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ABSTRACT

Pain perception, trunk mobility in flexion, extension, and lateral flexion, and apparent diffusion coefficient (ADC) within nucleus
pulposus of all lumbar discs were collected before and after posterior-to-anterior mobilization in 16 adults with acute low back
pain. ADC was computed from diffusion maps and 3 specific portions of the nucleus pulposus were investigated: anterior
(ADCant ), middle (ADCmid), and posterior (ADCpost ), and their mean as ADCall , a summary measure of ADC within nucleus
pulposus. Pain ratings were significantly reduced after mobilization, and mobility of the trunk was significantly increased.
Concomitantly, a significant increase in ADCall values was observed. The greatest ADCall changes were observed at the
L3-L4 and L4-L5 levels and were mainly explained by changes in ADCant and ADCpost . The simultaneous reduction in pain and
increase of water diffusion within nucleus pulposus has has been previously observed in subjects with chronic conditions and
exists in the acute phase of the disease. Since the largest changes in ADC were observed at the periphery of the nucleus
pulposus, and taken together with pain decrease, our results suggest that increased peripheral random motion of water
molecules is implicated in the modulation of the intervertebral disc nociceptive response.

Introduction
Among all musculoskeletal pain conditions, the prevalence and burden from low back pain (LBP) [ICD-10-CM, code M54.5] is
very high throughout the world: out of the 291 conditions studied in the Global Burden of Disease 2010 study, LBP ranked
highest in terms of disability and sixth in terms of overall burden1. Spinal mobilization is a very common approach for LBP, and
when a spinal mobilization is correctly performed by a trained orthopaedic manual physical therapist (OMPT), the intervention
has low risk of injury and may result in immediate detectable improvements in pain and larger articular amplitudes. However,
despite the widespread use of lumbar joint mobilization, the physiological responses of lumbar anatomical structures are still
largely unknown. Recent advances in magnetic resonance imaging (MRI) of the musculoskeletal have nevertheless allow to
observe the movement of water within and between tissues in vivo, and is called diffusion-weighted (DW) MRI. This emerging
imaging technology is particularly sensitive to small changes in fluid flow and has a great potential for studying the influence of
physical therapy interventions such as manual therapy, exercise, and physical agents on musculoskeletal structures2. Based
on the comparison between DW images and non-DW images using the same MRI sequence, it is possible to reconstruct
the mapping of the diffusion and to calculate an apparent diffusion coefficient (ADC) within intervertebral disc (IVD)3–6.
Interestingly, DW MRI of the IVD has been successfully used for some years by Beattie and his colleagues7–10 and allowed to
link the decreasing pain reported by subjects with chronic LBP following single session of lumbar posterior-to-anterior (PA)
pressures from L5 to L1 levels associated to McKenzie prone press-ups11, to the increase in ADC values in the lumbar IVD9 or
high-velocity, short-amplitude thrust at L5-S1 level10. From a physiological point of view, diffusion of water within IVD has
been suggested as one mechanism of analgesia following manual mobilization/ manipulation2, but the complete mechanism is
still unknown.

Despite the exciting and innovative natures of the studies that explored simultaneously ADC in IVD and pain changes
after spinal mobilization/ manipulation in LBP patients, different methodological choices may have influenced the results
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and make it difficult to generalize to a real clinical setting. First, it consisted of prescribed mobilization/ manipulation in a
population, including LBP patients with heterogeneous chronicity and intensity of symptoms9. Second, only young patients
were included, with a mean around 35 years in a study9 and even younger (around 25 years) in the other10. Since Wu et al.12

showed that significant higher ADC values in young asymptomatic subjects (age <45 years) are observed at each IVD lumbar
level compared to elderly (age >45 years), studies including older subjects with chronic LBP are now necessary to generalize
the results previously observed. Third, ADC values were only computed in the IVD central portion, corresponding to the center
of the nucleus pulposus (NP). It is therefore also necessary to compute values in adjacent regions of the central portion of the
NP to be able to better understand the global physiological response of the nuclear part.

Today, a more pragmatic trial investigating the effect of spinal mobilizations on ADC of lumbar IVD, pain perception and
trunk mobility changes is needed. Indeed, altered general or segmental kinematic behavior of the trunk, whether restricted,
excessive, or linked to poor motor control, is associated with LBP13, 14 and their identification frequently guides the conservative
therapeutic approach14, 15. Therefore, we conducted a single arm, nonrandomized quasi-pragmatic pilot trial with the objective
to better understand the short-term effect of a unique PA mobilization technique on ADC of lumbar IVD, pain perception and
trunk mobility changes in subjects suffering from idiopathic acute LBP. Contrary to previous studies using DW MRI to assess
the physiological response of IVD from a single region of interest (ROI), ADC maps were computed in 9 ROIs in the NP and
correlations between ADC, pain perception and trunk mobility changes were also explored.

