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ABSTRACT 17 

Background: Sweet cherry is consumed widely across the world and provides substantial economic 18 
benefits in regions where it is grown. While cherry breeding has been conducted in the Pacific Northwest 19 
for over half a century, little is known about the genetic architecture of important traits. We used a 20 
genome-enabled mixed model to predict the genetic performance of 505 individuals for 32 phenological, 21 
disease response and fruit quality traits evaluated in the RosBREED sweet cherry crop data set. 22 
Genome-wide predictions were estimated using a repeated measures model for phenotypic data across 3 23 
years, incorporating additive, dominance and epistatic variance components. Genomic relationship 24 
matrices were constructed with high-density SNP data and were used to estimate relatedness and 25 
account for incomplete replication across years.  26 

Results: High broad-sense heritabilities of 0.83, 0.77, and 0.75 were observed for days to maturity, 27 
firmness, and fruit weight, respectively. Epistatic variance exceeded 40% of the total genetic variance for 28 
maturing timing, firmness and powdery mildew response. Dominance variance was the largest for fruit 29 
weight and fruit size at 34% and 27%, respectively. Omission of non-additive sources of genetic variance 30 
from the genetic mode resulted in inflation of narrow-sense heritability but minimally influenced prediction 31 
accuracy of genetic values in validation. Predicted genetic rankings of individuals from single-year models 32 
were inconsistent across years, likely due to incomplete sampling of the population genetic variance.  33 

Conclusions: Predicted breeding values and genetic values a measure revealed many high-performing 34 
individuals for use as parents and the most promising selections to advance for cultivar release 35 
consideration, respectively. This study highlights the importance of using the appropriate genetic model 36 
for calculating breeding values to avoid inflation of expected parental contribution to genetic gain. The 37 
genomic predictions obtained will enable breeders to efficiently leverage the genetic potential of North 38 
American sweet cherry germplasm by identifying high quality individuals more rapidly than with 39 
phenotypic data alone.  40 

Keywords:  41 

• GBLUP 42 
• sweet cherry 43 
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• non-additive genetic variation 46 
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BACKGROUND 48 

Sweet cherry (Prunus avium L.)  is a lucrative fresh market horticultural crop whose monetary worth is 49 

directly and indirectly determined by several horticultural and fruit traits. Worldwide, more than 2.8 million 50 

tons of sweet cherry fruit were produced in 2014 [1]. In 2015, the U.S. was the second largest producer of 51 

cherries, producing 338.6 kilotons of fruit valued at $703 million, of which 60% were grown in Washington 52 

State [2,3].  53 

Sweet cherry cultivars must garner a positive critical reception among growers, market 54 

intermediaries (a category which includes packers, shippers, and marketers), and consumers to succeed 55 

commercially. The U.S. sweet cherry industry and consumers have previously prioritized which fruit trait 56 

thresholds are essential for a successful cultivar. Sweet cherry producers identified fruit size, flavor, 57 

firmness, and powdery mildew resistance as trait priorities in a survey conducted in 2011 [4]. Powdery 58 

mildew (causative agent Podosphaera clandestine) is a foliar and fruit disease with a high cost of control 59 

in susceptible cultivars. Sweetness and flavor were ranked by consumers as the most important attributes 60 

in sweet cherry, followed by firmness, shelf life, and fruit size [5].  Consumers are willing to pay more for 61 

sweet, firm cherries with an ideal balance of sweetness and acidity. Sweetness and acidity are quantified 62 

with assays for soluble solids content (SSC) and titratable acidity (TA), respectively [5–8]. Market 63 

intermediaries indicated a willingness to pay producers more per pound for fruit greater than 2.5 cm in 64 

diameter, firmness above 300 g/mm, and SSC above 18° Brix [9]. Market intermediaries also ranked fruit 65 

size as the most important trait, followed by firmness and external appearance [10]. The USDA 66 

Agriculture Marketing Service evaluates skin color, fruit size, and fruit firmness when grading sweet 67 

cherries [11], an assessment which influences market receipts for that crop.  68 

Many of the trait thresholds identified by consumers and the cherry industry alike have been 69 

individually met or exceeded through genetic improvement. Beginning with the 1952 release of ‘Rainier’, a 70 

highly popular sweet cherry cultivar, the Washington State University sweet cherry program (formerly 71 

