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2 
 

Abstract 23 

In recent years, copy number (CN) variation has emerged as a new and significant source of 24 

genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are 25 

defined as genetic loci that, due to duplication and deletion, vary in their number of copies across 26 

individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, 27 

can influence gene activity, and are associated with a wide range of phenotypes in diverse 28 

organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce 29 

CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how 30 

they can contribute to genetic and phenotypic diversity in fungal populations, and consider how 31 

CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, 32 

we focus on reviewing recent work investigating the contribution of changes in CN of 33 

fermentation-related genes associated with the adaptation and domestication of yeast wine strains 34 

and offer notable illustrations of such changes, including the high levels of CN variation among 35 

the CUP genes, which confer resistance to copper, and the preferential deletion and duplication 36 

of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and 37 

sucrose. Based on the available data, we propose that CN variation is a substantial dimension of 38 

yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As 39 

such, CN variation harbors considerable potential for understanding and manipulating yeast 40 

strains in the wine fermentation environment and beyond.  41 
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Introduction 42 

Genetic variation in natural populations is shaped by diverse biological processes, such as 43 

genetic drift and natural selection (Chakravarti, 1999), and is, in part, responsible for phenotypic 44 

variation. For example, arginine auxotrophy in the baker’s yeast Saccharomyces cerevisiae is a 45 

Mendelian inherited trait due to polymorphisms in the ARG4 locus (Brauer et al., 2006), whereas 46 

variation in S. cerevisiae colony morphology is a complex trait driven by variants in several 47 

different genes (Taylor et al., 2016). The aforementioned yeast phenotypes are all caused by 48 

SNPs or small insertions and deletions, which are by far the most well characterized types of 49 

genetic variation not only in yeast, but in any kind of organism (McNally et al., 2009; 50 

Sachidanandam et al., 2001; Schacherer et al., 2009). In recent years, however, several studies in 51 

diverse organisms have revealed that genomes also harbor an abundance of structural variation, 52 

which too contributes to populations’ genetic and phenotypic diversity (Stranger et al., 2007; 53 

Zhang et al., 2009).  54 

 55 

Variation in the structure of chromosomes, or structural variation, encompasses a wide array of 56 

mutations including insertions, inversions, translocations, and copy number (CN) variants (i.e., 57 

duplications and deletions) (Feuk et al., 2006) and, in humans, accounts for an estimated average 58 

of 74% of the nucleotide differences between two genomes (Rahim et al., 2008). The major 59 

influence of several types of structural variation, such as large-scale inversions, translocations, 60 

and insertions, on phenotype is better understood because many such variants can be 61 

microscopically examined and lead to classic human genetic disorders, such as Down’s 62 

syndrome (Gu et al., 2016; Rausch et al., 2012; Youings et al., 2004). In contrast, many CN 63 
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variants are submicroscopic and eschewed attention until the advent of whole genome 64 

sequencing technologies (Feuk et al., 2006). 65 

 66 

CN variants are defined as duplications or deletions that range from 50 base pairs to whole 67 

chromosomes (Figure 1) and can significantly influence phenotypic diversity (Arlt et al., 2014; 68 

Zhang et al., 2009). For example, in humans, the CN of the salivary amylase gene, AMY1, is 69 

higher in populations with high-starch diets and correlated with salivary protein abundance 70 

thereby improving digestion of starchy foods (Perry et al., 2007). Levels of CN variation have 71 

been examined in diverse organisms across the tree of life, including animals (e.g., Humans; 72 

Homo sapiens: Sudmant et al., 2015, House mouse; Mus musculus: Pezer et al., 2015), plants 73 

(e.g., soybean; Glycine max: Cook et al., 2012, maize; Zea mays: Swanson-Wagner et al., 2010) 74 

and fungi (e.g., Cryptococcus neoformans: Hu et al., 2011, Batrachochytrium dendrobatidis: 75 

Farrer et al., 2013, Zymoseptoria tritici: Hartmann and Croll, 2017).  76 

 77 

S. cerevisiae has been an important model for genetics, genomics and evolution (Botstein et al., 78 

1997; Goffeau et al., 1996; Winzeler et al., 1999). Much of what we know about the evolutionary 79 

history of S. cerevisiae stems from investigating genome-wide patterns of SNPs among globally 80 

distributed strains. Examination of genome-wide patterns of SNP variation has yielded valuable 81 

insights into yeast function in the wine fermentation environment. For example, 13 SNPs in 82 

ABZ1, a gene associated with nitrogen biosynthetic pathways, have been shown to modify the 83 

rate of fermentation and nitrogen utilization during fermentation (Ambroset et al., 2011).  84 

 85 
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Interrogations of genome-wide patterns of SNPs have also shown that industrial clades – 86 

including those of beer, bread, cacao, sake, and wine – often mirror human history (Cromie et al., 87 