Methods
Subjects
A priori estimation of the sample size was carried out by using G*Power software (Version 3.1.9.2), with an α level (I) equal to
0.05 and β level (II) equal to 0.20, with a statistical power of 0.80. The estimation was made on the basis of the average results
obtained by Beattie et al.10 which have shown a significant increase of the ADC at the L1-L2 IVD (1.70±0.25 × 10−3mm2 s−1

versus 1.80±0.24 × 10−3mm2 s−1) after lumbar PA mobilization in young subjects with LBP with a low pain intensity. An
effect size dz of 0.41 was calculated for unilateral t test for paired samples and a correlation between the groups of 0.5. The
estimate of the total size of the sample data is 39 that means 20 subjects suffering from acute LBP, as each subject provides two
data.

This study was conducted on a sample of 16 adult patients (11 women and 5 men) suffering from acute idiopathic LBP
diagnosed by a physician, that were consecutively recruited from a private physical therapy practice (OMT Skills, La Louvière,
Belgium); age: 46±16 years (range: 26-85), height: 165.8±9 cm, weight: 73.4±17 kg, and body mass index: 26.6±4 kg m−2.
The inclusion and exclusion criteria of the subjects were similar to previous studies16, 17. Inclusion criteria were: be aged
between 20 to 85 years, suffering from acute LBP (< 6 weeks of pain), having 1 month without pain between the current and
previous episodes of LBP, subject must have had more days without pain than days with pain in the past year. Exclusion criteria
include: aversion to spinal manipulation, chronic LBP, radiating pain below the knees, spine fracture or surgery, osteoporosis,
pregnancy, implanted devices that could interact with the magnetic field of MRI, claustrophobia, obesity, alcohol or drug abuse,
mental illness or lack of cognitive ability.

The study protocol and the informed consent documents have been approved by the medical ethics committee of the
Université catholique de Louvain (2014/07AOU/419) – Belgian registration nr = B403201421675; reference number on
BioMed Central : ISRCTN16069685 DOI 10.1186/ISRCTN16069685. All research was performed in accordance with relevant
guidelines/regulations, and informed consent was obtained from all participants

General procedure
Before participation in the study, all procedures were explained to all subjects, and they signed an informed consent.

One of the investigators (R.F.) invited the subjects to complete a VAS for pain, a DN4 questionnaire, and a shortened
version of McGill Pain Questionnaire validated in French (Questionnaire Douleur Saint-Antoine, QDSA)18–20. QDSA has 58
word descriptors categorized into 16 subgroups, including 9 sensory groups and 7 affective groups. The subjects pick the word
descriptors and score them from 0 (not at all) to 4 (extremely). A sensory (QDSA-S), affective (QDSA-A), and total score
(QDSA-T) of QDSA was computed as the sum of A to I (/36), J to P (/28), and A to P items (/64), respectively. A second
investigator, blinded in relation to the first one’s evaluations, invited the subjects to evaluate their pain using an OAS and
performed various trunk mobility tests in standing posture: flexion [T F], extension [T E] and left and right lateral flexion [T LFl
and T LFr. A neuro-dynamic test in sitting posture, called slump test21 was also conducted.

A first MRI scan of the lumbar region of the subject was then carried out. After this scan, a spinal Maitland’s PA
mobilization22 was performed by another investigator (T.P.). The mobilization was realized in a consultation room, very
close to the scanner, and equipped with a classic medical examination table. A mechanical floor weighing scale (Seca 762,
Hamburg, Germany) was placed under the feet of OMPT to note the weight exerted and the change in weight exerted during
PA mobilization. At this point in time, neither of the two investigators were informed of the results of the initial imaging. To
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complete the data collection, a second MRI scan, identical to the first, was carried out on the subject, within an hour after the
spinal mobilization. After the second scan, pain ratings and trunk mobility tests were again performed by the two investigators.

Total time of the procedure was around 90 min, including 2 × 12 min for MRI, and 45 min for physical examination (pain
ratings and trunk mobility tests) and questionnaires (subjects were in sitting posture during around 35 min).

Physical examination and PA mobilization
The physical examination was done by the principal investigator (T.P.), a certified OMPT, with more than 30 years of experience.
It consisted of a complete orthopaedic manual therapy physical examination, inspired by Maitland’s physical examination22,
and aimed to collect information, first subjective (interrogation) and then objective (physical assets), to confirm the origin of the
lumbar pain symptoms of the subject. It also allowed the OMPT to reassess the subject after the spinal mobilization. During
trunk mobility tests (T F , T E, T LFl , and T LFr), a centimetric measure of major fingertip-to-floor distance was made before and
after mobilization.

For PA mobilizations, the OMPT chose: the location of force application on the spinous process(es), the components of
the movements and the grades (rhythm and amplitude) varying with his feelings and the evolution of the patient’s pain22, 23,
and duration of mobilizations, as during treatment at own office. Total duration of the mobilizations was timed, and primary
(more than half the total mobilization time) and secondary (less than half the time) locations of the applied forces on spinous
processes were gathered.

MRI acquisition
Two lumbar MRI scans were realized for each patient, one before and one after spinal mobilization. All sessions were conducted
at the same time of the day (6:00–8:00 PM) to control the diurnal variations of the fluid content in IVDs.