USDA-ARS) has released several dozen cultivars with improved flavor, size, and firmness in each 72 

subsequent release [12,13]. This program and others have largely relied on phenotypic selection 73 

complemented with trait-predictive DNA tests for high heritability traits, such as fruit skin color and self-74 

compatibility [13–16]. The Washington State University breeding program has seen genetic gains in fruit 75 
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dimensions, firmness and other traits of breeding relevance due to moderate heritability of those traits 76 

[17–19].  77 

Sweet cherry has a juvenility period of three to five years before a tree is capable of flowering and 78 

producing fruit [20]. Therefore, the pace of cultivar release is slow, taking 15 to 25 years between making 79 

a cross to cultivar release [16]. Sweet cherry breeding is structured like many other crops: an initial set of 80 

crosses is made, followed by evaluation of a large number of offspring. After a rapid screening, the 81 

majority of these offspring is discarded, and the remaining selections are evaluated more extensively in 82 

replicated trials. Selections are clonally propagated in subsequent evaluations. Consequently, the genetic 83 

potential identified in F1 seedlings remains fixed throughout the evaluative phases of a breeding program 84 

and is not lost during recombination and segregation.  85 

Understanding the genetic architecture of crop traits can help plant geneticists and allied 86 

scientists maximize genetic gain and elucidate the genetic potential of seedlings and parents. Best linear 87 

unbiased prediction (BLUP) is an analysis tool that is used to estimate the genetic potential of each 88 

individual from unbalanced trials by modeling genetic effects as a random effect in a mixed model [21]. It 89 

requires prior estimation of genetic variance components, which are obtained through maximum 90 

likelihood, restricted maximum likelihood (REML) or Bayesian approaches [22,23]. Pedigree-based 91 

BLUPs have been developed to leverage information from related individuals. This is used to estimate the 92 

genetic potential that a parent can pass to its offspring and is termed “breeding value” [24]. Genomic 93 

BLUPs (GBLUPs) are an extension of pedigree-based BLUPS, using DNA marker information instead of 94 

pedigree information to construct a realized relationship matrix between individuals in a population. The 95 

realized relationship matrix can more accurately estimate relatedness, particularly among full siblings, 96 

than the pedigree-based relationship matrix [25–27]. The resultant breeding values are expected to more 97 

closely mirror the true genetic potentials of individuals [28–30]. 98 

Breeding values derived from BLUPs have been used to successfully identify superior individuals 99 

in several rosaceous crops including apple, peach, raspberry, and strawberry [31–37]. Extensive work 100 

has been done in apple to estimate the breeding values from unreplicated trials [31,33,38,39]. Breeders 101 

have observed enhanced genetic gain using both pedigree-based and genome estimated breeding 102 

values in other perennial tree crops, including citrus, rubber and Eucalyptus [40–43]. Sweet cherry shares 103 
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many of the breeding scheme challenges of apple and other perennial tree crops: unbalanced trials and a 104 

long juvenility period. Hence, the same methodologies can be utilized.  105 

Additive effects are considered to be the largest component of genetic variance that is passed to 106 

progeny [44]. While many genome-wide approaches including GBLUPs have been employed to estimate 107 

breeding values across crops, these methods are almost solely focused on estimating additive effects 108 

alone as a proxy for total genetic effects. Few studies have examined non-additive genetic variance 109 

components in rosaceous crops [45]. Kumar et al. [45] reported on a comprehensive study estimating 110 

sources of genetic variance for 32 traits in apple across 17 families and two locations using GBLUPs.  111 

In cherry, there are few published accounts that utilize BLUPs or other genome-wide DNA-112 

enabled approaches for estimating the genotypic value of individuals. The only published genome-wide 113 

study in sweet cherry estimated breeding values for cherry fruit size in U.S.-relevant germplasm from 114 

large-effect QTLs in a Bayesian analysis, but it did not include genetic background effects [18]. There is 115 

no published information on the genome-wide additive and non-additive variance components and 116 

prediction of the genetic value of individuals for any sweet cherry trait.  117 

This study addresses a deficiency of published information on genetic parameters for sweet 118 

cherry breeding-relevant traits beyond those influenced primarily by large-effect QTLs by obtaining robust 119 

estimates of genetic variance components. To ensure wide applicability of the study for cherry, we used a 120 

large set of sweet cherry breeding germplasm. These data were gathered from germplasm in public 121 

sweet cherry breeding programs as part of RosBREED project [46]. Our objectives were to: (1) estimate 122 

variance components across a broad spectrum of traits in sweet cherry germplasm important to North 123 

