troduced at the reference electrode (e.g. contact noise) contaminates all measured

signals. To reduce the dependency on reference electrode position it is common

to rereference to the average, i.e. subtract from each electrode the average over

all electrodes (Nunes and Srinivasan, 2006; Keil et al., 2014) or some other linear

combination (Yao, 2001). Noise at the physical reference electrode is cancelled,

but noise on any other electrode is now injected, via the average, into all channels.

This paper suggests a means to mitigate this issue.

Glitches. EEG and MEG are susceptible to temporally-localized glitches, due

to muscle artifacts or motion of the electrodes or leads. Channel-specific artifacts

(that affect one rather than multiple electrodes) are particularly troublesome as

they cannot be suppressed by linear techniques without effectively discarding the

contaminated channel (de Cheveigné, 2016). They can interfere with data-driven

linear techniques, as illustrated in Fig. 3 (middle), and it is useful to identify them

prior to other analysis.
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Channel specific artifacts are usually uncorrelated across channels, in contrast

to genuine brain activity that tends to be correlated across channels because of cur-

rent spread (de Cheveigné and Simon, 2008). This suggests a way to detect them:

(a) project a channel on the subspace spanned by all other channels, (b) estimate

the statistics of the residual (channel minus projection), (c) find the outliers of

this distribution. However this scheme runs into a practical difficulty: artifacts on

other channels may corrupt the projection, and thus wrongly trigger the detection

of artifacts on the channel of interest. To be effective, the algorithm should track

the multiple combinations of intact/corrupt channels that can occur in real data,

so as to always project on intact data. This paper describes such an algorithm.

Inpainting is a term used in the field of image processing to designate the pro-

cess by which a missing portion of an image is replaced using a model constrained

by the intact parts (Bertalmio et al., 2000), and the same idea has been used for

other signals such as audio (Adler et al., 2012). Here we apply the concept to

electrophysiological data. Supposing the extent of an outlier or glitch (as in Fig. 3

middle) is known (for example from the previous algorithm), it can be replaced

using a model constrained by intact data. This paper proposes such a process.

Inpainting and outlier detection are closely related.

MEG steps. MEG has the advantage over EEG that it is not prone to the slow

drift that arises at the electrode-skin contact in EEG. Slow nuisance signals may be

present, due to environmental sources such as moving vehicles or machinery, but

they are usually correlated across sensors and can be projected out of the data with

linear methods. However, MEG is prone to sudden changes in the operating point

of the flux lock loop associated with the SQUID sensors (Oswal et al., 2016; Gross

et al., 2013), that produce large amplitude steps, against which high-pass filtering

is particularly ineffective. This paper proposes a reliable method to remove these
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steps.

Antialiasing filter artifacts. An event such as a flux jump (as mentioned above)

or stimulus artifact (for example as occurs in cochlear or deep brain stimulation)

necessarily triggers a ringing artifact due to the antialiasing filter that precedes

conversion of the analog EEG or MEG signal to a digital representation. The

ringing extends beyond the interval containing the event, and may remain after

the event has been removed (as in the case of MEG steps). This paper proposes a

method to address this issue.

In summary, electrophysiological data are plagued by many artifacts that in-

terfere with the interpretation of the data, and that may reduce the effectiveness of

processing algorithms needed to assist with this interpretation. Classic methods

such as filtering are particularly prone to artifacts and signal distortion effects.

This paper describes a panoply of alternative techniques to deal with these issues.

These techniques have in common that they target artifacts that are not easily

removed with standard spatial filtering techniques such as ICA. They are comple-

mentary with those techniques: once artifacts have been suppressed, techniques

such as ICA may be more effective.

2 Methods

2.1 Signal models

We use three signal models. The first and last are applicable to a single channel

independently from others, the second is applicable to multiple channels taken

together.

For the first signal model, the data of channel n of a data matrix are expressed
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as:

xn(t) = yn(t) + fn(t), (1)

where fn(t) is the projection of xn(t) on some basis of functions (for example

low-order polynomials) chosen to represent trends, and the residual yn(t) is a

“detrended” signal. We assume that this model holds for all values of t except

those for which a weighting function wn(t) is zero.

The second model is best described by first defining a simpler model that states

that each channel can be expressed as a weighted sum of the other channels:

xn(t) =
∑
n′ 6=n

bn′nxn′(t). (2)

Equation 2 implies linear dependency between channels (rank of the data <N ) but

is a stronger condition. The idea expressed by this model is that no single channel

is “indispensable”, as any channel can be reconstructed from the other channels.