The procedure used for image acquisition is similar to the one described by Beattie et al.7. All images were obtained
using a 1.5 Tesla MRI scanner (MAGNETOM Symphony, Siemens AG, Munich, Germany) at the nuclear magnetic resonance
department of Grand Hôpital de Charleroi (Site of “Notre-Dame”, Charleroi, Belgium). Multi-element spine coils were used for
the T2-weighted and DW images. An abdominal coil was also used for the DW images. Subjects entered the scanner head first,
with the hips and knees flexed to approximately 30 degrees. Spin echo techniques were used to obtain T2-weighted sagittal and
axial views using the parameters described in Table 1. DW image parameters are also summarized in Table 1. For each slice,
DW imaging was obtained by applying diffusion gradients in 3 orthogonal directions and the mean ADC was constructed on
the basis of averages of signal intensity from 3 directional DW images7. The diffusion-weighting b-factor was 400 s mm−2,
regarded as the best combination of diffusion weighting and signal intensity7, 8, 10, 24.

A 3-level modified version7 of the grading system initially developed by Pfirrmann et al.25 was used to identify the presence
and extend of IVD degeneration. Intensity (brightness) and homogeneity of the T2 signal in the nuclear region of midsagittal
images was estimated for all IVDs. Hyperintense, homogenous, bright-white NP, with a clear distinction between the AF
and NP was graded as 1 (normal); inhomogenous, gray NP, that can be distinguished from the AF as 2 (intermediate); and
inhomogenous, gray or black NP, that can not be distinguished from the AF as 3 (hypointense). Each of the T2-weighted
images of all subjects were evaluated independently by one of the investigators (R.F.) and a radiologist, with more than 30
years of experience in the field of musculoskeletal system, to classify the IVDs and consensus between the 2 examiners was
used to address any disagreements in classification9.

Image analysis
Diffusion sequences were acquired to quantify the micro-movements of water molecules within the IVD of the lumbar spine.
ADC was computed and provides the image of the mobility of water molecules. Maps of the mean ADC were calculated on-line
by the MRI scanner with the standard software. After the images were obtained, the files were saved and transferred to a remote
workstation for analysis.

The interpretation of the images and the calculation of the ADC were achieved by the radiologist and one investigator (R.F.).
ADC measurements were conducted for each IVD in the sagittal medial (Figure 1c), and right and left parasagittal planes
(Figures 1b and 1d, respectively). The adequate position of the 3 section planes used for ADC measurements were verified by
linking them to a T2-weighted cross section passing through the IVD (Figure 1a).

The adequate position of half-height of each IVD of the lumbar spine on the ADC map was determined using a T2-weighted
cross section passing through the IVD.

ADC were computed from 9 specific ROIs (Figures 2a and b) of 0.2 cm2 surface that were selected respectively in the
anterior, middle and posterior portions of IVD along the sagittal medial (ROIs #2, #5, and #8) and parasagittal left (ROIs #1, #4,
and #7) and right planes (ROIs #3, #6, and #9). Mean of anterior ROIs #1 to #3 (ADCant), middle ROIs #4 to #6 (ADCmid),
posterior ROIs #7 to #9 (ADCpost ) were computed. Mean of ADCant , ADCmid , ADCpost was computed as ADCall .
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Table 1. T2- and DW parameters used for MRI. FoV: field of view; TE: echo time; TR: repetition time.

T2-weighted images

Slice group : 1
Slices : 13
Dist. Factor : 10%
Position : R6.3 A23.2 F21.5
Orientation : S >T2.1
Phase enc. Dir. : H>>F
Phase oversampling : 70%
Flip angle : 150 deg
Fat suppr. : none
water suppr. : none
Antennes : SP3 / SP4 / SP5

FoV read : 300 mm
FoV phase : 100.0%
Slice thickness : 4.0 mm
Base resolution : 384
Phase resolution : 75%
TR: 3500 ms
TE: 93 ms
Averages : 2
Concatenations : 1
Filter:
Distortion corr. (2D)
Coil elements : SP3-5

Diffusion-weighted images

Slice group : 1
Slices : 16
Dist. Factor : 10%
Position : R9.3 P11.6 F61
Orientation : S >T3.6
Phase enc. Dir. : A>>P
Phase oversampling : 34%
Fat suppr. : SPAIR
Antennes : SP2 / SP3 / SP4 / SP5

FoV read : 400 mm
FoV phase : 100.0%
Slice thickness : 4.0 mm
Base resolution : 192
Phase resolution : 80%
TR : 3500 ms
TE : 88 ms
Averages : 4
Filter : Distortion corr. (2D)
Coil elements : SP3-6

Statistical analyses
All statistical procedures were performed with SigmaPlot software (Version 11.0, Systat Software, San Jose, CA). A one-way
RM ANOVA was used to compare the VAS results between before and after the mobilization. A two-way RM ANOVA was
used to compare the centimetric data results for bending tests of flexion, extension and left and right lateral flexions and ADC
results in IVDs between before and after the mobilization.

All data are presented as means and SD and were checked for normality (Shapiro-Wilk) and equal variance tests. A two-way
(level × treatment) RM ANOVA with a post hoc Holm-Sidak method for pairwise multiple comparisons was performed and
used to examine the effect of the mobilization by PA pressures. The effect size (η2) was calculated as the sums of the squares
for the effect of interest (level, treatment and level × treatment) divided by the total sums of the squares. The significance level
α was set at 0.05 for all analyses and post hoc statistical power was calculated (SigmaPlot, Version 11.0, Systat Software, San
Jose, CA).