American breeders and producers, and (2) assess the predictive accuracy of obtained genome-estimated 124 

breeding values (GEBVs) for a subset of the most valuable traits. Previous studies show that the 125 

genome-estimated breeding values of individuals that are robust across years and families can increase 126 

the pace and efficiency of breeding. Specifically, valuable cherry parents can be identified more quickly 127 

and with greater confidence than those obtained through phenotypic data alone. 128 

 129 

 130 

 131 
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METHODS 132 

Germplasm 133 

We used all individuals from the RosBREED sweet cherry Crop Reference Set with genome-wide SNP 134 

data, totaling 505 individuals (Additional File 1). This set consisted of cultivars (n = 42), wild accessions (n 135 

= 3), unreleased selections (n = 24), and unselected offspring (n = 436) from 66 families. The unselected 136 

offspring category includes 77 F1 offspring derived from a wild parent and 359 F1 offspring derived from 137 

existing cultivars. Trees were grown at two sites in Washington State (U.S.A.) located approximately 0.5 138 

km apart: the Irrigated Agriculture Research and Extension Center of Washington State University Roza 139 

Unit, (46 �29’N and 119 �73’W) and at Pear Acres (46 �29’N and 119 �75’W). Each tree was planted in 140 

2006, 2007, or 2008 and managed using conventional orchard management practices. Unselected 141 

offspring were grown on their own roots, and the remaining germplasm were grown on Gisela 6 rootstock 142 

[47]. A single tree was used for each individual. The Crop Reference Set was established to represent 143 

North American sweet cherry breeding germplasm for QTL identification and validation and other 144 

quantitative genetics endeavors [48].  145 

Phenotypic data 146 

This study used the sweet cherry phenotypic data set previously described in Chavoshi et al. [49] 147 

obtained in the RosBREED project. This data set consisted of 32 traits evaluated in 2010, 2011, and 148 

2012. Standardized phenotyping protocols for sweet cherry [49] were used. For individual fruit traits, the 149 

five largest fruit without blemish were measured and averaged. In the case of pitting and cracking, the 150 

proportion of fruit observed with symptoms out of 25 fruit was recorded. Bulked fruit traits (bulked fruit 151 

weight, bulked firmness, bulked SSC, and bulked TA) were reported as the average of measurements 152 

over 25 fruit.  153 

Nine traits of the 32 were focused on here because of their importance in new sweet cherry 154 

cultivars: time to bloom, time to maturity, pedicel-fruit retention force (PFRF), fruit dimensions, fruit weight, 155 

firmness, SSC, TA, and powdery mildew incidence. Time to bloom and time to maturity were measured 156 

both in Julian calendar days starting from January 1st of the calendar year and in growing degree days 157 

(GDD). The force required to pull a ripe cherry fruit from its pedicel, PFRF, and fruit weight were both 158 

measured in grams. Firmness, SSC, and TA were measured in units of g/mm, Brix°, and percentage, 159 
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respectively. Foliar powdery mildew incidence was scored in August of each year, immediately after the 160 

fruiting season, on a 0-5 scale, where 0 is no infection and 5 is highly infected leaves. These nine traits 161 

are referred to as “focus traits” for the rest of the study. All trait data were measured over three years 162 

except for powdery mildew incidence, which was not assayed in 2010. Results from the other traits are 163 

given in the supplementary material, but not discussed. 164 

Several transformations of the trait data were performed for the focus traits. “Fruit dimensions” 165 

was determined newly here as the first component from a principal component analysis between fruit 166 

length and fruit width, which are both end-to-end fruit measurements in millimeters. The first principal 167 

component summarized 95.4% of total phenotypic variation for fruit length and width. Growing degree 168 

days was calculated for an alternative measure of phenological traits. Climatic data was obtained from 169 

Washington State University’s AgWeatherNet using the “Roza” station [50], using a base temperature of 170 