We will further assume that there are multiple ways to reconstruct the channel,

based on different subsets of the other channels, i.e. Eq. 2 also holds for subsets

of {n′ 6= n}.

This simple model is now modified by assuming the presence of temporally

sparse glitches, labeled by zero values of a weighting matrix wn(t). This may

invalidate the baseline model (Eq. 2), however, we make three assumptions. The

first is that for every t such that channel n is valid (i.e. wn(t) 6= 0), there exists

some subsetOn of valid channels {n′ 6= n} for which Eq. 2 holds. In other words,

glitch-free parts of channel n can be reconstructed based on the other channels,

although the “recipe” to do so might be different at different t, i.e. there are

several such subsets Ok
n. The one that is valid at t is notated as Ok(t)

n . The second

assumption is that at least one of these subsets Ok
n is also valid during the glitch

that affects channel n. In other words it is possible to fix samples within the glitch-

contaminated segment based on intact channels. The third assumption is that there
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are enough intact data so that all the required coefficients {bnn′}k in Eq. 2 can be

estimated reliably. These assumptions are plausible if the glitches are temporally

sparse and don’t occur at the same time on all channels.

For the third model, each channel is expressed as:

xn(t) = yn(t) + fn(t) (3)

where fn(t) is now piecewise constant. This model will allow us to address steps

in MEG data.

2.2 Robust detrending

This algorithm uses the first model. The slow trend on each channel n is esti-

mated robustly using a weighting matrix wn(t), and then subtracted. The weight-

ing matrix can be predetermined or else estimated iteratively with the following

algorithm:

Data: EEG signal x(t)

Result: detrended EEG y(t), outlier map w(t)

Initialize w(t)← 1;

while not finished do

f(t)← x(t) fit to basis functions using weights w(t) ;

d(t)← |x(t)− f(t)| ;

if |d(t)|/STD(|d(t)|) > threshold then
w(t)← 0

else
w(t)← 1

end

end
At each iteration the data are projected onto the basis functions, statistics of the

residual d(t) are estimated, and samples larger than a threshold are flagged as
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outliers to be discounted in the next iteration. The loop is terminated after a few

iterations, or if w(t) does not change between iterations. The weights w(t) can be

initialized to values other than 1 if prior knowledge is available. A quality-of-fit

score can be defined as
∑

w(t) 6=0 d(t)2/
∑

w(t) 6=0 x(t)2. For multichannel data the

algorithm is applied independently to each channel.

2.3 Inpainting

This algorithm uses the second signal model to estimate missing portions of multi-

channel data xn(t) (labeled by zero values of a weighting matrix wn(t)). Accord-

ing to that model, the signal xn(t) of channel n can be approximated for every t

as a weighted sum x̄n(t) of a subset Ok(t)
n of the other channels. The subset may

differ for different t according to which other channels are intact at that time. The

algorithm estimates projection parameters based on intact portions of the data, and

applies them to reconstruct the corrupted portions. More precisely:

Data: corrupted N-channel data xn(t), weighting matrix wn(t)

Result: reconstructed data x̄n(t)

for n← 1 to N do
Partition time axis into K subsets {Tk} such that channels Ok(t)

n are

valid over Tk;

for k ← 1 to K do

Select subset T ′
k ⊆ Tk of times for which channel n is also valid ;

On T ′
k estimate the matrix M that projects xn(t) on [xn′(t)]n′∈Ok

n
;

Apply matrix M to [xn′(t)]n′∈Ok
n

to obtain x̄n(t) for t ∈ Tk ;

Optionally: x̄n(t)← xn(t) for t ∈ T ′
k ;

end

end
In brief, corrupt values of each channel are reconstructed from channels that are
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intact at that time. Subsets Tk or T ′
k do not need to be formed of contiguous

samples, but the subset T ′
k must be large enough to reliably estimate the projection

matrix M. If the step labeled as optional is included, the output x̄n(t) is identical

to the original signal except during the glitch. If that step is omitted, the output

is everywhere equal to a weighted sum of other channels (n′ 6= n), i.e. all output

samples may differ from the input. The rank of the data is not usually reduced by

processing.

