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Abstract

We create and analyze a stochastic heterosexual agent-based bipartite network model to
help understand the spread of chlamydia trachomatis. Chlamydia is the most common
sexually transmitted infection in the United States and is major cause of infertility,
pelvic inflammatory disease, and ectopic pregnancy among women. We use an
agent-based network model to capture the complex heterogeneous assortative sexual
mixing network of men and women. Both long-term and casual partnerships are
modeled with different sexual contact frequencies and condom use. We use simulations
to compare the effectiveness of intervention strategies based on randomly screening
people for infection, treating the partners of infected people, and rescreening for
infection after treatment. We compare the difference between treating the partners of
an infected person both with, and without, testing them first for infection. The highest
prevalence is among young sexually active individuals. We calibrate the model
parameters to agree with recent survey data showing chlamydia prevalence of 14% of
the women and 9% of the men in the 15− 25 year-old African American residents of
New Orleans, Louisiana. We observed that although increased chlamydia screening and
treating most of the partners of infected people will reduce the incidence, these
mitigations alone are not sufficient to control the epidemic. The model predicts that the
current epidemic can brought under control once over half of the partners of infected
people are tested and treated.

Introduction

Chlamydia trachomatis (Ct) is the most commonly reported sexually transmitted
infection (STI) in the United States, with over 1.8 million cases each year [1]. It is a
major cause of infertility, pelvic inflammatory disease (PID), and ectopic pregnancy
among women [2–8], and has been associated with increased HIV acquisition [2, 4, 6–8].
Untreated, an estimated 16% of women with Ct will develop PID [2], and 6% will have
tubal infertility [7]. In southern U.S cities, including New Orleans, there is an ongoing
epidemic of Ct in young African American (AA) adults. A pilot study in this
community [9] found an average of 1.5 sexual partners per person per three months, a
relatively high turnover in sexual partners, and approximately 11% prevalence of Ct
infection. The high prevalence along with high turnover stresses the need for more
effective mitigation efforts to bring the epidemic under control.

Further complicating the issue, about 70%− 95% of women and 90% of men infected
with Ct are asymptomatic and still transmit the infection to others. When Ct
prevalence is high, regular screening is an effective approach to identify and treat
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infected individuals. Since 2000, women have been typically screened for Ct as part of
their physical exam. However, men are not routinely screened for infection, therefore,
untreated men may serve as a reservoir, reinfecting women after they are treated. We
will investigate the impact that increased Ct screening of men in high prevalence areas
on the disease prevalence. Typically, when someone is found to be infected, they are
encouraged to have their sexual partners notified and tested for infection. Sometimes
the partners are treated, without first being tested for infection. If a partner is also
tested for infection and found to be infected, then their partners can be notified and
treated, identifying a chain of high-risk individuals who might be spreading Ct.

Transmission-based mathematical models can help the public health community to
understand and to anticipate the spread of diseases in different populations and to
evaluate the potential effectiveness of approaches for bringing the epidemic under the
control [10]. These models create frameworks that capture the underlying Ct
epidemiology and the heterosexual social structure underlying the transmission
dynamics. An ordinary differential equation Ct transmission model developed by
Althaus et al. [11] captures the most essential transitions through an infection with Ct
to assess the impact of Ct infection screening programs. Using sensitivity analysis they
identified the time to recovery from infection, and the duration of the asymptomatic
period, as the two of most important model parameters governing the disease prevalence.

Clarke et al. [12] investigated how control plans can affect observable quantities and
demonstrated that partner positivity (the probability that the partner of an infected
person is infected) is insensitive to changes in screening coverage or contact tracing
efficiency. They also evaluated the cost-effectiveness of increasing contact tracing versus
screening and concluded that random screening coupled with partner notification is the
a cost effective mitigation approach.

A selective sexual mixing hybrid differential/integral equation Ct model was
developed by Azizi et al. [13] to capture the heterogeneous mixing among people with
different numbers of partners. The model stratified the population based on number of
partners and used sensitivity analysis to identify the importance of mixing on the
effectiveness of various mitigations, such as condom use. An alternative, and more
realistic model, is to represent the sexual network by a graph where each individual
within a population is a node. The connecting edges between the nodes denote sexual
relationships that could lead to the transmission of infection. These sexual mixing
networks can capture the heterogeneity of whom an infected person can, or cannot,
infect.