4.5 °C and maximum of 30 °C. Daily maximum temperatures above 30 °C were reduced to 30 °C, and 171 

negative temperatures were set to zero, following McMaster and Wilhelm [51]. Erroneous data points, 172 

defined as those larger than twice the next largest value or less than one-half of the next smallest value 173 

and having a studentized residual with an absolute value greater than 5, were removed. Such data were 174 

assumed to be data entry errors. There were 97 individuals with no phenotypic data: 13 selections and 84 175 

unselected progeny. These individuals were used in the model-building and prediction steps for all 176 

models except for cross validation. 177 

SNP data 178 

The SNP data were obtained from the RosBREED project using the RosBREED cherry 6K SNP array v1 179 

(an Illumina Infinium® II array) [52]. The SNP curation pipeline is described in Cai et al [53]. Missing data 180 

were imputed with Beagle as implemented in SynBreed [54,55] using the hidden Markov model and a 181 

minor allele frequency of 0.05. Individuals or SNPs missing more than 25% data were removed from 182 

analysis and the SNP. In total, a genome-wide set of 1615 SNPs was used. 183 

Statistical modeling 184 

Variance components were estimated with R-ASReml 3.0 [56], and additional statistical analyses were 185 

conducted in R v3.4 [57]. The following model was used for initial estimates of genetic effects for a single 186 

trait, : 187 Y
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2 3 4 5 6+ + + + + + +1 Y Y YY = Xb Z a Z d Z i Z a Z d Z i e  188 

where and are the random variables for additive effects, dominance effects, effects 189 

from additive-by-additive epistatic, additive-by-year effects, dominance-by-year effects, and epistasis-by-190 

year effects, respectively. Variables and  are design matrices for main effects and interaction 191 

terms, respectively. Dimensions of  are nY Y× and  are nY nY× , where n is the number of 192 

individuals and Y is the number of years with trait data for an individual. Year was treated as a fixed 193 

effect, where X is the design matrix relating observations to years and b is a vector of fixed effects due to 194 

year. In a preliminary analysis, the effect of location was evaluated as a fixed effect using a Wald test. 195 

Location did not have a significant effect on the focus traits (p-value > 0.10) and was omitted from the 196 

model. Random variables were assumed to follow a normal distribution:  197 

2 2 2

2 2 2

~ (0, ), ~ (0, ), ~ (0, ),

~ (0, ), ~ (0, ), ~ (0, )

~ (0, )

a d aa

aY dY aaY

N N N

N N N

N

σ σ σ
σ σ σ⊗ ⊗ ⊗

a aa

Y Y a Y Y Y Y aa

a G d D i G

a I G d I D i I G

e R

 198 

The covariance structure for year was modeled as a repeated measure: Individual ⊗ YR = I e where 199 

IndividualI is an identity matrix of individuals included in the study and Ye is a 3×3 matrix of year error 200 

terms using a general correlation structure implemented in ASReml. The genomic additive relationship 201 

matrix was computed with R/rrBLUP [58] using the VanRaden method [59]: 202 

 203 

where pi is frequency of the positive allele for a single marker column, and H was computed as equal to 204 

centered marker data, . M is an marker matrix with n individuals and m 205 

markers expressed as (-1,0,1) frequency. The dominance relationship matrix was computed using 206 

normalized matrices described by Su et al. [60] and implemented using a custom R program [61]: 207 

 208 

, , , , Y Ya d i a d Yi

1-3Z 4-6Z

1-3Z 4-6Z

2 (1 )i ip p
=

−∑
a

HH'
G

{ } { } 2( 0.5)ij ij iH M p= − − xn m

2 (1 )(1 2 (1 ))i i i ii
p p p p

=
− − −∑

ZZ'
D

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

where the Z matrix is a transformation of the marker matrix, M: 209 

 210 

The epistatic relationship matrix for additive by additive effects was computed by taking the Hadamard 211 

product between , the additive genomic relationship matrix, and itself: . 212 

When a relationship matrix was not positive definite, a small constant of 1e-6 was added to the first 213 

eigenvector, and the matrix was inverted. 214 

The full model included additive, dominance, and epistatic main effects and their interactions with 215 

year and is also called the “ADI model” in this paper. Model fit was assessed by checking for model 216 

convergence, examining studentized residuals for each trait by year combination, and examining the 217 

extended hat matrix for influential observations. The default model convergence criteria for ASReml were 218 

used, in which the final iteration must satisfy the following conditions: a change log likelihood less than 219 