2013; Gallone et al., 2016; Gonçalves et al., 2016; Schacherer et al., 2009; Sicard and Legras, 88 

2011), suggesting that human activity has greatly influenced S. cerevisiae genome evolution 89 

(Yue et al., 2017). Furthermore, SNP-based studies have repeatedly found that wine strains of S. 90 

cerevisiae exhibit low levels of genetic diversity (Borneman et al., 2016; Cromie et al., 2013; 91 

Liti et al., 2009; Schacherer et al., 2009; Sicard and Legras, 2011), consistent with a historical 92 

population bottle-neck event that reduced wine yeast genetic variation. The low SNP diversity 93 

among wine yeast strains has led some to suggest that wine strain development may benefit from 94 

the introduction of genetic variation from yeasts outside the wine clade (Borneman et al., 2016). 95 

However, recent studies examining CN variation among wine associated strains of S. cerevisiae 96 

have identified considerable genetic diversity (Gallone et al., 2016; Gonçalves et al., 2016; 97 

Steenwyk and Rokas, 2017), suggesting that standing CN variation in wine strains may be 98 

industrially relevant. 99 

 100 

In the present review, we begin by surveying the molecular mechanisms that lead to CN variant 101 

formation, we next discuss the contribution of CN variation to the genetic and phenotypic 102 

diversity in fungal populations, and close by examining the CN variation in wine yeasts and the 103 

likely phenotypic impact of CN variants in the wine fermentation environment.  104 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/233122doi: bioRxiv preprint 

https://doi.org/10.1101/233122
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

Copy number variation and the molecular mechanisms that 105 

generate it 106 

Copy number (CN) variants, a class of structural variants, are duplicated or deleted loci that 107 

range from 50 base pairs (bp) to whole chromosomes in length (Figure 1) and have a mutation 108 

rate 100-1,000 times greater than SNPs (Arlt et al., 2014; Sener, 2014; Zhang et al., 2009). CN 109 

variable loci can in turn be broken down into three subclasses (Figure 1) (Estivill and Armengol, 110 

2007). The first subclass encompasses variants that originate via duplications; in the genome, 111 

these can appear as either identical or nearly identical copies, or multi-allelic CN variants (Bailey 112 

and Eichler, 2006; Usher and McCarroll, 2015). The extreme version of this subclass are 113 

chromosomal CN variants that correspond to duplications of entire chromosomes. The second 114 

subclass encompasses CN variants that originate via deletion leading to the loss of the sequence 115 

of a locus in the genome. The third subclass includes complex CN variants where a locus 116 

exhibits a combination of duplication, deletion, insertion, and inversion events (Usher and 117 

McCarroll, 2015).  118 

 119 

CN variants are commonly generated from aberrant DNA repair via three mechanisms: 120 

homologous recombination (HR), non-homologous repair (NHR), and environmental stimulation 121 

(Figure 2) (Hastings et al., 2009b; Hull et al., 2017). HR is a universal process associated with 122 

DNA repair and requires high sequence similarity across 60 - 300 bps (Hua et al., 1997; 123 

Petukhova et al., 1998). HR is initiated by double-strand breaks caused by ionizing radiation, 124 

reactive oxygen species, and mechanical stress on chromosomes such as those associated with 125 

collapsed or broken replication forks (Aylon and Kupiec, 2004; Hastings et al., 2009b; Khanna 126 

and Jackson, 2001). Improper repair by HR can result in duplication, deletion, or inversion of 127 
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genetic material (Reams and Roth, 2015). Non-allelic HR (also known as ectopic 128 

recombination), defined as recombination between two different loci of the same or different 129 

chromosomes that share sequence similarity and are ≥300 base pairs in length, is among the most 130 

well-studied examples of improper repair (Kupiec and Petes, 1988; Prado et al., 2003). Most 131 

evidence of non-allelic HR resulting in CN variation is directly associated with low copy repeats 132 

or transposable elements (Hurles, 2005; Xu and Boeke, 1987). For example, a duplication and 133 

deletion may result during unequal crossing over of homologous sequences (Figure 2a) 134 

(Carvalho and Lupski, 2016). Improper HR may also occur at collapsed or broken replication 135 

forks by break-induced replication (BIR) (Figure 2b). BIR requires 3’ strand invasion at the 136 

allelic site of stalled replication to properly restart DNA synthesis (Figure 2bi) (Llorente et al., 137 

2008), however, template switching, the non-allelic pairing of homologous sequences, in the 138 

backward (Figure 2bii) or forward (Figure 2biii) direction can result in a duplication or deletion, 139 

respectively (Morrow et al., 1997; Smith et al., 2007). Although HR occurs with high fidelity, 140 

errors in the process, which are thought to increase in frequency during mitosis and meiosis, can 141 

generate CN variants (Hastings et al., 2009b). 142 

 143 

In contrast to HR, NHR utilizes microhomologies (typically defined as ~65% or more sequence 144 

similarity of short sequences up to ten bases long) or does not require homology altogether, and 145 

can too lead to CN variant formation (Daley et al., 2005; McVey and Lee, 2008). NHR can occur 146 

by two mechanisms: non-replicative and replicative (Hastings et al., 2009b). Non-replicative 147 

mechanisms include non-homologous end joining and microhomology-mediated end-joining 148 