2.4 Outlier detection.

The previous algorithm requires a map wn(t) indicating which parts of the data

are corrupt. If that information is missing it can be derived from the data using an

adapted version of the algorithm. Starting with an initial estimate of the weights

wn(t), for example all ones, each channel n is approximated on the basis of other

channels (n′ 6= n). The approximation x̄n(t) is then compared to the actual signal

xn(t), and the times at which the mismatch exceeds a threshold are flagged as

corrupt. More precisely:
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Data: signal xn(t)

Result: weighting matrix wn(t)

Initialize wn(t)← 1 for all n;

while not finished do
x̄n(t)← inpainting algorithm applied to xn(t), wn(t)

d(t)← |x̄n(t)− xn(t)|;

if d(t)/STD(d) > threshold then
wn(t)← 0

else
wn(t)← 1

end

end

The algorithm is iterated a few times to refine the outlier map wn(t). The value

of threshold is not critical, a value of 1 is usually adequate. A quality-of-fit score

can be defined as
∑

n,wn(t) 6=0 dn(t)2/
∑

n,wn(t) 6=0 xn(t)2.

2.5 Robust rereferencing

It is common in EEG to rereference the data by subtracting the average of sig-

nals over all channels m(t) = (1/N)
∑

n xn(t). As explained in the Introduction,

a glitch on one channel can corrupt this average, and thus contaminate all chan-

nels. This can be avoided by replacing xn(t) in the formula for the mean by x̄n(t)

obtained from the inpainting algorithm. Alternatively, a simple expedient is to re-

place the mean over channels by a weighted mean: m(t) =
∑

nwn(t)xn(t)/
∑

nwn(t).

Analogous schemes for robust rereferencing were proposed by Lepage et al. (2014);

Bigdely-Shamlo et al. (2015).

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/232892doi: bioRxiv preprint 

https://doi.org/10.1101/232892
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.6 Step removal

This algorithm uses the third signal model (piecewise constant) to locate and re-

move large amplitude steps such as SQUID jumps commonly observed in MEG

data (Gross et al., 2013). The position t0 of a single jump in a signal x(t) of

duration T can be found reliably as:

t0 = argmin
t∈[1,T ]

(Vt
1(x) + VT

t (x)), (4)

where Vt
1(x) =

∑t
i=1(x(i) −Mt

1(x))2 is the sum of squared deviations from the

mean Mt
1(x) = (1/t)

∑t
1 x(i) of x(t) over [1, t]. As described, the algorithm

suffers from a slight bias towards choosing a step position close to either extremity

(0 or T ). This is because the variance of V increases as the number of samples

used to calculate it decreases, making a spurious minimum in Eq. 4 more likely. To

counteract this trend and avoid trivial splits, it is convenient to restrict the search

to the interval [Tg, T − Tg] where Tg is a guard value. Likewise it is convenient to

set a threshold on the ratio Vt
1(x) + VT

t (x)/VT
1 (x) below which small amplitude

“jumps” are ignored. Multiple jumps are located by recursing on each side of

t0. The jumps are then removed from the data by subtracting the mean of the

data between jumps. Robust step removal can be implemented by including a

weighting term w(t) in Eq. 4.

2.7 Ringing removal

After a step is removed by the previous algorithm, there remains a ringing artifact

due to the step response of the antialiasing filter. If the characteristics of that fil-

ter are known, the ringing artifact can be removed by feeding a step to the same

filter, and subtracting the response. A simple expedient to find the appropriate

filter is to apply the Steiglitz-McBride iteration method (Steiglitz and Mcbride,

1965) (Matlab function stmcb) to a short segment of data following the step,
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yielding numerator and denominator coefficients of an IIR filter. Given that there

is only a small number of coefficients (e.g. 8 each for numerator and denomina-

tor) there is little room for overfitting. This method is also effective to remove

ringing associated with stimulus artifacts, for example when measuring responses

to electrical stimulation (Oswal et al., 2016). In principle it is possible to average

filter parameters estimates over events to get a more accurate estimate, however

in practice the appropriate filter depends on the timing of the step relative to the

sampling instants, which is unknown. The Steiglitz-McBride approach is easier

for this reason.

In summary, a panoply of algorithms is available to address the issues raised in

the Introduction. The next section illustrates their performance. These techniques

target artifacts that are not easily removed with standard spatial filtering methods

such as ICA, and thus are complementary with those methods.

3 Results

The algorithms are illustrated with synthetic data to clarify their properties, and

with real data to evaluate their usefulness in a practical setting.

Robust detrending Figure 3 (bottom) shows the result of applying robust de-

trending rather than standard detrending. After a few iterations the algorithm has

estimated the position of the glitch (grey line) and performed a weighted polyno-

mial fit (red). Subtracting the fit yields the detrended data (bottom right). Com-

paring to Fig. 3 middle right, it appears that the algorithm has achieved a better fit

to the non-glitch parts, yielding a more useful detrended signal.