0.002 * previous log likelihood, and the variance parameters estimates change less than 1% from the 220 

previous iteration. The extended hat matrix for linear mixed models is: 221 

'-1WC W  222 

Where 
⎞⎛
⎟⎜

⎝ ⎠

-1
-1

0 0
C = W'R W +

0 G
 and [ ]W = X Z  223 

Influential data points were those with a value greater than 2 times the average value of the diagonal of 224 

the hat matrix excluding zeros. 225 

The statistical significance of main effects and interactions were tested by first generating 226 

reduced models and then performing log-likelihood ratio tests between full and reduced models. To 227 

account for positively-bound variance component estimates, a mixture of Chi-square distributions as 228 

implemented in the R package asremlPlus [62] was used. Non-significant values from the log likelihood 229 

ratio tests were interpreted as the reduced models being as effective as the full model in modeling the 230 

response variable. Heritability numerators were estimated as 2
aσ  for narrow-sense heritability (h2) and as 231 

2 2 2
a d aaσ + σ + σ for broad-sense heritability (H2); both were divided by the sum of the variance components 232 

2 (1 )      if 1

{ } 1 2 (1 )   if 0

2 (1 )      if 1

i i ij

ij i i ij

i i ij

p p m

Z p p m

p p m

⎧− − = −
⎪

= − − =⎨
⎪− − =⎩

aG =aa a aG G Go
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for final heritability estimates. Genetic values were computed as the sum of main effects for a, d and i for 233 

an individual, following the methodology of Kumar et al. [45]. Genotype-by-year effects are the sum of ay, 234 

dy, and iy when all years were used in the estimation. 235 

Model validation 236 

Five-fold cross validation was used where the data set was randomly divided into 5 equal-sized parts 237 

(“folds”), a single fold (20% of the individuals) was removed across all years, and the remaining 238 

observations were used for variance component estimation and prediction of genetic values. The 239 

resultant model was used to predict genetic values of those removed individuals. This process was 240 

repeated for all 5 folds. Observations lacking phenotypic information for a specific year and trait were 241 

excluded from the model-building and validation. Because predictions can be affected by sampling 242 

variance, 5-fold cross validation was repeated 25 times using different randomly generated folds for each 243 

iteration. In addition, cross validation was performed, omitting each of the 66 full-sib families or a year as 244 

validation populations. These latter situations were intended to reflect the situation of predicting genetic 245 

performance for previously unphenotyped individuals that are related to the training population, and for 246 

predicting performance for an unobserved year. Prediction accuracy was assessed by computing 247 

correlation coefficients between predicted genetic values and observed data adjusted for fixed effects. 248 

Other statistics 249 

The statistical significance of year on the models was checked with the Wald test. Genetic-by-year effects 250 

were further explored by estimating genetic values and genetic variance components using a single year 251 

of data. Spearman’s rank-order correlations were conducted to evaluate changes in rank of genetic 252 

values of individuals across years. Pairwise Pearson (r) and Spearman (ρ) correlations between traits 253 

were assessed for the multi-year ADI model. Principal component analyses were conducted on 254 

correlation matrix of genetic values calculated from (1) all individuals used in this study, and (2) only the 255 

cultivars and ancestors (n=48), using 8 independent traits: bloom time, harvest time, pedicel-fruit retention 256 

force, fruit weight, firmness, SSC, TA, and powdery mildew incidence. The first and second principal 257 

components were graphed on a biplot [63], where the rotations for plotting the variables were scaled by 258 

the first eigenvalue. 259 

 260 
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 261 

RESULTS 262 

Distribution of phenotypic data 263 

All trait distributions (consisting of 600-755 data points for each trait) were influenced by the year of data 264 

collection (Fig. 1). Wald test results for year were consistently highly significant for all focus traits across 265 

all models (p < 0.001 in all cases). 266 

The 2010 data visually differed most from the other years, particularly for bloom date, fruit 267 

dimensions, fruit weight, firmness, and SSC. Data in 2010 were also the most sparse compared to data 268 

from other years (Additional File 2). Fruit dimensions and fruit weight had similar distributions across 269 

years. Although the distributions of bloom date and bloom time seemed to differ, the accumulation of 270 

GDD remained relatively stable over the three years. However, GDD accumulation was higher in early 271 