Kretzschmar et al. [14] evaluated different screening and partner referral
methodologies on a network in controlling Ct. They designed an stochastic model based
on a stochastic pair formation and separation process. The process modeled the spread
of STIs particularly gonorrhea and chlamydia in a general age-structured heterosexual
population in the Netherlands and implemented several intervention scenarios including
contact tracing, screening and condom-use. Their results show contact tracing and
increased condom-use were more effective than screening to control the epidemic of
these STIs. They observed that screening is most effective when it targets the core
group of highly sexually active people.

We create an agent-based heterosexual network model of Ct transmission to evaluate
potential intervention strategies for reducing the Ct prevalence in urban cities, such as
New Orleans. We construct a network model that mimics the heterosexual behavior
obtained from a sexual behavior survey of the young adult AA population in New
Orleans and model Ct transmission as a discrete time Monte Carlo stochastic event on
this network. The model is initialized to agree with the current New Orleans Ct
prevalence. We use sensitivity analysis to quantify the effectiveness of different
prevention and intervention scenarios, including screening, notification of partners,
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which includes partner treatment and partner screening (contact tracing), condom-use,
and rescreening [15].

Materials and Methods

In our heterosexual network model, each person is a distinct identity represented by a
node in the network. This model structure allows the sexual partnership dynamics, such
as partner concurrency, sexual histories of each person, and complex sexual networks, to
be governed at the individual level [16].

The data used for our network was previously collected by two research studies in
New Orleans, LA. One, a pilot study of community based STI testing and treatment for
African American men ages 15− 25 [9] and the other, a study of an Internet based
unintended pregnancy prevention intervention for African American women ages
18− 19 [17]. These two studies were reviewed and approved by the Tulane University
Institutional Review Board. The 202 men and 414 women enrolled in these studies were
asked for the number of different heterosexual partners they have had in the past three
months (for women) or two months (for men). Women were also asked to estimate the
number of partners that their partners have had in the same time period.

The survey results were used to construct the bipartite heterosexual network of 2000
men and 3000 women. The generated network statistically agrees with the distribution
for the number of partners men and women have had in the past three months, and the
distribution for the number of partners of their partners (the joint degree
distribution) [18].

Each node i in the network represents a person, denoted by the index i, and each
edge eij represents sexual partnership between two nodes i and j. The network is
weighted, where the weight 0 < wij ≤ 1 for edge eij is the probability that there will be
a sexual act between two partners i and j on an average day. In the model, each day
and through a stochastic process, the edge eij will exist (turn on) with probability wij,
the probability that two nodes i and j have sexual act in that day, or not exist (turn off)
with probability of 1− wij, which is equivalent to not having an edge (sexual act)
between individuals i and j on that day.

In our stochastic Susceptible–Infectious–Susceptible (SIS) model, a person i is either
infected with Ct, Ii(t), or susceptible to being infected, Si(t). During the day t, an
infected person, Ij(t), can infect any of the susceptible partners, Si(t), they have sexual
contact with. We define λij as the probability that Si(t) will be infected by Ij(t) by the

end of the day, Si(t)
λij→ Ii(t+ 1). Similarly, we define γj as the probability that an

infected person, Ij(t), will recover by the end of the day, Ij(t)
γj→ Sj(t+ 1).

Force of infection

The force of infection, λij(t), is the probability that a susceptible person Sj is infected
on day t by Ij . This depends on probability of a sexual act between person i and j on
an typical day, as defined by edge weight, wij , in the model. We define βnc as the
probability of transmission per act when a condom is not used, and βc as the reduced
probability of transmission per act when a condom is used. The forces of infection
between i and j for when condom is not used, λncij , and for when condom is used, λcij ,
are defined by

λncij =

{
βnc with probability wij

0 with probability 1− wij
, λcij =

{
βc with probability wij

0 with probability 1− wij
.

(1)
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We assume that couples use a condom in κ fraction of their acts correctly and that the
condom is 90% effective in preventing the infection from being transmitted, that is,
βc = 0.1βnc.

Recovery from infection

The model accounts for infected people recovering through natural recovery or after
being treated with antibiotics. We assume that a fraction of the people treated for
infection will return later to be retested for infection.

Natural recovery: We assume that all infected people will eventually recover and
return to susceptible status, even if they are not treated for infection. In the model, the
time for natural (untreated) recovery has an exponential distribution with an average
time of infection of 1

γn days, and the duration of infection for an individual is a random
number from this distribution.