Figure 4 (top) shows one channel of real EEG data on which are superimposed

200 repetitions of a synthetic unipolar pulse with a shape similar to that shown in

Fig. 2 (the low-amplitude pulses are not visible in the waveform at this scale).
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Figure 4: Robust detrending of EEG data. Data consist of 200 repetitions of a

synthetic unipolar pulse of duration 500 ms and amplitude 20 µV superimposed

on a real EEG signal (top). Middle left: trial average (black), linear fit (dotted

red) and robust linear fit (full red) to trial average. Middle right: trial average of

high-passed data (0.3 Hz cutoff, order 2). Bottom left: detrended trial average.

Bottom right: robust detrended trial average. Data are from the same dataset as

Fig. 1.
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Averaging over trials reveals the pulse (black line in Fig. 4), but the linear trend

that affects the raw data (Fig. 4, top) also affects the average over trials (Fig. 4,

middle left). This can be addressed by applying a high-pass filter before cutting

the data into trials, as is common practice in EEG data analysis. However doing

so also seriously distorts the shape of the pulse (Fig. 4, middle right). Filtering

after cutting into trials has an even worse effect due to onset response artifacts that

repeat on each trial (not shown). As an alternative to high-pass filtering, the trial-

averaged data may be detrended by fitting a low-order polynomial to the averaged

data and subtracting the fit (Fig. 4 bottom left). However, the presence of the

pulse affects the fit (Fig. 4 middle left, red dotted line), adding a reverse trend to

the response (bottom left). In contrast, the weighted fit (Fig. 4 middle left, red full

line) leads to a better estimate of the target signal (bottom right).

As an additional example, Fig. 5 (top left) shows one channel of raw EEG with

multiple glitches, together with a robust polynomial fit of order 30 (red line). Fig-

ure 5 (top right) shows the detrended signal. The time scale of the variations that

are included in the trend depends on the order of the polynomial, a higher order

allowing finer fluctuations to be removed (see Discussion for caveats). As a final

example, Fig. 5 (bottom left) shows a synthetic signal corrupted by both a 50 Hz

sinusoidal artifact and a temporally-localized glitch (amplitude 100, shown trun-

cated). An effective way to remove the sinusoidal artifact is to fit a quadrature pair

of 50 Hz sinusoids (in lieu of “trend”) and subtract the fit, equivalent to removing

that component in the Fourier domain, but the presence of the glitch disrupts this

process and leads instead to a greater sinusoidal artifact amplitude (Fig. 5, bottom

center). In contrast the weighted fit produces a clean signal (bottom right). Notch

filtering is prone to similar effects, that weighted detrending conveniently avoids.

This last example shows that robust detrending is not restricted to slow trends.

It is worth remarking that the same algorithm can be used instead to robustly

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/232892doi: bioRxiv preprint 

https://doi.org/10.1101/232892
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 50 100 150 200
time (s)

-0.5

0

0.5

a
m

p
lit

u
d

e
 (

m
V

)

raw

0 50 100 150 200
time (s)

robust detrend

0 1

time (s)

-10

0

10

A
.U

.

raw

0 1

time (s)

detrend

0 1

time (s)

robust detrend

Figure 5: Top left: raw EEG signal (black) and 30th order polynomial fit (red).

Top right: detrended signal. Data are from the same dataset as Fig. 1. Bottom: Ro-

bust removal of a 50 Hz sinusoidal trend. Left: 1 Hz sinusoidal “signal” corrupted

by 50 Hz artifact and a temporally-localized glitch (amplitude 100). Center: a 50

Hz sinusoidal function is fit to the data and subtracted. Right: same, but the fit is

weighted by a weighting matrix that is zero at time of the glitch.
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Figure 6: EEG signal inpainting. Top: 50-channel synthetic signal (rank 10)

corrupted with randomly-placed “glitches” (thin lines). Middle: weighting matrix,

zero at the positions of the glitches. Bottom: signal interpolated by the inpainting

algorithm.

follow the slow variations in the signal, analogous to a low-pass filter. The ad-

vantage over a standard lowpass filter is again that the result is not affected by

localized glitches. These persist of course in the “smoothed” signal, but the shape

of the non-glitch portions is not affected.

Inpainting. Figure 6 (top) shows a 50-channel signal [xn(t)] produced by mix-

ing 10 uncorrelated “sources”, consisting of sinusoids of different frequencies,

via a 10 × 50 random mixing matrix. The signal of each channel was corrupted

by adding a randomly-placed “ glitch” of duration 0.2 s. The positions of these

glitches are indicated by the weighting matrix [wn(t)] (Fig. 6 middle). Applying

the inpainting algorithm produces a cleaned signal (Fig. 6 bottom) indistinguish-

able from the glitch-free original (not shown). To achieve this result, the algorithm

estimated the correlation structure of intact portions (wn(t) 6= 0), and used them
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to design a set of projection matrices to reconstruct corrupt portions (wn(t) = 0).