(Lieber, 2008; McVey and Lee, 2008). Non-homologous end-joining refers to the direct ligation 149 

of sequences in a double-strand break (Daley et al., 2005). Prior to ligation, there may be a loss 150 
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of genetic material or the addition of free DNA (e.g., from transposable elements or 151 

mitochondrial DNA) (Yu and Gabriel, 2003). Microhomology-mediated end joining is similar to 152 

non-homologous end-joining but occurs more frequently, requires different enzymes, and 153 

leverages homologies 1-10 base pairs in length to ensure more efficient annealing (Lieber, 2008; 154 

Yu et al., 2004). Non-homologous end-joining and microhomology-mediated non-homologous 155 

end-joining are primarily associated with small insertions and deletions and therefore are not 156 

likely to be a major driver of CN variation (Gu et al., 2008; Yu and Gabriel, 2003). Replicative 157 

mechanisms of CN variant formation include replication slippage, fork stalling, and 158 

microhomology BIR. Replication slippage occurs along repetitive stretches of DNA resulting in 159 

the duplication or deletion of sequence between repetitive regions (Hastings et al., 2009b). Fork 160 

stalling is thought to cause large CNVs of 20 kb average length through template switching 161 

between distal replication forks rather than within a replication fork (Slack et al., 2006). 162 

However, fork stalling without distal template switching can also be highly mutagenic and 163 

induce CN variants (Hull et al., 2017; Paul et al., 2013). Lastly, microhomology-mediated break-164 

induced replication occurs when the 3’ end of a collapsed fork anneals with any single-stranded 165 

template that it shares microhomology with to reinitiate DNA synthesis (Figure 2b) (Hastings et 166 

al., 2009b). Annealing can occur in the backward (Figure 2bii) or forward (Figure 2biii) direction 167 

of the allelic site causing a duplication or deletion, respectively, and is thought to be the primary 168 

cause of low copy repeats (Hastings et al., 2009a). 169 

 170 

The third mechanism is associated with an epigenetic mark that can stimulate the formation of 171 

CN variants. Histone acetylation, specifically H3K56ac, is, in part, environmentally driven 172 

(Turner, 2009), associated with highly transcribed loci, and can promote CN variant formation 173 
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through repeated fork stalling or template switching (Figure 2c) (Hull et al., 2017). For example, 174 

it has been shown that exposure to environmental copper stimulates the generation of CN 175 

variation in CUP1, a gene that is associated with copper resistance when duplicated (Fogel and 176 

Welch, 1982), thereby increasing the likelihood of favorable alleles that exhibit increased copper 177 

resistance (Hull et al., 2017). Similarly, environmental formaldehyde exposure was shown to 178 

stimulate CN variation (Hull et al., 2017) of the SFA1 gene, which confers formaldehyde 179 

resistance at higher CNs (Wehner et al., 1993). Altogether, these experiments provide insight to 180 

how perturbations of an environmental parameter may stimulate CN variation at a locus 181 

important to adaptation in the new environment (Hull et al., 2017).  182 

 183 

Copy number variation as a source of phenotypic diversity 184 

CN variants can have multiple effects on gene activity, such as changing gene dosage (i.e., gene 185 

CN; Figure 3) and interrupting coding sequences (Itsara et al., 2009; Sener, 2014). These effects 186 

can be substantial; for example, 17.7% of gene expression variation in human populations can be 187 

attributed to CN variants (Stranger et al., 2007). Furthermore, changes in human gene expression 188 

attributed to CN variants have little overlap with changes in gene expression caused by SNPs, 189 

suggesting the two types of variation independently affect gene expression (Stranger et al., 190 

2007). Additionally, gene CN tends to correlate with levels of both gene expression and protein 191 

abundance (Henrichsen et al., 2009; Perry et al., 2007; Stranger et al., 2007). For example, 192 

changes in gene expression and therefore protein abundance caused by chromosomal CN 193 

variation in human chromosome 21 are thought to contribute to Down syndrome (Aivazidis et 194 

al., 2017; Kahlem et al., 2004).  195 
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 196 

Copy number variation as a source of genetic and phenotypic 197 

diversity in fungal populations  198 

CN variant loci contribute to population genetic and phenotypic diversity (Box 1), such as 199 

virulence (Farrer et al., 2013; Hu et al., 2011b), in diverse fungal species, including as the 200 

baker’s yeast Saccharomyces cerevisiae (ASCOMYCOTA, Saccharomycetes) (Gallone et al., 201 