Recovery through treatment: We assume that the time for infected person to

recover after treatment is a log-normal distribution with an average of 1
γt days. That is,

the duration of infection for a treated infected person k would be set to a random
number that follows log-normal distribution, logN ( 1

γt , 0.25), rounded to the nearest day.
In the model, if that number of days is smaller than the duration remaining for
naturally clearing the disease, then the shorter time is use for the recovery period.

Each year, a fraction of the population is tested for Ct infection, e.g. through a
routine medical exam (random screening) or after being notified that one of their
previous partners was infected.

Random Screening : We define random screening as testing for infection when
there are no compelling reasons to suspect a person is infected. For example, random
screening might be part of a routine physical exam and is an effective mitigation policy
to identify asymptomatic infections. In our model, we assume that the fraction σy% of
people are randomly screened each year, and an individual is screened with probability
σd = 1− (1− σy)

1
365 % each day.

Notification of Partners: We assume that an infected person notifies θn
fraction of their partners about their exposure to infection. Some of the notified
partners will do nothing, some will test for Ct infection, and some will seek treatment
for Ct without first testing because it is simpler. The notified partners of a treated
person are divided into three classes:

1. Partner Treatment: θt fraction of the notified partners are treated, without first
testing for infection.

2. Partner Screening: θs fraction of the notified partners engage in screening test and
then start treatment if infected.

3. Do nothing: (1− θt − θs) fraction are not tested or treated.

For simplicity, we assume notified partners are the ones who are notified and do
something, that is, we assume 1− θt − θs = 0. Then we define θnθt as fraction of
partners of an infected person who are treated without first testing for infection
(Partner Treatment), and θnθs as fraction of the partners follow screening test (Partner
Screening). The model includes a time-lag of τN days between the day a person is found
to be infected and the day their partners are notified.

Notification of partners spreads across the same network that originally spread the
disease. The partner screening approach is more effective since every time the partner of
an infected person is found to be infected, then the cycle repeats itself and their
partners are notified.
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Rescreening : A common practice in disease control is rescreening. People found to
be infected are given a treatment and asked to return after a short period to be tested
again. In our model, we assume that a fraction, σr, of the treated people return for
retesting τR days after treatment.

Model initialization

Our goal is to model the current Ct epidemic in New Orleans with an initial prevalence
of i0. Infected people are not dropped into an otherwise susceptible population, instead
they are distributed as they would be as part of an emerging epidemic, one that started
some time in the past. We call these initial conditions balanced because when the
simulation starts the infected and susceptible populations, along with durations of
infection, are in balance as an emerging epidemic would on average have. When the
initial conditions are not balanced, then there is usually a rapid (nonphysical) initial
transient of infections that quickly dies out as the infected and susceptible populations
relax to a realistic infection network.

To define the balanced initial conditions, we start an epidemic in the past by
randomly infecting a few high degree individuals. We then advance the simulation until
the epidemic grows to the prevalence i0. We then reset the time clock to zero and use
this distribution of infected people, complete with their current infection timetable, as
our initial conditions. Because these are stochastic simulations, when doing an ensemble
of runs we reinitialize each simulation by seeding different initial infected individuals.
Fig 1 illustrates the typical progression of the epidemic to reach the current Ct
prevalence of 9% in men and 14% women in the 15− 25 year-old New Orleans AA
community. The numerical simulations comparing the different mitigation strategies all
start at this endemic stochastic equilibrium.
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Fig 1. Prevalence increases to reach the current steady state. About 9% of
men (blue lower curve) and 14% of women (pink upper curve) are infected at the
equilibrium for the baseline model parameters. This is approximately the current
prevalence in New Orleans 15-25 year-old AA population. The light areas around the
dark mean values show the range of the solutions after 10 simulations.
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Table 1. Parameters definition and value: the model parameters describing the transmission of Ct infection, as well as
recovery associated with natural recovery, screening, and notification of partners were obtained from the
literature [9, 11,19,20], but other parameters are calibrated to biological, behavioral, and epidemiological data from general
heterosexual population resides in New Orleans. Probability of transmission per act is calibrated to a baseline prevalence of
13.95% among women and 9% among men.