In this example there were 146 distinct configurations of intact/corrupt channels,

and thus the same number of projection matrices. Note that none of the channels

was glitch-free, and that many glitches overlapped in time .

Outlier detection In the previous example, the weighting matrix wn(t) was

known in advance. If no prior knowledge is available, a weighting matrix can

be estimated from the data based on the assumption that glitches are uncorre-

lated across channels. Figure 7 (top) shows the weighting matrix estimated by the

outlier detection algorithm (threshold = 1, 10 iterations) from the data plotted in

Fig. 6 (top). Based on this estimate, derived blindly from the data, the data can

be effectively denoised (Figure 7 bottom), yielding a result almost identical to the

original (not shown).

As another example, a segment of 128-channel EEG data was first detrended

and then processed with the outlier detection algorithm (threshold = 1, 6 itera-

tions). The estimated weight matrix is displayed in Fig. 8 (top). The pattern of

outliers is quite diverse, with some channels affected most of the time (e.g. chan-

nel 39) and many channels some of the time (e.g. circa 2-3 s). Figure 8 (middle)

shows the time course of channel 35 before (black) and after robust detrending

(green), and after outlier detection and inpainting (red). The signals are offset ver-

tically for clarity. The invalid portion (between 2 and 4 s), visible as a horizontal

line in the weights plot, is replaced by a combination of intact channels. Figure 8

(bottom) shows similar data for channel 39 (weights visible as a horizontal dotted

line across the full data segment). Here the algorithm has replaced a large number

of samples, yielding an apparently cleaner signal (red trace).

Robust rereferencing. Figure 9 (blue) shows the time course of one channel of

a segment of 128-channel EEG data. Another channel (not shown) was affected by
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Figure 7: Outlier detection. Top: weight mask estimated from the signal plotted

in Fig. 6 (top). bottom: signal interpolated using the estimated weighting mask.
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Figure 8: Outlier detection. Top: weight mask estimated from a segment of 128-

channel EEG (detrended). Middle: one channel of EEG, showing the raw, de-

trended, and interpolated signal, offset vertically for clarity. Bottom: same for

another channel. Data are from the same dataset as Fig. 1.
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Figure 9: Robust rereferencing. Single EEG channel before (blue) and after stan-

dard rereferencing (black) and robust rereferencing (red).

an artificial glitch of amplitude -1000 mV, with the result that the channel average

also shows a glitch (of amplitude ~-8mV) that is injected into the rereferenced

waveform (Fig. 9, black). Robust rereferencing avoids this problem (red).

Step removal. Figure 10 (left) shows a sample of MEG data recorded with a

phantom dipole source in an experiment that simulated conditions characteris-

tic of deep brain stimulation (Oswal et al., 2016). Stimulation produces a high-

amplitude magnetic pulse that can cause the electronics controlling the SQUID

sensors to switch state, resulting in a sharp step of large amplitude. Such steps

also occur spontaneously in MEG data (Gross et al., 2013). In this example, at

each stimulus the MEG signal (black) is affected by a step that the algorithm re-

moves (red).

Ringing removal. Visible in the previous example are a series of glitches due

to the ringing response from the low-pass antialiasing filter, that remains after

step removal (Fig. 10, right). That ringing response (black) is effectively removed

by the ringing removal algorithm (red). Ringing artifacts from other events (e.g.

stimulus artifacts) can also be removed if their timing is known.
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Figure 10: Step and ringing artifact removal. Left: one channel of MEG data in

response to simulated deep brain stimulation (Oswal et al., 2016) (black) and the

same signal after automatic step removal (red). Right: one channel of MEG from

same data set showing a stimulus artifact (black) and the same signal after ringing

removal (red). Data were recorded on a 275-channel CTF system at a 2400 Hz

sampling rate (Oswal et al., 2016).

4 Discussion

4.1 The importance of preprocessing

Artifacts are deleterious in four ways. First, they mask interesting activity; for

example, line noise may mask oscillatory cortical activity near 50 or 60 Hz, and

electrode drift may mask slow cortical potentials. Second, they may masquerade

as brain activity; for example a slow trend might lend a ramp-like shape to an

evoked response, or ocular or myogenic artifacts might masquerade as cortical

activity if they correlate with stimulation or behavior (Yeung et al., 2004; Yuval-

Greenberg et al., 2008). Third, the need to attenuate them may prompt the use of

processing such as high-pass filtering that entails deleterious side effects. Fourth,

the artifacts may impede analysis by interfering with the processing; for example,

high-amplitude artifacts may dominate the sums of squares involved in methods
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such as CSP, ICA, CCA, etc. Artifact removal is a prerequisite for good data

analysis, and this paper offers a panoply of methods for the purpose. They are

presented here together (rather than in separate papers) because they share con-

cepts and processing, and because the interactions between methods need to be

considered.