2010 than other years during the critical period of flower bloom (data not shown). 272 

Statistical assumptions and model fit 273 

All models for the focus traits converged. Inspection of the residual plots and quantile-quantile plots signal 274 

that the error terms were independently and identically distributed (results not shown). The extended hat 275 

matrix revealed no influential data points for any of the models.  Appropriate residual patterns were 276 

observed for all models and traits (results not shown), demonstrating no major departures from the 277 

assumption of homoscedasticity. Moderate correlations were observed between the additive, dominance 278 

and epistatic effects within a trait for the full model (r = 0.3 – 0.7). Population structure was observed 279 

among the individuals. In a principal component analysis of the correlation matrix of the SNP data, the 280 

first two components summarized 14% of the variation. There was distinct grouping of the wild accessions 281 

and offspring derived from those wild accessions along the second principal component (data not shown). 282 

Visual inspection of the diagonals and off-diagonals from the realized relationship implies a single 283 

Gaussian distribution of the matrix elements. Thus, the population structure had minimal impact on the 284 

genomic additive relationship matrix (Additional File 3).  285 

Log likelihood ratio tests comparing reduced models with the full ADI model demonstrated that 286 

the full model was not necessary to describe trait variance for any focus trait (Table 1). The main effects-287 

only model that included only additive, dominance, and epistatic effects was significantly different from 288 
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the full model (p-values <0.05) for all focus traits, except for powdery mildew incidence and SSC, which 289 

had notable p-values defined as less than 0.10. Reduced models consisting of single main effects 290 

(additive, dominance or epistatic) or single main effects plus their year interaction term (e.g., additive and 291 

additive-by-year) were highly significant for all traits. This demonstrates that the reduced models did not 292 

adequately capture variation compared to the full model. For most focus traits, genetic models that 293 

included additive, epistatic, additive-by-year and epistasis-by-year effects were not statistically different 294 

from the full model. Thus, dominance and dominance-by-year could be dropped from their genetic models 295 

without significant loss of information. Traits that were exceptions to the above were fruit weight, fruit 296 

dimensions, and bloom date, for which optimal fit was obtained by including dominance in the model. For 297 

all traits, dominance-by-year and epistasis-by-year effects could be removed from the model without 298 

much loss of information. Additive-by-year effects had a statistically significant effect on bloom date, 299 

bloom time, and PFRF (p<0.01). 300 
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Table 1: Log-Likelihood ratio test statistics for reduced models.  301 

Model df Bloom 
Date 

Bloom 
Time 

Harvest 
Date 

Harvest 
Time PFRF Fruit 

Dimensions 
Fruit 

Weight Firmness SSC TA Powdery 
Mildew 

a, d, i, aY, dY, iY 1 0.08 0.46 3.43* 0.28 0.09 2.48‡ 0.11 0.07 0.00 4.82* 0.62 

a, d, i, aY, dY, iY 1 4.92* 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.70 

a, d, i, aY, dY, iY  1 9.80*** 7.80** 0.58 3.36* 6.57** 1.23 1.24 4.80* 2.94* 0.94 0.35 

a, d, i, aY, dY, iY  2 8.02** 16.18*** 66.80*** 64.86*** 6.48* 6.78* 6.12* 65.72*** 16.35*** 27.20*** 24.11*** 

a, d, i, aY, dY, iY  2 8.15** 2.18 3.67‡ 3.27‡ 3.01‡ 27.26*** 28.59** 0.10 0.00 0.00 0.70 

a, d, i, aY, dY, iY  2 38.47*** 27.03*** 21.42*** 26.17*** 18.28*** 36.39*** 23.16*** 20.15*** 17.33*** 16.92*** 13.67*** 

a, d, i, aY, dY, iY  4 44.16*** 38.83*** 151.67*** 148.47*** 28.3*** 60.34*** 88.48*** 93.05*** 17.86*** 32.11*** 63.25*** 
a, d, i, aY, dY, iY 4 69.96*** 70.76*** 114.46*** 112.39*** 33.86*** 66.94*** 40.09*** 109.78*** 45.02*** 63.2*** 43.75*** 
a, d, i, aY, dY, iY  4 65.60*** 41.18*** 66.61*** 73.36*** 45.52*** 143.04*** 132.90*** 47.06*** 28.43*** 21.12*** 33.52*** 