2016; Gonçalves et al., 2016; Steenwyk and Rokas, 2017), the fission yeast 202 

Schizosaccharomyces pombe (ASCOMYCOTA, Schizosaccharomycetes) (Jeffares et al., 2017), 203 

the human fungal pathogen Cryptococcus deuterogattii (BASIDIOMYCOTA, Tremellomycetes) 204 

(previously known as Cryptococcus gattii VGII; Steenwyk et al., 2016) and C. neoformans (Hu 205 

et al., 2011b), the amphibian pathogen Batrachochytrium dendrobatidis 206 

(CHYTRIDIOMYCOTA, Chytridiomycetes) (Farrer et al., 2013), and the wheat pathogen 207 

Zymoseptoria tritici (ASCOMYCOTA, Dothideomycetes) (Hartmann and Croll, 2017). 208 

 209 

Importantly, the degree of CN variation (which can be represented by CN variable base pairs per 210 

kilobase) in fungal populations is not always correlated to the degree of SNP variation (which 211 

can be represented by SNPs per kilobase) (Figure 4a). For example, there is no correlation 212 

between CN variable base pairs per kilobase and SNPs per kilobase among S. cerevisiae wine 213 

strains (Steenwyk and Rokas, 2017) and a population of Cryptococcus deuterogattii (Steenwyk 214 

et al., 2016). Interestingly, both populations harbor low levels of SNP diversity; for S. cerevisiae 215 

wine strains this is due to a single domestication-associated bottleneck event (Cromie et al., 216 

2013; Liti et al., 2009; Schacherer et al., 2009; Sicard and Legras, 2011), whereas for C. 217 
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deuterogattii this is because the samples stem from three clonally evolved subpopulations from 218 

the Pacific Northwest, United States (Engelthaler et al., 2014). In contrast, a significant 219 

correlation is observed between CN variable base pairs per kilobase and SNPs per kilobase 220 

among individuals in a globally distributed population of S. pombe (Jeffares et al., 2015). 221 

 222 

The proportion of the genome exhibiting CN and SNP variation also varies across S. cerevisiae, 223 

S. pombe, and C. deuterogattii populations. For example, CN variable base pairs per kilobase are 224 

significantly different between the three populations (Figure 4b), with the fraction of CN variable 225 

base pairs per kilobase being greatest in S. cerevisiae, followed by C. deuterogattii, and then S. 226 

pombe. In contrast, the S. cerevisiae population has fewer SNPs per kilobase compared to S. 227 

pombe but more SNPs per kilobase compared to C. deuterogattii (Figure 4b). 228 

 229 

How CN variants influence gene expression and phenotype in fungi is not well known. 230 

Examination of the contribution of CN variants to gene expression and phenotypic variation in S. 231 

pombe shows that partial aneuploidies (i.e., large CN variants) influence both local and global 232 

gene expression (Chikashige et al., 2007); in addition, CN variants are positively correlated with 233 

gene expression changes (rs = 0.71; p = 0.01; Spearman rank correlation; reported in Jeffares et 234 

al., 2017). Genome-wide association analyses of numerous phenotypes in S. pombe showed that 235 

structural variants accounted for 11% of phenotypic variation (CN variants accounted for 7% of 236 

that variation and rearrangements for 4%; Jeffares et al., 2017). The phenotypes significantly 237 

influenced by CN variants included growth rate, growth in various free amino acids (e.g., 238 

tryptophan, isoleucine), growth in the presence of various stressors (e.g., hydrogen peroxide, 239 

ultraviolet radiation, minimal media), and sugar utilization in winemaking (Jeffares et al., 2017). 240 
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 241 

Although more studies are needed, these findings argue that CN variation may be a substantial 242 

contributor to the total genetic and phenotypic variation of fungal populations. Additionally, the 243 

variation in the correlation between CN and SNP variation across fungal populations (Figure 4) 244 

suggests that levels of SNP variation are not always a good proxy for levels of CN variation. 245 

 246 

Copy number variation and its impact on wine yeast adaptation in 247 

fermentation-related processes  248 

During the wine making process, S. cerevisiae yeasts are barraged with numerous stressors such 249 

as high acidity, ethanol, osmolarity, sulfites, and low levels of oxygen and nutrient availability 250 

(Marsit and Dequin, 2015). Not surprisingly, S. cerevisiae strains isolated from wine making 251 

environments tend to be more robust to acid, copper, and sulfite stressors than yeasts isolated 252 

from beer and sake environments (Gallone et al., 2016). These biological differences are, at least 253 

partially, explained by variants, including CN variants, found at different frequencies or uniquely 254 

in wine yeasts. Below, we discuss what is known about the CN profile of genes from S. 255 

cerevisiae wine yeast strains associated with these stressors that may reflect diversity in stress 256 

tolerance or metabolic capacity and efficiency (Figure 5). 257 

 258 

CN variable genes related to stress 259 

Many of the CN variable genes that have been identified among wine strains of S. cerevisiae 260 