4.2 In which order?

Should a slow trend be removed before glitches, or after? Should they both be

removed before spatial filtering, or after? At what stage should temporal filtering

be applied, if at all? Linear operations may be swapped, but the data-dependent

algorithms that determine their parameters depend on the order in which they

are applied. Algorithms that rely on minimizing a sum of squares are sensitive

to components with large variance: a trend or glitch may entice an algorithm to

model it rather than sources of interest, and thus removing the artifact may make

the algorithm more effective. Definitive guidelines are hard to set because of the

variety of situations. As a rule of thumb, if algorithm B is sensitive to an artifact

that algorithm A can remove, then A should be applied before B. A difficulty

arises of course if A is also sensitive to artifacts that B can remove.

A typical EEG recording might be contaminated by a combination of slow

drift specific to each electrode, temporally localized glitches also specific to each

electrode, eye blinks shared across electrodes, 50 Hz and harmonics shared across

electrodes, myogenic activity that may be either electrode-specific or shared, alpha

activity shared across electrodes, and so-on. A likely sequence might be: (a)

discard pathological channels for which there is no useful signal, (b) apply robust

detrending to each channel, (c) detect and interpolate temporally-local channel-

specific glitches, (d) robust re-reference, (e) project out eye artifacts (e.g. using

ICA or DSS), (f) fit and remove, or project out, 50 Hz and harmonics, (g) project
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out alpha activity, etc., (f) apply linear analysis techniques (ICA, CSP, etc.) to

further isolate activity of interest.

A typical MEG recording might be contaminated by a combination of SQUID

jumps specific to each sensor, slow components due to nearby vehicles and ma-

chinery (e.g. elevator), shared across sensors, 50 Hz and harmonics from power

lines and devices, shared across sensors, sensor noise specific to each sensor, vi-

bration artifacts shared across sensors, alpha activity shared across sensors, stim-

ulus artifact, etc. A likely sequence might be: (a) remove squid jumps, (b) re-

move stimulus artifacts, (c) remove associated antialiasing filter ringing artifacts,

(d) isolate and remove slow environmental components, 50 Hz and harmonics,

vibration artifacts, alpha activity, etc. using projection techniques or spatial fil-

tering based on ICA, DSS, etc., (e) suppress sensor noise using the Sensor Noise

Suppression (SNS) algorithm (de Cheveigné and Simon, 2008), (f) apply linear

analysis techniques (ICA, DSS, CSP, etc.) to further isolate activity of interest.

4.3 Comparison with other tools

A standard practice is to discard data corrupted by an artifact, for example discard

a channel or trial. This is justified if those data are completely invalid, but wasteful

otherwise. Data loss may be unacceptable if artifacts are spatially and/or tempo-

rally dense. One motivation for this work is to minimize such data loss while still

attaining high data quality. Another is to avoid manual intervention, in contrast to

common practices of visual inspection and manual editing. This goal is not fully

attained, as it may still be necessary to manually adjust the order of processing

stages or their parameters.

Temporal filtering is widely used (high-pass to remove drift, lowpass to attenu-

ate sensor noise and myogenic artifacts, notch to remove power line components,

etc.) but prone to the pitfalls noted in the Introduction. An aim of this work is
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to offer effective alternatives. Detrending, a popular alternative to high-pass fil-

tering, is impaired by glitches. Robust detrending reduces this problem, giving

the method a major advantage over filtering. Like non-causal filtering, detrending

can raise causality concerns as the trend removed at time t reflects data that oc-

curs after t. In practice the strong constraint imposed by the basis functions (e.g.

smooth low-order polynomials) rules out the most egregious effects. Polynomial

trend removal is implemented in toolboxes such as FieldTrip (Oostenveld et al.,

2011), but without weighting. An alternative to fitting a polynomial is local linear

regression, in which a linear fit is repeatedly applied to short segments that are

moved forward in time, and the fits averaged. A robust version of this process is

proposed in the matlabmk toolbox

(http://kutaslab.ucsd.edu/matlabmk_fn_docs/matlabmk/robust_locdetrend.html

). The robust rereferencing scheme of Bigdely-Shamlo et al. (2015) detects and

interpolates corrupt channels over their entire duration, in contrast to the method

reported here that does so only for corrupt segments of each channel.