To determine whether ADCall correlates with clinical data of pain (VAS) and trunk mobility (T F , T E, T LFl and T LFr), a
PCA was performed with R software (FactoMineR and factoextra packages).

Intra-rater reliability of ADC measures realized between 2 sessions by R.F. investigator was determined at one year interval
for the paired measures at randomly selected IVD levels of 3 randomly selected subjects. The values obtained were exactly the
same, showing perfect intra-rater reliability and therefore not requiring the calculation of an intraclass correlation coefficient
(ICC).

Test-restest (relative) reliability of ADC measures between 2 MRI scans for one LBP subject (male, 33 years, 183 cm,
93 kg, pain duration: one week) was estimated using an ICC calculated using R software (irr package), based on a single
rater/measurement, absolute-agreement, two-way random effects model (ICC(2,1), see Shrout and Fleiss26). The subject was
sitting on an chair during 35 min between the 2 measures, and do not receive the lumbar mobilization intervention. Good to
excellent relative reliability results were observed with ICC ranging from 0.86 to 0.98.

Within-subject variability, or absolute reliability, attributable to repeated measures between 2 MRI scans, was assessed by
the standard error of measurement percent change (SEM%) calculated as (SEM/Mean) × 100, where SEM is the standard error
of measurement and Mean is the mean of all observations from the 2 scans. SEM was calculated as SD ×

√
1− ICC 7, where

SD is the standard deviation of the pooled measures of the 2 scans. SEM% results ranged from 2.1 to 4.7.
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Figure 1. T2-weighted MRI cross section at L4-L5 IVD and ADC mappings in sagittal medial and parasagittal planes.
Position of the 3 section planes are shown on T2 image (a) and their resultant ADC mappings in parasagittal right (b), sagittal
medial (c), and parasagittal left (d) planes.

Results

Classification of T2-weighted signal of nuclear region
Percentage of subjects for the 3 grades on the modified Pfirrmann grading system were: 0% for grade 1, 87.5% for grade 2, and
12.5% for grade 3 at L1-L2; 12.5%, 81.3%, and 6.2% at L2-L3; 18.8%, 75%, and 6.2% at L3-L4; 12.5%, 37.5%, and 50% at
L4-L5; 6.2%, 43.8%, and 50%, respectively, at L5-S1.

Clinical data
Mean±SD total duration of PA mobilizations was 639±102 s. Primary locations of PA mobilizations were applied at L1 (n=1),
L3 (n=3), L4 (n=7), and L5 (n=5) levels, and secondary locations were only applied on 3 subjects at T11 (n=1), L1 (n=1), and
L5 (n=1) levels. All subjects had a DN4 score <4, indicating the absence of neuropathic pain. Median (Q1–Q3) QDSA-T was
22 (18.5–26.5), QDSA-S was 13.5 (9.75–16.25), and QDSA-A was 10 (5.75–11.5).

VAS and OAS pain ratings were significantly reduced after mobilization with a very large effect size (Table 2). A mean±SD
reduction on VAS of 3.4±1.7 on 10 (62±25%) was observed. Mobility of the trunk, assessed by T F , T E, T LFl , and T LFr, was
significantly increased with medium to large effect sizes (Table 2). A mean reduction of major fingertip-to-floor distance of 6
cm was observed for T F , 5 cm for T E, 4 cm for T LFl , and 5 cm for T LFr.

Diffusion of water within discs
Mean ADC values before and after intervention, for the 9 ROIs at the 5 anatomical levels for anterior, middle, and posterior
portions of IVDs along the sagittal medial, and parasagittal left and right planes are presented in Figure 2.

A significant mean increase in ADCall values was observed after mobilization, with difference of means between 82.1
(change of 5.9%) and 160.7 × 10−6 mm2 s−1 (13.2%) (Tables 2 and 3). Similar significant results were observed in the
anterior (ADCant between 99.2 (8.8%) and 205.5 × 10−6 mm2 s−1 (20%)), middle (ADCmid between 71.1 (5%) and 151.8 ×
10−6 mm2 s−1 (16%)), and posterior portions of the IVD (ADCpost between 76.1 (6.0%) and 159.8 × 10−6 mm2 s−1 (20.1%)).
Significant differences in ADCall , ADCant , ADCmid , and ADCpost were observed at all anatomical levels, except L5-S1 (Table 3).
In addition, no significant difference was observed in ADCmid at L2-L3 (Table 3). The greatest ADCall changes were observed
at the L3-L4 and L4-L5 levels and were mainly explained by changes in ADCant and ADCpost (Table 3).
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Table 2. One-way RM ANOVA results for pain and trunk mobility. VAS: visual analogue scale; OAS: oral analogue scale; T F :
trunk flexion; T E: trunk extension; T LFl : lateral flexion left; T LFr: lateral flexion right; significant values are in bold.
Two-way RM ANOVA results for ADC, stratified according to IVD level and location. Results are expressed in units of 10−6

mm2 s−1. CI: confidence interval; ADCall mean of ADCant , ADCmid , and ADCpost ; ADCant : mean of anterior ROIs; ADCmid :
mean of middle ROIs; ADCpost : mean of posterior ROIs.