Parameter Description Baseline Unit Reference

∆t Time step 1 day –

Pm(Pw) Population of men (women) 2000(3000) people Assumed
i0 Balanced initial prevalence 0.08 – Assumed
βm2w Probability of transmission per act from men to women 0.16 – Calculated
βw2m Probability of transmission per act from women to men 0.16 – Calculated
κ Fraction of times that condoms are properly used dur-

ing sex
0.6 – [9]

1/γn Average time to recover without treatment 365 days [11,19]
1/γt Average time to recover with treatment 7 days [20]
σmy Fraction of men randomly screened per year 0.05 – [9]

σwy Fraction of women randomly screened per year 0.45 – [9]

σr Fraction of infected people return for rescreening 0.10 – Assumed
θn Fraction of the partners of an infected person who are

notified and do test or treated for infection
0.26 – [9]

θt Fraction of notified partners of an infected person who
are treated without testing

0.75 – [9]

θs Fraction of notified partners of an infected person who
are tested and treated for infection

0.25 – [9]

τN Time lag of partner notification 5 days Assumed
τR Time lag of re-screening 100 days Calculated

Results

We compare the model-projected impact of increased random screening, notification of
partners – which includes partner screening and partner treatment – and rescreening on
the prevalence of Ct infection. All of the simulations start at a balanced equilibrium
obtained with the model baseline parameters in Table 1.

Random screening

To determine the effectiveness of increasing the number of men screened for Ct per year,
we compare the steady state prevalence by varying the fraction of men who are screened
randomly each year, σmy . The current screening rate for young men for Ct in high
prevalence areas, like New Orleans, is low. This scenario can estimate the cost
effectiveness of increased screening of young men on the Ct prevalence in women [21,22].
Fig 2 shows a reduction in the overall Ct prevalence as the number of men randomly
screened for Ct increases from 0 to 50%, 0 ≤ σmy ≤ 0.5. The filled circles are the mean
of ten different stochastic simulations (open circles). The least-square linear fit suggests
that the steady-state Ct prevalence will decrease by 0.01 for every additional 10% of the
men screened during a year. Though a drop of five percent in prevalence is an
admirable decrease, increased screening alone would not be sufficient to control Ct.
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Screening Rate for Men (per year): σ
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Fig 2. Steady state prevalence decreases as more men are screened each
year. σm

y : a low negative correlation, screening men randomly by 50% reduces
prevalence by 5% which is not effective enough to implement as a sole intervention.

Notification of partners

This scenario of notifying partners quantifies the impact of giving an infected person’s
partners a chance to be tested and treated. We define θn as the fraction of infected
person’s partners who are notified that they might be infected. We then assume that
only θt fraction of those notified partners are treated, without testing (partner
treatment), and θs fraction are tested and if necessary, treated (partner screening).
Note that the fraction 1− θn fraction of the partners are not notified.

Partner treatment

In partner treatment we assume when someone is found to be infected the fraction θn of
their partners are notified and then all of the notified partners will seek treatment
without testing, in other words, we define θt = 1. Fig 3, shows the impact of partner
treatment ranging from no notified partners treated, θn = 0, to all notified partners
treated, θn = 1. The filled circles are the mean of ten different stochastic simulations
(open circles). The least-square linear fit suggests that the steady-state Ct prevalence
will decrease by 0.07 for every 10% increment in the fraction of notified partners seeking
treatment. This practice, although common in disease control today, is not as effective
as partner screening as we will see.
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Partner Notification Rate: θ
n
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Fig 3. Prevalence decreases as the more partners are treated after being
notified that they might be infected. In these simulations, we assume that all the
notified partners are treated, without testing θt = 1. This approach is only mildly
effective and the prevalence remains high (8%), even when all the partners of treated
people are treated.

Partner screening

To quantify the impact of screening the partners of an infected person, where partners
are tested then treated if found to be infected, we assume that all notified partners of
an infected person are screened, that is, we assume θs = 1. Fig 4 shows the impact as
θn varies from 0 to 1. The filled circles are the mean of ten different stochastic
simulations (open circles). The least-square linear fit suggests that there is a threshold
effect (tipping point) at θn ≈ 0.4, when the approach becomes extremely effective. This
happens when the partner screening percolates through the sexual network to identify
the infected individuals. Our model indicates that this is by far the most effective
approach for bringing the epidemic under control.
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Fig 4. Prevalence drops to zero as the fraction of the partners of treated
people are tested before possible treatment. In these simulations we assume that
all of the notified partners are tested for infection, θs = 1. This partner screening
approach is highly effective if the fraction of tested partners, θn, exceeds its critical value
θ∗n = 0.4. That is, when θn ≥ θ∗n and θs = 1, the Ct prevalence rapidly decays to zero.