A spatial filter is another common tool, with coefficients that are either pre-

determined (e.g. rereferencing, or Laplacian) or calculated from the data (e.g.

ICA, PCA, etc.). A spatial filter allows multiple noise sources to be cancelled,

but this works only if the dimensionality of the noise space (number of distinct

active sources) is less than that of the data (number of channels). Usually, the

coefficients of the filter remain constant over the data set, in other words the fil-

ter is time invariant. In contrast, the inpainting and outlier detection algorithms

described here apply distinct spatial filters over different subsets of the time axis,

similar to the STAR algorithm (de Cheveigné, 2016). The ability to apply differ-

ent filters at different times sets these methods apart from standard time-invariant

spatial filter methods such as PCA, ICA, CSP, beamforming, etc.

ICA is reported to benefit from high-pass filtering (Debener et al., 2010; Win-
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kler et al., 2015), and should thus benefit from detrending. More generally, the

methods presented here can contribute to the success of component analysis in

two ways. First, by taking care of high-variance components that would other-

wise dominate the least-squares solutions involved in many methods, and second

by taking care of numerous channel-specific artifacts that inflate the number of

"sources" that need to be resolved from the limited number of sensors available

(Debener et al., 2010). It should be noted that the methods presented here do not

usually reduce the rank of the data. They thus complement standard methods such

as ICA.

The combination of outlier detection and inpainting can be seen as a “robust”

version of our earlier SNS algorithm which projects each channel on the subspace

spanned by the others (de Cheveigné and Simon, 2008). It can also be seen as a

generalization of our earlier STAR algorithm which only allows one corrupt chan-

nel at any time (de Cheveigné, 2016). It is similar in spirit to the Artifact Subspace

Reconstruction (ASR) method (Kothe, 2013), and related to spatial interpolation

methods such as Perrin et al. (1989) that require neighboring channels to be intact.

Only between-channel correlation is exploited here, for inpainting and outlier de-

tection; an alternative is to exploit temporal structure within each channel via an

autoregressive or wavelet model, or both space and time via a multichannel au-

toregressive model (Lawhern et al., 2012). Many methods have been developed

for image, audio and video inpainting and matrix completion (Candès and Recht,

2008) that may also be of use for electrophysiological data. These remain to be

fully explored.

The standard approach to address SQUID jumps in MEG is to discard cor-

rupted data (Gross et al., 2013), and popular toolboxes such as FieldTrip (Oost-

enveld et al., 2011) or Brainstorm (Tadel et al., 2011) offer tools to detect such

jumps. Discarding is not an option if the steps are dense on a majority of chan-
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nels (e.g. Oswal et al. (2016)). In contrast, the method described here removes

the steps with no data loss. After steps are removed, ringing artifacts due to the

antialiasing filter remain, and the same artifacts may be observed in both EEG and

MEG in response to electric stimulation (cochlear implant, deep brain stimulation,

TMS, etc.). The standard approach is to discard the ringing interval together with

the artifact (Herring et al., 2015), but this is not an option if artifacts are dense. As

far as we know, our methodology has not been reported elsewhere.

Robust techniques are well developed in statistics and data mining (Aggarwal,

2016), and some have been applied to EEG or other signals (Pernet et al., 2011;

Lepage et al., 2014; Bigdely-Shamlo et al., 2015; Krauledat et al., 2007). Com-

mon to these techniques is the weighting of the data according to their reliability.

The weighting is often implicit in the definition of the robust statistic, or in the

estimation process, in contrast to the explicit weighting matrix that we use here.

An advantage of explicit weights is that a measure of reliability derived in one

context (e.g. detrending) can be applied in another (e.g. rereferencing).

Outliers are detected here based on mismatch from a model (spatial or tempo-

ral), rather than on the basis of their extreme values as is common. To derive the

model we use standard statistics such as the mean and standard deviation. More

robust statistics (median, etc.) have been advocated (Leys et al., 2013), but using

them is unlikely to make a large difference in this context. Binary weights are

used throughout; the use of graded weights is supported by the implementation,

but unlikely to offer a major benefit.