Before After F P-value Power Effect size (η2)

Mean±SD (95% CI) Mean±SD (95% CI)
Pain (on 10)
VAS 5.4±1.9 2.1±1.5 61.9 <0.001 1.000 0.510
OAS 5.5±1.6 2.3±1.7 61.8 <0.001 1.000 0.523
Mobility (cm)
T F 28±15 19±13 12.9 0.003 0.911 0.092
T E 62±5 57±6 13.2 0.002 0.919 0.199
T LFl 50±6 46±6 20.5 <0.001 0.991 0.157
T LFr 49±8 44±5 14.3 0.002 0.939 0.130

ADCall
Treatment 98.9 <0.001 1.000 0.026
Level 6.4 <0.001 0.971 0.208
Level × Treatment 5.7 <0.001 0.944 0.006
L1-L2 1437±233 (1188–1685) 1536±231 (1290–1781)
L2-L3 1477±196 (1268–1686) 1559±180 (1367–1751)
L3-L4 1333±315 (997–1668) 1493±297 (1177–1810)
L4-L5 1073±346 (705–1442) 1223±333 (869–1577)
L5-S1 1210±356 (830–1589) 1236±338 (876–1597)
ADCant
Treatment 83.8 <0.001 1.000 0.041
Level 3.9 0.007 0.755 0.143
Level × Treatment 4.2 0.005 0.796 0.008
L1-L2 1277±240 (1022–1533) 1377±248 (1112–1641)
L2-L3 1320±202 (1105–1535) 1445±190 (1243–1647)
L3-L4 1161±298 (844–1478) 1367±265 (1084–1649)
L4-L5 991±322 (649–1334) 1130±298 (812–1447)
L5-S1 1174±313 (841–1508) 1210±334 (854–1566)
ADCmid
Treatment 21.2 <0.001 0.992 0.014
Level 7.3 <0.001 0.988 0.226
Level × Treatment 4.8 0.002 0.874 0.465
L1-L2 1541±252 (1273–1809) 1612±241 (1355–1869)
L2-L3 1599±173 (1415–1783) 1644±175 (1458–1831)
L3-L4 1420±313 (1087–1755) 1567±274 (1275–1858)
L4-L5 1138±358 (757–1519) 1290±358 (909–1671)
L5-S1 1293±406 (860-1725) 1277±377 (876–1679)
ADCpost
Treatment 69.4 <0.001 1.000 0.022
Level 7.1 <0.001 0.984 0.219
Level × Treatment 1.9 0.121 0.264 0.006
L1-L2 1492±273 (1202–1783) 1618±243 (1359–1878)
L2-L3 1512±268 (1227–1797) 1588±229 (1344–1832)
L3-L4 1416±368 (1024–1808) 1547±365 (1158–1936)
L4-L5 1090±417 (646–1534) 1250±381 (844–1656)
L5-S1 1162±375 (763–1562) 1221±340 (859–1583)
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Figure 2. (a and b) Nine ROIs studied in each IVD. (c) Mean ADC values before and after intervention, for the 9 ROIs (#1 to
#9) at the 5 anatomical levels (L1-L2 to L5-S1). Anterior (ant.), middle (mid.) and posterior (post.) portions of IVDs along the
sagittal medial (M, ROIs #2, #5, and #8), parasagittal left (L, ROIs #1, #4, and #7) and right planes (R, ROIs #3, #6, and #9).
Values before the intervention are represented by the circles in the foreground and the ones after the intervention in the
background.

Relationships between clinical and ADC results
PCA results are presented in Figure 3. Both the Kaiser27 rule of eigenvalues greater than 1 (component 1=2.38, component
2=1.16, and component 3=1.07) and the scree plot28 of the percentage of explained variances by each of the components as a
percentage of the total variance (see Figure 3a) indicated that three-factor solution fit the data the best, explaining a cumulative
percentage of variance of 65.9%.

PCA results are summarized in 3 correlation circles, with variable contribution to the principal axes (‘contrib’) coded in
colors (Figures 3b to 3d). The main contribution of variables to dimension 1 were ∆T LFl , ∆T E, and ∆T LFr. Dimension 2
was mainly explained by ∆VAS and ∆T F , and dimension 3 by anatomical level, ∆ADCall , and ∆T F . ∆VAS was negatively
correlated with ∆T F (Figs. 3b and 3d) and ∆ADCall with anatomical level (Figs. 3c and 3d).

Discussion
The rationale for studying an acute LBP population was based on previous research findings that subjects with longer than
2-month symptoms durations did not respond as well to a manual therapy mobilization9. Second, even if MRI is a technique
capable of providing information both on the morphology of the IVD and on its molecular composition, it is desirable to direct
research effort toward characterizing changes that are linked directly to clinical symptoms29.