(Gallone et al., 2016; Gonçalves et al., 2016; Ibáñez et al., 2014; Steenwyk and Rokas, 2017) are 261 

associated with fermentation processes (Table 1), which supports the hypothesis that CN 262 

variation plays a significant role in microbial domestication (Gibbons and Rinker, 2015). For 263 
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example, CUP1 is commonly duplicated among wine yeast strains, but not among yeasts in the 264 

closely related natural oak lineage (Almeida et al., 2015). Duplications in CUP1 have been 265 

shown to confer copper resistance (Warringer et al., 2011) and their occurrence in wine yeast 266 

strains may have been driven by the human use of copper as a fungicide to combat powdery 267 

mildews in vineyards since the 1800’s (Almeida et al., 2015; Fay et al., 2004).  268 

 269 

Wine yeasts have also evolved strategies that favor survival in the wine fermentation 270 

environment, such as flocculation. This aggregation of yeast cells is associated with escape from 271 

hypoxic conditions, as it promotes floating and reaching the air-liquid interface where oxidative 272 

metabolism is possible (Fidalgo et al., 2006; Martínez et al., 1997). Flocculation is also favorable 273 

for oenologists as it facilitates yeast removal in post-processing (Soares, 2011) and is associated 274 

with the production of flavor enhancing ester-containing compounds (Pretorius, 2000). 275 

Flocculation is controlled by the FLO family of genes (Fidalgo et al., 2006; Govender et al., 276 

2008). Examination of patterns of CN variation in FLO gene family members shows frequent 277 

duplications in FLO11 as well as numerous duplications and deletions in FLO1, FLO5, FLO9, 278 

and FLO10 (Gallone et al., 2016; Steenwyk and Rokas, 2017). Some of this variation may be 279 

adaptive. For example, partial duplications in the Serine/Threonine-rich hydrophobic region of 280 

FLO11 are associated with the adaptive phenotype of floating to the air-liquid interface to access 281 

oxygen among “flor” or “sherry” yeasts (Fidalgo et al., 2006). Furthermore, the same partial 282 

duplications have also been observed in the more general wine population (Steenwyk and Rokas, 283 

2017), suggesting that the benefits associated with this phenotype may not be unique to “flor” 284 

yeasts. 285 

 286 
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CN variation is also observed in genes related to stuck (incomplete) or sluggish (delayed) 287 

fermentations. Stuck fermentations are caused by a multitude of factors including nitrogen 288 

availability, nutrient transport, and decreased resistance to starvation (Salmon, 1989; Thomsson 289 

et al., 2005). Two genes associated with decrease resistance to starvation, ADH7 and AAD3, are 290 

sometimes duplicated or deleted among wine yeast strains (Steenwyk and Rokas, 2017). Diverse 291 

CN profiles of ADH7, an alcohol dehydrogenase that reduces acetaldehyde to ethanol during 292 

glucose fermentation, and AAD3, an aryl-alcohol dehydrogenase whose null mutant displays 293 

greater starvation sensitivity (Walker et al., 2014), suggest variable degrees of starvation 294 

sensitivity and therefore fermentation performance. Additionally, wine yeasts are enriched for 295 

duplication in PDR18 (Gallone et al., 2016), a transporter that aids in resistance to ethanol stress, 296 

one of the traits that differentiates wine from other industrial strains. Another gene associated 297 

with decreased resistance to starvation that also exhibits CN variation is IMA1 (Steenwyk and 298 

Rokas, 2017), a major isomaltase with glucosidase activity (Teste et al., 2010).  299 

 300 

CN variable genes related to metabolism 301 

Nutrient availability and acquisition is a major driving factor of wine fermentation outcome. 302 

Among the most important nutrients dictating the pace and success of wine fermentation is sugar 303 

availability (Marsit and Dequin, 2015). The most abundant fermentable hexose sugars in the 304 

wine environment include glucose and fructose (Marques et al., 2015), whose transport is largely 305 

carried out by genes from the hexose transporter (HXT) family (Boles and Hollenberg, 1997). A 306 

reproducible evolutionary outcome of yeasts exposed to glucose-limited environments, which are 307 

reflective of late wine fermentation, is duplication in hexose transporters, such as HXT6 and 308 

HXT7 (Brown et al., 1998; Dunham et al., 2002; Gresham et al., 2008, 2010), suggesting that 309 
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changes in transporter CN are adaptive. Interestingly, the genes from the HXT gene family are 310 

highly CN variable among wine yeast strains (Dunn et al., 2012; Steenwyk and Rokas, 2017). 311 

For example, HXT13, HXT15, and HXT17 exhibit CN variation among wine strains, HXT1, 312 

HXT6, HXT7, and HXT16 are more commonly duplicated, and HXT9 and HXT11 are more 313 

commonly deleted (Gallone et al., 2016; Steenwyk and Rokas, 2017). 314 

 315 

Similarly striking patterns of CN variation are observed for genes associated with maltose 316 

metabolism (Gallone et al., 2016; Gonçalves et al., 2016; Steenwyk and Rokas, 2017). The two 317 