Partner treatment and screening

In reality, some of the notified partners will seek treatment without testing, and some
will allow themselves to be tested before being treated. We quantify the effectiveness of
this mixture of the two previous scenarios by varying fraction of the partners taking
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action (θn = 0.10, 0.20, 0.50, 0.65 and 0.80), along with the fraction of these notified
partners that seek just treatment (θt) and the fraction being screened for infection
(θs = 1− θt).

When few partners are notified and take action (θn is small), then partner treatment
and partner screening have almost the same impact on controlling the prevalence. For
example, for θn = 0.10, the prevalence versus θt = 1− θs is almost flat, that is, there is
no difference between cases if partners follow treatment without testing or first test and
then treat if infected.

As θn increases the partner screening becomes a highly successful mitigation policy.
Consider the case when half of the partners are notified and take action, θn = 0.5, and
half of them go for screening, θs = 0.5, and the other half go for treatment, θt = 0.5.
That is, half of an infected person’s partners do nothing, a fraction
θnθt = 0.5× 0.5 = 0.25 are treated without testing for infection, and a fraction
θnθs = 0.5× 0.5 = 0.25 are tested and treated if found infected. If any of the tested
notified partners of the infected person are found to be infected, their partners are then
notified and the cycle repeats to spread out and identify more infected people. This
conditional percolation of screening through the sexual network is why this policy is so
effective. For this case, the prevalence reduction is 7%. Thus, compared with if all the
notified partners follow treatment without testing, θt = 1, which reduces the prevalence
by only 1%, it works better. But compared with if all the notified partners follow test
and treat if necessary, θs = 1, which reduces the prevalence by 11%, this combined
scenario is not the one to select, Fig 5.

Partner Treatment Rate: θ
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Fig 5. Prevalence at steady state increases when the fraction of partners
notified are treated and not tested: When only a few partners of an infected
person are notified, θn is small, then partner treatment and partner screening have
similar small impact on Ct prevalence. When more partners of infected people take
action, θn increases, then the partner screening strategy is more effective in controlling
the infection.

It is important to note that partner screening is more expensive than partner
treatment. Given this last scenario, this suggests that when the fraction of partners we
are able to notify, θn, is small then partner screening may not be a good strategy
compared to partner treatment. However, if a large enough fraction of partners are
notified then it is better to test and treat (partner screening) to control the spread of Ct
effectively.

Rescreening

The rescreening scenario targets two goals: first finding the time-lag for resceering,
second quantifying the impact of rescreening on prevalence of Ct.
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Interval for rescreening

People who are found to be infected are more likely to be reinfected in the future.
Repeated Ct infection can be the result of treatment failure, sexual activity with a new
partner, or being reinfected from an existing infected partner. It makes sense to ask the
infected people who were treated to return in a few months for retesting. We will use
the model to compare the rates of reinfection to help optimize the time, τr, from
treatment to rescreening.

The time τr for rescreening should be long enough so it is likely that the person will
be reinfected, but not so long that such a reinfected person could infect significantly
more people. We start by identifying the rescreening time when the prevalence for the
treated population exceeds the prevalence for the whole population. That is, it becomes
cost effective to rescreen when over 15% of previously screened people are again infected.
To find this optimal time, we compute the time taken between screening time and next
reinfection time for all individuals in the network assuming there is no rescreening i.e
σr = 0. On average at baseline 13% of individuals are infected, therefore, through
random screening, 13% of infected individuals are found. The current CDC guidelines
recommend that people are rescreened for infection three months after treatment [23].

We note that in our model, a person may receive screening test and get reinfected
more than one time, therefore, we count the number of tests and reinfection events
rather than the number of individuals with a test and infection.

We plot cumulative distribution of time between screening and reinfection events in
Fig 6. Past studies have observed that about 25% of the rescreened people are again
found to be infected by three months. The Figure demonstrates that in our model also
predicts that about 25% of treated individuals are again infected after 100 days.
Although the model supports the CDC guideline as reasonable, the time between
treatment and rescreening could be shortened to two months with an improved impact.
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Fig 6. Truncated cumulative probability distribution of time between
treatment and reinfection with Ct: About 25% of the treated people are again
infected after 100 days. This increases to about 45% are reinfected after a year.