Our results support previous findings of a simultaneous pain reduction and increase of ADC in the NP of chronic LBP
subjects after PA lumbar mobilization9 but provide new data concerning the acute phase of disease, and trunk mobility in an
older population with higher pain intensity levels. Beattie et al.9 were the first to explore the short-term effect of oscillating PA
pressures to the lumbar spinous processes followed by prone press-ups exercises in chronic LBP subjects on pain intensity
and water diffusion within NP of IVD. They observed two subgroups: “within-session responders” and “not-within-session
responders”, based on a reduction of pain of at least 2/10 within-session or not. No attempt was made to separate our sample
into “within-session responders” and “not-within-session responders” since its small size and that only 4 subjects show a pain
reduction of less than 2/10, sometimes combined with a large increase in ADC values.

Mean age of our population was 46 years with a pain intensity at baseline of 5.4/10 on VAS. The mean age of the population
studied by Beattie et al.9 was 26 years with an average pain intensity on a typical day of 3.7/10 on the 11-point numeric rating
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Table 3. Post hoc results of two-way RM ANOVA for ADC, stratified according to IVD level and location. Difference of
means (in units of 10−6 mm2 s−1) and mean change (%) in ADC after mobilization. CI: confidence interval; ADCall mean of
ADCant , ADCmid , and ADCpost ; ADCant : mean of anterior ROIs; ADCmid : mean of middle ROIs; ADCpost : mean of posterior
ROIs; significant values are in bold.

Difference Change (95% CI) t P-value

ADCall
L1-L2 89.9 7.2 (5.3–9.1) 4.3 <0.001
L2-L3 82.1 5.9 (3.2–8.6) 3.6 <0.001
L3-L4 160.7 13.2 (8.7–17.7) 7.0 <0.001
L4-L5 149.9 16.0 (9.6–22.3) 6.6 <0.001
L5-S1 26.5 4.1 (-2.4–10.6) 1.2 0.250

ADCant
L1-L2 99.2 8.8 (3.3–14.2) 3.3 0.001
L2-L3 124.9 10.0 (5.9–14.1) 4.2 <0.001
L3-L4 205.5 20.0 (13.3–26.8) 6.8 <0.001
L4-L5 138.2 16.6 (7.5–25.6) 4.6 <0.001
L5-S1 35.7 3.9 (-3.0–10.8) 1.2 0.238

ADCmid
L1-L2 71.1 5.0 (2.5–7.6) 2.1 0.038
L2-L3 45.3 3.0 (0.5–5.5) 1.3 0.182
L3-L4 145.7 11.6 (6.1–17.0) 4.3 <0.001
L4-L5 151.8 16.0 (5.0–26.9) 4.5 <0.001
L5-S1 15.4 1.1 (-7.2–9.4) 0.5 0.674

ADCpost
L1-L2 126.3 9.3 (4.0–14.6) 4.2 <0.001
L2-L3 76.1 6.0 (1.4–10.6) 2.5 0.013
L3-L4 131.0 10.1 (5.2–15.1) 4.3 <0.001
L4-L5 159.8 20.1 (7.5–32.6) 5.3 <0.001
L5-S1 59.1 8.6 (-0.9–18.1) 1.9 0.053

scale. The difference in pain intensity between the two studies could not be explained by gender differences, since 9/12 (75%)
subjects in the “within-session responders” group of Beattie’s study were female and 11/16 (69%) in ours. On the other hand, a
difference in body mass index (BMI) could explain it, since higher values are associated with higher pain intensity levels in
patients with LBP30, 31. A mean lower value of 21.0 kg m−2 was observed in “within-session responders” of Beattie’s study
compared to 26.6 in ours.

The 62% mean reduction in pain following PA mobilization is higher than that reported in previous investigations, with a
mean decrease ranging between 33 and 41%, when mobilization was applied: on the most painful lumbar level, at a random
lumbar level, or even at painful lumbar level and all other lumbar levels32–34. A potential explanation of this difference may the
lower homogeneity of the patient’s groups of previous investigations that include LBP subjects with too long pain symptoms
duration: up to 3 months34, more than 6 months32, and even up to 60 months33.

Normal IVD is considered as a poorly innervated organ, since its innervation is restricted to the outer layers and consists
of small nerve fibers and some large fibers forming mechanoreceptors. Nerve fibers accompany the blood vessels or arrive
via independent ways: branches of sinuvertebral nerve, nerve branches from the ventral rami of spinal nerves, or gray rami
communicantes35. IVD could also receive nerve branches from the anterior and posterior longitudinal ligaments35. In contrast,
in degenerative IVD, Coppes et al.36 demonstrated a more important and profound innervation compared to normal discs.
Furthermore, nociceptive properties of at least some of these nerves are strongly suggested by their immunoreactivity for
substance P. These observations are used to defend the hypothesis of the existence of discogenic pain, in degenerative IVDs. By
definition, discogenic pain is a pain due to a mechanical or chemical irritation of nerves innervating the IVD. Based on our
results and those of Beattie and colleagues7–10, we believe that the simultaneous reduction in pain observed in patients and
increase of the water diffusion within IVD is not an epiphenomenon linked to mobilization, and that, on the contrary, these two
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Figure 3. (a) Scree plot of percentage of explained variances after PCA. (b) PCA results: correlation circle for dimensions 1
and 2. (c) PCA results: correlation circle for dimensions 1 and 3. (d) PCA results: correlation circle for dimensions 2 and 3.

physiological events would be intimately related, directly or indirectly. It is not inconsistent to speculate that an increased water
diffusion would lead to a re-expansion of the IVD and therefore reduce the mechanical stresses on the large mechanoreceptors
nerve fibers. Furthermore, increasing the speed of the water and blood flow in the IVD could decrease local inflammatory
process and thus the pain.