4.4 Caveats and failure scenarios

Detrending assumes a signal model (basis) that must be flexible to fit the trend,

yet inflexible so as to not absorb fluctuations of interest. The choice of parameters

(e.g. polynomial order) is critical to correctly set the time scale of the trend to
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be removed, and success in this respect is uncertain if target and trend share a

similar time scale. Robust detrending can fail if a glitch is mistaken as a trend (for

example if it has a long temporal extent), or a trend mistaken as a glitch. To avoid

this, it may be useful to first detrend using a low-order model, and then a higher-

order model with weights constrained by the first fit. Simple trends are easily fit

with a low order polynomial, or the first few terms of a Fourier series. Fitting more

complex trends may run into difficulties due to what is known as Runge’s effect

(polynomials) or Gibb’s effect (sinusoids) (Platte et al., 2011). As an example, in

Fig. 5 (top right) the 30-th order polynomial fit leaves a residual fluctuation that

is not completely eliminated by a higher-order order fit (not shown). A potential

solution is to use splines (Shumway and Stoffer, 2011), or weighted smoothing

interpolation (Davies and Meise, 2008), but these solutions have not been explored

here. A simpler expedient is to apply detrending to shorter segments for which a

low-order model is adequate. The outcome of robust detrending is dependent on

the choice of the threshold parameter (in addition to those of the trend model),

and we know of no convergence proof.

Inpainting fails if the signal to reconstruct is not contained in the subspace

spanned by the intact channels (signal model 2). This can happen if the number of

sources active at that time is greater than that the number of intact channels. In the

extreme, if there are no intact channels, the algorithm cannot proceed (in that case

the data is left untouched). Inpainting may also fail if there are insufficient data to

reliably estimate the reconstruction matrices. Inpainting also fails if the channel

is entirely corrupt, as the projection matrices cannot be estimated. The best option

is to discard the channel (and possibly interpolate from intact neighbors).

Outlier detection assumes that the intact data match model 2, outliers being

defined as samples that do not match the model. A same data set might match

multiple models. For example two partly overlapping glitches could be interpreted
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as a pulse common to both (the part that for which they overlap), together with

shorter glitches specific to each. The algorithm can chose either, and the choice

that it makes might be unexpected. There is no guarantee of convergence of the

outlier detection, and indeed the solution is often observed to fluctuate. That said,

the algorithm typically gives plausible and useful results on real data.

Robust rereferencing is contingent on the quality of the outlier detection that

produces the mask, although the impact of an error on any particular channel is

mitigated via the averaging process.

Step removal could in theory remove genuine step-like activity, but in practice

there is never any ambiguity and the method is robust. It runs into difficulty if the

sections between steps are not flat. In that case a combination of step removal and

detrending may be required.

Ringing removal treats a short segment of data as a filter impulse response,

that it then removes. Brain signal features that occur during that short segment

might be removed as well, although the likelihood of this happening is limited

by the constraints imposed by the low-order IIR filter. The risk could be further

reduced by fitting all ringing artifacts with exactly the same filter, although this

option was not explored.

The methods described in this paper deal only with channel specific artifacts;

artifacts that impinge on multiple channels are not addressed at all.

4.5 Implementation

The routines are implemented in Matlab within the NoiseTools toolbox (http:

//audition.ens.fr/adc/NoiseTools/). They are based on closed-form

solutions, possibly iterated a small number of times, and thus most methods are

cheap in terms of computation. Inpainting and outlier detection are somewhat

more costly because a large number of combinations of valid/invalid channels
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may need to be considered (potentially up to 2N for N channels, in typical prac-

tice a few thousand). It can happen that channels within Ok(t)
n are rank-deficient

over T ′
k; to handle this situation, for each k those channels are submitted to a

PCA, the PC series is truncated, and the projection is performed on the remain-

ing PCs. The eigendecomposition required by this step is the main computational

bottleneck. To limit the cost of eigendecomposition (O(N3)), for each channel

n, a subset of size M < N of channels “closest” to channel n is selected on the

basis of physical proximity or correlation with xn(t). To further reduce compu-

tation, configurations that involve only a few data samples are skipped, and the

corresponding data are reconstructed by serial interpolation as a weighted sum of

neighboring intact samples.

The algorithms are described here in terms of batch processing, but the statis-

tics that they require (mean, covariance, cross-correlation) can be calculated incre-

mentally and updated in real time, potentially allowing the methods to be deployed

in a real-time brain-computer interface (BCI) system. One such application, cog-

nitive control of a hearing aid, is a primary motivation of this work.

5 Conclusion

This paper presents a set of methods to preprocess multichannel data such as EEG

or MEG and improve their quality. These methods address ubiquitous sources of

artifact that corrupt data and interfere with analysis and interpretation, and com-

plement other methods such as temporal or spatial filtering, either as a replacement

with better performance and fewer drawbacks, or as a complementary processing

step to make them perform better. The methods include robust detrending, ro-

bust rereferencing, outlier detection, inpainting (interpolation), step detection and

correction, and ringing artifact removal.
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