MAL loci in the reference genome of S. cerevisiae S288C, MAL1 and MAL3, that contain three 318 

genes which encode for a permease (MALx1), a maltase (MALx2), and a trans-activator (MALx3) 319 

(Michels et al., 1992; Naumov et al., 1994). The MAL loci are primarily associated with the 320 

metabolism of maltose (Michels et al., 1992) and therefore would be expected to be primarily 321 

deleted among wine yeasts as maltose is in relatively low abundance compared to other sugars 322 

during wine fermentation. As expected, the MAL1 locus is deleted across many wine yeasts 323 

(Gallone et al., 2016; Gonçalves et al., 2016; Steenwyk and Rokas, 2017). In contrast, the MAL3 324 

locus is primarily duplicated among wine yeast strains (Gonçalves et al., 2016; Steenwyk and 325 

Rokas, 2017). Interestingly, part of the MAL3 locus, MAL32, has been demonstrated to be 326 

important for growth on turanose, maltotriose, and sucrose (Brown et al., 2010), which are 327 

present in the wine environment, albeit in small quantities (M.Victoria and M. Carmen, 2013), 328 

suggesting potential function on secondary substrates or perhaps another function.  329 

 330 

Equally important as sugar availability in determining fermentation outcome is nitrogen 331 

acquisition (Marsit and Dequin, 2015). Genes associated with amino acid and nitrogen utilization 332 
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are commonly duplicated among wine yeast strains. Notable examples of such duplications are 333 

the amino acid permeases, VBA3 and VBA5 (Gallone et al., 2016), and PUT1, a gene that aids in 334 

the recycling or utilization of proline (Ibáñez et al., 2014). 335 

 336 

CN variation is also observed in genes of the THI family, which are involved in thiamine, or 337 

vitamin B1, metabolism (Li et al., 2010), another important determinant of wine fermentation 338 

outcome. Several THI gene family members are CN variable; THI5 and THI12 are typically 339 

deleted, while THI13 is commonly duplicated (Steenwyk and Rokas, 2017). Expression of THI5 340 

is commonly repressed or absent in wine strains, as it is associated with an undesirable rotten-341 

egg smell and taste in wine (Bartra et al., 2010; Brion et al., 2014). Interestingly, THI5 is deleted 342 

in greater than 90% of examined wine strains (Steenwyk and Rokas, 2017) but is duplicated in 343 

several other strains of S. cerevisiae, as well as in its sister species S. paradoxus and the hybrid 344 

species S. pastorianus (Wightman and Meacock, 2003). 345 

 346 

Conclusions and perspectives 347 

An emerging body of work suggests that CN variation is an important, largely underappreciated,  348 

dimension of fungal genome biology and evolution (Farrer et al., 2013; Gallone et al., 2016; 349 

Gonçalves et al., 2016; Hartmann and Croll, 2017; Hu et al., 2011a; Steenwyk et al., 2016; 350 

Steenwyk and Rokas, 2017). Not surprisingly, numerous questions remain unresolved. For 351 

example, we have detailed numerous mechanisms that lead to the generation of CN variation but 352 

the relative contribution of each remains unclear. Additionally, both the genomic organization 353 

and genetic architecture of CN variants remain largely unknown. For example, are duplicated 354 
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copies typically found in the same genomic neighborhood or are they dispersed? Similarly, what 355 

percentage of phenotypic differences among fungal strains is explained by CN variation? 356 

 357 

The same can be said about the role of CN variation in yeast adaptation to the wine fermentation 358 

environment. Comparison of genome-wide patterns of CN variation among yeast populations 359 

responsible for the fermentation of different wines (e.g., white and red) would provide insight to 360 

how human activity has shaped the genome of yeasts associated with particular types of wine. 361 

Additionally, most sequenced wine strains originate from Italy, Australia, or France. Genome 362 

sequencing of yeasts from underrepresented regions (e.g., Africa and the Americas) may provide 363 

further insight to CN variable loci unique to each region and the global diversity of wine yeast 364 

genomes.  365 

 366 

Another major set of questions are associated with examining the impact of CN variable loci at 367 

the different stages of wine fermentation. Insights on how CN variable loci modify gene 368 

expression, protein abundance and in turn fermentation behavior and end-product would be 369 

immensely valuable. A complementary, perhaps more straightforward, approach would be 370 

focused on examining the phenotypic impact of single-gene or gene family CN variants, such as 371 

the ones discussed in previous sections (e.g. genes belonging to the ADH, HXT, MAL, and VBA 372 

families; Table 1) on fermentation outcome. Such studies may provide an important bridge 373 

between scientist, oenologist, and wine-maker to enhance fermentation efficiency and 374 

consistency between batches or in the design of new wine flavor profiles. 375 

 376 
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Although this review focused solely on the contribution of S. cerevisiae CN variation, it is 377 

important to keep in mind that several other yeasts are also part of the wine fermentation 378 

environment. Members of many other wine yeast genera (e.g., Hanseniaspora, 379 

Saccharomycodes, and Torulaspora) are known to modify properties wine fermentation end 380 

product (Ciani and Maccarelli, 1998). Furthermore, recent sequencing projects have made 381 

several non-conventional wine yeast genomes publically available such as several 382 