Rescreening rate

The secondary goal of rescreening scenario is to determine if rescreening for Ct infection
in a larger rate would be successful to reduce its prevalence. At the baseline case only
10% of screened individuals return for rescreening. We assume 0 ≤ σr ≤ 1 fraction of
screened individuals participate in rescreening plan 100 days after their current
screening day. The Fig 7 quantifies the prevalence of Ct at steady state dependent on
rescreening rate σr: there is a negative correlation between prevalence at steady state
and σr when σr fraction of screened individuals returns for rescreening, if σr fraction of

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/233239doi: bioRxiv preprint 

https://doi.org/10.1101/233239
http://creativecommons.org/licenses/by-nc-nd/4.0/


screened individuals follow screening again then the prevalence reduces roughly by
0.02σr. Although there is a high chance of reinfection when the individual’s behavior
does not change, we do not observe an effective impact on prevalence of Ct by
monitoring infected individuals. Rescreening program has a trend similar to screening,
and none of them are effective as sole intervention because they are not able to find the
chain of infection like partner screening. On the other hand sensitivity of prevalence to
rescreening is less than that of screening, indicating the fact that for a limited budget
the idea of finding more people to screen, random Screening, is more effective than
frequent screening for less people.

Re-screening Rate: σ
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Fig 7. Prevalence at steady state is relatively insensitive to the rescreening
rate σr: Even rescreening all the infected people reduces prevalence by only 2%. This is
a cost effective approach, but must be used on conjunction with other mitigation efforts.

Discussion

We used heterosexual behavior survey and Ct prevalence data for the young adult AA
population in New Orleans to create a stochastic, Monte Carlo - Markov Chain,
agent-based bipartite sexually transmitted disease-transmission network model. In the
model, men and women are represented by the network nodes and sexual partners are
characterized by edges between the nodes. The edges between partners in the network
dynamically appear and disappear each day depending if the individuals have sexual act
on that day. The joint degree distribution of the network captures the correlation of an
individual’s risk (their number of partners) with their partner’s risk (number of partners
of their partners). Our network model is updated each day to account for sexual acts as
a dynamic variable, which is an improvement over previous network models.

We use to model to quantify the impact of increasing screening men for infection,
partner notification, and rescreening of treated individuals on reducing Ct prevalence.
We observed that increasing Ct screening of men has only a modest impact on reducing
Ct prevalence in the young adult AAs in New Orleans, Fig 2. Starting at a baseline of
13% prevalence under the assumption that 45% of the women are being screened each
year for Ct, then increasing the screening of men from 0% to 50% would only reduce the
overall Ct prevalence to 8%. That is, increasing Ct screening of men alone would not
bring the epidemic under control.

In evaluating the effectiveness of notification of partners we assumed that a fraction
of the partners of an infected person will seek treatment (without testing) or be
screened (tested and treated) for infection. We observed that if most of the notified
partners were treated, without testing, then this mitigation had only a modest impact
on Ct prevalence. However, when the partners of an infected person were tested before
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treatment, there was a tipping point where partner screening would bring the epidemic
under control. That is, when over 40% of notified partners of all the infected people are
screened for infection, then the Ct prevalence rapidly decreased to very low levels Fig 5.
This critical threshold represents the partner screening level where a contact tracing
tree can spread through the heterosexual network to identify and treat most of the
infected people.

In rescreening, an infected individual returns for testing a few months after they are
treated. We used the model to estimate the probability that a treated person would be
reinfected as a function of the time since they were treated. The CDC guidelines
recommend that treated people return for screening three months after treatment. We
observed that for the baseline case of 13% infected population, about 25% of the treated
population were reinfected three months after treatment. We observed that although
the rescreening is a cost effective approach to identify infected people it has only a small
impact on the overall Ct prevalence.

Our bipartite heterosexual network model was constructed based on the correlations
between the number of partners a person has and the number of partners their partners
have. The model can be made more realistic by embedding this sexual network within a
social network that includes casual relationships. The social network would capture
correlations between relationships based on age, where people live, and economic status.

Also, although our model includes condom use, it does not account for behavior
changes, such as increased condom use after being treated for infection or the
differences in condom use between primary and casual partners.

Our future research will improve the model so we can better quantify the impact of
counseling and behavioral changes such as increasing condom use or partner notification
rates.
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