On one side, it is accepted that onset of the disc degeneration process start to occur in the third decade of life, with
dehydration of the NP and changes in the molecular structures of its components37. On the other side, a link exists between
water diffusion in NP, estimated by ADC, and visual degeneration of lumbar IVD, using Pfirrmann’s grading system38.
Surprisingly, a reduction in ADC values of 4% was observed between normal and moderately degenerated discs but severely
degenerated discs showed 5% larger ADC values than normal discs, presumably due to free water in cracks and fissures in
the degenerated NP of those discs38. After a spinal thrust, LBP subjects with fewer lumbar degenerated discs showed better
increased in ADC values than those with many10. Here, the majority of IVD graded as moderately degenerated for more cranial
anatomical levels and as severely degenerated for more caudal levels, and ADC changes were higher at more cranial levels
compared to caudal, with non significant changes at L5-S1.

To our knowledge, changes in trunk mobility have never been studied concurrently with changes in pain and water diffusion
within NP. Even if the assessment of trunk mobility is a strong point of our protocol, a potential bias is that the investigator
that assess trunk mobility was not blinded to if PA had been performed or not. Using a principal component analysis (PCA),
several novel and important observations were made about the relationships between changes in pain, trunk mobility and water
diffusion. First, a negative correlation between changes in pain and changes in trunk flexion was observed, but not with changes
in extension and lateral flexions. Second, a negative correlation between changes in water diffusion and lumbar anatomic levels
was observed. In line with previous findings, the mobility of trunk in extension39–41 and in flexion40 improved significantly
after PA mobilization. However, some studies failed to report significant increase in trunk extension32, 33 and flexion39. We
show a significant increase of 29.9±23% for trunk flexion, 8.1±8% for trunk extension, 9.9±8% for left lateral trunk flexion,
and 8.9±8% for right lateral trunk flexion. The significant mean change of 9 cm we observed for major fingertip-to-floor
distance during trunk flexion after PA mobilization in our acute population, was greater than the significant mean change of
2.7 cm reported by Goodsell et al.33 in chronic subjects. In contrast to the non-significant mean change of 0.3 and 0.12 cm
for right and left lateral trunk flexions reported by Samir et al.42 in chronic subjects after PA mobilization, we observed a
significant mean change of 5 and 4 cm. Our results suggest that trunk mobility improvements after PA mobilizations could
be more important in acute subjects than chronic. However, fingertip-to-floor method measures total forward, backward, and
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lateral bending movements, including movement of the spine, hips, and pelvis. This method does not allow to specify at which
level mobility changes occur.

Although the use of DW MRI in humans has mainly been applied to the central nervous system and in particular the brain,
more recently, this method has become increasingly successful in the musculoskeletal system and has led to a broadening of
knowledge both in diagnosis and intervention, using the ADC. ADC values were determined in 80 lumbar IVDs, from L1-L2
to L5-S1 levels. An increase in ADCall of 7.2% was observed for L1-L2; 5.9% for L2-L3; 13.2% for L3-L4; 16.0% for L4-L5
and 4.1% for L5-S1. Beattie et al.9 observed a mean ADC increase of 4.2% within L5-S1 IVD in ‘immediate responder’ group
(n=10) after PA mobilization. At all anatomical levels, change in ADCall values were greater than SEM% of 2.1 observed on
one subject after 10 minutes of prone lying, which is compatible to the SEM values reported by Beattie et al.8 on 24 subjects
after 10 minutes of prone lying and ranging from -3.5 to 3.4%. Therefore, ADCall changes observed after PA mobilization
must be considered as real changes linked to mobilization and not to measurement errors. Even if has been long established
that the IVD is one of the largest avascular anatomical structure in the body29, it nevertheless remains a living structure that
requires convection and diffusion mechanisms to ensure nutrition. Diffusion is defined as the movement of matter driven by a
concentration gradient and convection is described as the bulk movement of fluids43. It is generally believed that diffusion
is the main transport mechanism for small solutes with convection playing a more important role in the transport of larger
solutes43. DW images provide a characterization of water transport under the combined influence of diffusion and convection.
An increase of diffusion/convection in the NP is thought to be beneficial, while decreased diffusion/convection has been linked
with degeneration. Diffusion of water within the IVD is influenced by pressure gradients and chemical forces acting on it, as
well as structural barriers such as a nuclear “cleft”. Pressure gradients within IVD could be influenced by externally applied
forces, such as those generated by manual therapy techniques10, 44, 45. We hypothesize that diffusion of water could be related to
opening-closure mechanism of IVD. This mechanism has been observed in vivo by Kulig et al.46, when applying a PA pressure
at the lumbar spine. A pressure applied at a given vertebral level results in an extension movement (opening) at this level and
on the upper level, and on the contrary a movement of flexion (closure) on the lower level.