Hanseniaspora species (Seixas et al., 2017; Sternes et al., 2016), Starmerella bacillaris (Lemos 383 

Junior et al., 2017), and Lachancea lanzarotensis (Sarilar et al., 2015). In-depth sequencing of 384 

populations from these yeast species and others associated with wine will provide insight to 385 

niche specialization within the wine environment as well as greatly enhance our understanding of 386 

CN variation and its role in the ecology and evolution of fungal populations.  387 
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Table 1. Genes associated with fermentation-related processes that 712 

exhibit CN variation among S. cerevisiae wine strains 713 

Process  

(organized 

alphabetically) 

Gene Primarily 

duplicated, deleted, 

or both  

Reference 

(organized 

alphabetically) 

Amino acid & 

nitrogen utilization 

VBA3, VBA5, PUT1 Duplicated Gallone et al. 2016; 

Ibáñez et al. 2013 

Cu and Fe 

homeostasis 

CUP1, CUP2 Both Almeida et al. 2015; 

Fay et al. 2004; 

Steenwyk & Rokas, 

2017; Warringer et 

al. 2011 

 FIT2, FIT3, FRE3 Duplicated Gallone et al. 2016 

Ethanol resistance 

and production 

PDR18  Gallone et al. 2016 

 ADH7 Both Steenwyk & Rokas, 

2017 

Flocculation FLO11 Duplicated Steenwyk & Rokas, 

2017 

 FLO1, FLO5, FLO9, 

FLO10 

Both Gallone et al. 2016; 

Steenwyk & Rokas, 

2017 

Hexose transport HXT1, HXT4, HXT6, 

HXT7, HXT16 

Duplicated Gallone et al. 2016; 

Steenwyk & Rokas, 

2017 

 HXT9, HXT11 Deleted Gallone et al. 2016; 

Steenwyk & Rokas, 

2017 

 HXT13, HXT15, Both Gallone et al. 2016; 
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HXT17 Steenwyk & Rokas, 

2017 

Maltose metabolism MAL3x, MPH3, 

YPR196W 

Duplicated Gallone et al. 2016; 

Gonçalves et al. 

2016; Steenwyk & 

Rokas, 2017 

 MAL1x, IMA2, IMA4, 

IMA5 

Deleted Gallone et al. 2016; 

Gonçalves et al. 

2016; Steenwyk & 

Rokas, 2017 

 MPH2, IMA1, IMA3 Both Gallone et al. 2016; 

Steenwyk & Rokas, 

2017 

Thiamine metabolism THI13 Duplicated Steenwyk & Rokas, 

2017 

 THI5, THI12 Deleted Steenwyk & Rokas, 

2017 
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Figure legends 715 

Figure 1. The different types of CN variation. CN variants range in size (50 base pairs or 716 

greater) to whole chromosomes, and are identified through comparison to a reference genome. In 717 

this cartoon, a reference chromosome containing two highlighted loci, in blue and orange, is 718 

shown on top. The second chromosome illustrates an example of a segmental duplication CN, in 719 

which there are two copies of the blue locus. The third chromosome illustrates an example of a 720 

multiallelic CN variant, where the duplicated locus contains 3 or more copies. The fourth pair of 721 

chromosomes illustrates a CN variant associated with the duplication of an entire chromosome. 722 

Finally, the last two chromosomes illustrate deletion and complex CN variants, respectively; 723 

deletion CN variants are associated with loci that are not present relative to the reference, and 724 

complex CN variants refer to a combination of duplications, deletions, insertions, and/or 725 

inversions relative to the reference. 726 

 727 

Figure 2. Mechanisms of CN variant formation. CN variants typically occur as a result of 728 

aberrant replication via homologous recombination, non-homology based mechanisms, and 729 

environmentally stimulated processes. (a) Unequal crossing over during recombination may 730 

result in duplication and deletion. Here, two equal strands of DNA with two genes (represented 731 

by the orange or blue arrows) have undergone unequal crossing over due to the misalignment of 732 

a homologous sequence. This results in one DNA strand having three genes and the other one 733 

gene. (b and c) A major driver of CN variant formation is aberrant DNA replication. (b, top) 734 

Double strand breaks at replication forks or collapsed forks are often repaired via Break-induced 735 

replication (BIR). (bi) Proper BIR starts with strand invasion of a homologous or 736 

microhomologous sequence (shown in red) to allow for proper fork restart. (bii) If template 737 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/233122doi: bioRxiv preprint 

https://doi.org/10.1101/233122
http://creativecommons.org/licenses/by-nc/4.0/


37 
 

switching occurs in the backward direction, a segment of DNA will have been replicated twice 738 

resulting in a duplication; (biii) in contrast, template switching in the forward direction results in 739 

a deletion represented by a dashed line in the DNA sequence. Erroneous BIR may be mediated 740 

by microhomologies as well. (c) CN variants may be stimulated near genes that are highly 741 

expressed due to an increased chance of fork stalling. (ci) If a replication fork breaks down near 742 

a gene that is not expressed (grey) and restarts once (represented by one black arrow), no 743 

mutation will occur. (cii) If a replication fork breaks down near a gene that is expressed (green) 744 

with cryptic unstable transcripts (red) then there may be two outcomes dependent on the degree 745 

of the H3K56ac acetylation mark. If there are low levels of H3K56ac, it is more likely that there 746 

will be proper fork restart by BIR (represented by one black arrow). If there are high levels of 747 

H3K56ac, it is more likely that there will be repeated fork stalling (represented by three black 748 

arrows) (see figure 8 from Hull et al. 2017). 749 

 750 

Figure 3. CN variation can alter gene expression. (a) Consider a gene whose CN ranges from 751 

0 to 4 (blue to black to red) among individuals (represented by dots) in a population (middle 752 

gene). (b) Generally, CN and gene expression (represented as arbitrary units or a.u.) correlate 753 

with one another such that individuals with lower CN values will have lower levels of gene 754 

expression of that gene while those with higher CN values will have higher levels of gene 755 

expression. 756 

 757 

Figure 4. Comparison of genomic content affected by CN variants and SNPs in 3 fungal 758 

species. (A) SNPs per kb is not significantly correlated with CN variable base pairs per kb in S. 759 

cerevisiae wine strains (blue; rs = 0.02; p = 0.78; Spearman rank correlation) and C. deuterogattii 760 
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(red; rs = 0.06; p = 0.62; Spearman rank correlation); the reverse is true in S. pombe (green; rs = 761 

0.67; p < 0.01; Spearman rank correlation). (b, left) CN variable base pairs per kb in wine strains 762 

of S. cerevisiae is greater than C. deuterogattii and S. pombe (p < 0.01; Kruskal-Wallis and p < 763 

0.01 for all Dunn’s test pairwise comparisons with Benjamini-Hochberg multi-test correction). 764 

(b, right) SNPs per kb is low among S. cerevisiae wine strains (Scer) compared to S. pombe 765 

(Spom) but greater than a clonally expanded population of C. deuterogattii (Cdeu) (p < 0.01; 766 

Kruskal-Wallis and p < 0.01 for all Dunn’s test pairwise comparisons with Benjamini-Hochberg 767 

multi-test correction). Data from Jeffares et al., 2015, 2017 (Spom); Steenwyk et al., 2016 768 

(Cdeu); Steenwyk and Rokas, 2017 (Scer). 769 

 770 

Figure 5. CN variable genes that affect functions important to wine making. Functional 771 

categories (e.g., Cu and Fe homeostasis, maltose metabolism, etc.) are shown in black font. 772 

Genes of interest are shown proximal to the category described and are colored blue, red, or 773 

purple to represent a gene observed to be primarily deleted, duplicated, or both across 774 

populations and studies investigating S. cerevisiae wine strains. Genes found to be both 775 

duplicated and deleted present an opportunity for oenologists to capitalize on standing genetic 776 

diversity to select for particular flavor profiles or yeast performance. 777 

 778 

Box 1. Standard population genetic principles of shifts in allele frequencies (Felsenstein, 1976; 779 

Moritz, 1994) can be applied to CN variants. To illustrate the case, we provide an example using 780 

the CUP1 locus, where high CN provides protection against copper poisoning (Fogel and Welch, 781 

1982), of how the allele frequency of a CN variant can increase through its phenotypic effect. 782 

Suppose that in a yeast population exposed to copper that all individuals do not harbor CN 783 
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39 
 

variation at the CUP1 locus. Through a mutational event, a beneficial CUP1 allele that contains 784 

two or more copies of the locus may appear in the population. (a) Yeast with two or more copies 785 

of CUP1, which in turn lead to higher CUP1 protein levels, will be better and more efficient at  786 

copper sequesteration unlike the parental allele and therefore avoiding copper poisoning (Fogel 787 

and Welch, 1982). (b) Assuming a large population size and strong positive selection, changes in 788 

allele frequency will occur in the population due to changes in yeast survivability and ability to 789 

propagate. More specifically, the frequency of the beneficial allele (i.e., CUP1 duplications) will 790 

increase depending on the strength of selection, which increases as the concentration of 791 

environmental copper increases, and the parental allele will decrease. 792 
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