Correlations were previously described between anatomical levels and ADC values but findings were inconsistent. Some
studies show that ADC values increase significantly with more caudal IVDs3, 24, decrease significantly with more caudal
IVDs47, or even are not significantly correlated with IVD levels38. In a more recent study12, the influence of age on these
relationships was observed, with ADC mean values for young subjects (<45 years) increasing from L1-L2 to L2-L3/ L3-L4
levels and decreasing to more caudal levels, and decreasing continuously for elderly subjects (>45 years). Furthermore, static
traction was associated with an increase in diffusion of water within the L5-S1 IVDs of middle-age individuals, but not in
young adults, suggesting age-related differences in the diffusion response48. Here, PCA results show that ADCall values tend to
decrease with more caudal IVDs.

Today, there is a paucity of research that describes the physiologic events associated with analgesia following intervention
for LBP10. Since ADC is a measure of the magnitude of random (Brownian) diffusion motion of water molecules, it provides
information about the physiologic state of the NP. Previous studies estimate ADC of NP with only one ROI. Here, ADCall was
estimated from the mean of anterior, middle, and posterior portions of the NP, which were themselves estimated based on the
mean of 3 ROIs (sagittal medial, and left and right parasagittal planes). We believe that our method is more representative of a
physiological/ physiopathological process of the entire NP than measures based on a single ROI analysed in the mid-sagittal
scan, since pathologically relevant disc measurements may be observed in parasagittal or other planes49.

Greatest changes in ADCall were observed at L3-L4 and L4-L5 levels, and are mainly explained by changes in ADCant and
ADCpost . Note that PA mobilizations were applied between L3 and L5 in 15 subjects on 16. Since ADCant and ADCpost were
greater than ADCmid changes, and taken together with pain decrease, our results suggest that increased peripheral random motion
of water molecules in nucleus pulposus is implicated in the modulation of the IVD nociceptive response. This observation is all
the more important since nerve fibres have been identified in the NP of degenerated IVDs50, which may still be more likely
to be able to generate an efficient reduction of pain than healthy IVDs that are usually thought to be innervated only in the
annular part. Therefore, it would be interesting to study the influence of these mobilizations, both in nucleus pulposus and
annulus fibrosus, according to the 3 orthogonal directions of space (x,y,z) rather than using an average value of ADC. Pure
water, for the purposes of diffusion is said to be isotropic; this means that the molecules are equally likely to diffuse in any
direction. In a biological tissue like the NP, there may be a preferential diffusion direction, along collagen fibers, and diffusion
is said anisotropic. Our methodology does not allow to study the anisotropic character of water diffusion within NP. This latter
has already been observed previously within lumbar IVDs on healthy young adults3, with ADCz (diffusion perpendicular to
the end-plate) values higher than ADCx and ADCy (diffusion in the disc plane). Very recently, a promising T2-weighted MRI
method based on the location of the signal intensity weighted centroid, i.e. the arithmetic mean of the signal intensity of all
pixels in a ROI, was developed as a biomarker for investigating fluid displacement within the disc51. It would be interesting to
apply this method to our images.

From L1-L2 to L5-S1 IVD levels, the mean NP length in the sagittal plane is comprised between 19.3±2.9 and 21.6±3.1 mm,
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and height between 5.5±1.1 and 8.6±1.3 mm52. The method used here was based on the use of ROIs always having a circular
surface area of 0.2 cm2, either a diameter of 5 mm, resulting in a total surface area of 15 mm long (anterior, middle, and posterior
ROIs) by 5 mm high in the sagittal and the two parasagittal planes. Elliptical surfaces of varying dimensions, ranging from 40
and 80 mm2, have been used by others24, 47, 53, forcing the observers to place the large axis in the ventro-dorsal direction and the
small axis in the cranio-caudal direction. The risk of using surfaces up to 80 mm2 is to include the most internal part of the AF
in the calculation of the ADC.

This study was limited by the absence of a T1-weighted MRI sequence in order to estimate vertebral endplate signal changes
and classify it according to their levels of degeneration54. Indeed, there is strong evidence that vertebral endplate structural
changes are associated with non-specific LBP but it may be present in individuals without LBP55. Since the main and most
important pathway for diffusion into the NP occurs from capillaries in the vertebral body via diffusion through the cartilaginous
endplate56, another limitation is the lack of evaluation of vertebral endplate morphology. As described by Lakshmanan et al.57,
concavity of the lumbar endplates is symmetrical in the frontal plane but shape shows considerable variability in the sagittal
plane (flat, oblong or ex-centric), with inferior endplate shape becoming more ex-centric, i.e. location of the concavity apex in
the posterior half of endplate (54–60% endplate diameter), from L3 to L5 levels. At these levels, significant ADC changes were
observed within NP, corresponding approximately to the center or apex of the endplate, suggesting that the mechanical stimuli
induced by PA mobilization may have a direct influence on vertebral endplates. By the way, permeability across the cartilage
end plate is greater in the central portion, adjacent to the NP, than at the periphery, near the AF58. Finally, no attempt was made
to assess subject’s functional disability; the Oswestry Disability Index59, considered as the gold standard for measuring degree
of disability and estimating quality of life in a subject with LBP, could have been realized to complete the clinical picture of our
sample.
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