a, d, i, aY, dY, iY 3 55.39*** 27.71*** 9.86** 7.55* 20.12*** 14.62*** 6.66* 25.72*** 5.10‡ 12.73** 4.93‡ 

a, d, i, aY, dY, iY 5 76.22*** 53.20*** 151.67*** 148.47*** 41.51*** 63.50*** 88.83*** 101.90*** 20.63*** 33.93*** 63.25*** 
a, d, i, aY, dY, iY 5 105.34*** 75.84*** 114.46*** 112.39*** 39.95*** 71.64*** 42.22*** 116.05*** 45.32*** 63.59*** 44.52*** 
a, d, i, aY, dY, iY 5 106.64*** 65.35*** 79.69*** 80.30*** 62.65*** 159.6*** 139.02*** 62.46*** 32.09*** 35.70*** 38.6*** 

Log-likelihoods are expressed relative to the full model (a, d, i, aY, dY, iY). Statistical significance is labeled as ‡ = p < 0.10, * = p < 0.05, ** = p < 302 
0.01, *** = p < 0.001, marking if the reduced model is statistically different from the full model using the chi-square distribution (df = degrees of 303 
freedom). The terms in the models, a, d, i refer to effects from additive, dominance, and epistatic sources, respectively. The terms aY, dY, iY refer 304 
to additive-by-year, dominance-by-year, and epistasis-by-year effects, respectively. The bolded terms in the column “Model” indicate components 305 
included in the reduced model, while grey terms have been excluded.306 
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Genetic variance and predictive ability of full model 307 

Variance component estimates from the full model indicated moderate to high broad-sense heritabilities 308 

across the focus traits, ranging from 0.47 for pedicel-fruit retention force to 0.83 for harvest date (Table 309 

2). Narrow-sense heritabilities ranged from 0.20 for PFRF to 0.37 for fruit dimensions. Epistasis was the 310 

single largest genetic variance component for most traits: bloom time (28%), harvest date (48%), harvest 311 

time (48%), firmness (49%), SSC (27%), TA (33%), and powdery mildew incidence (42%). Additive 312 

variance was the largest component for bloom date (37%), PFRF (20%), and fruit dimensions (37%). 313 

Dominance was the largest variance component only for fruit weight (34%); in contrast, dominance 314 

represented less than 1% of trait variance for firmness, SSC, TA, and powdery mildew incidence. 315 

Genotype-by-year effects were less than 10% for all traits except bloom date (aY = 11%) and TA (iY = 316 

14%). Residual variance of most traits was less than 25% of phenotypic variance, except for PFRF (45%) 317 

and SSC (48%). Variances and standard errors for all components and traits, and variance percentages, 318 

are provided in Additional Files 4 and 5, respectively.  319 
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Table 2: Variance components (%), narrow-sense heritability ( 2h ), broad-sense heritability (
2H ), the coefficient of correlation ( r ), the coefficient 320 

of correlation after cross validation ( CVr ), and the total number of observations for model building (N).  321 

 

Bloom 
Date 

Bloom 
Time 

Harvest 
Date 

Harvest 
Time PFRF Fruit 

Dimensions 
Fruit 

Weight Firmness SSC TA Powdery 
Mildew 

variance component (%) 

additive (A) 33.20 25.45 27.39 27.87 19.83 37.40 30.76 27.49 21.59 27.19 28.31 

dominance (D) 10.80 11.48 7.73 6.68 11.10 26.80 33.61 0.42 0.00 0.00 0.00 

epistasis (I) 17.47 27.84 47.66 47.90 15.62 8.36 12.08 48.96 26.76 32.81 41.52 

A x Year 11.16 8.10 1.18 2.89 6.30 2.98 2.26 4.57 4.08 3.42 1.57 

D x Year 4.23 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 1.19 

I x Year 2.06 3.63 5.71 1.65 2.31 8.03 1.14 0.94 0.00 14.15 4.33 

error 21.08 23.48 10.33 13.02 44.84 16.42 19.62 17.62 47.56 22.43 23.07 

 trait heritability and genome-estimated breeding values accuracy 

h2 0.33 0.25 0.27 0.28 0.20 0.37 0.31 0.27 0.22 0.27 0.28 

H2 0.61 0.65 0.83 0.82 0.47 0.73 0.76 0.77 0.48 0.60 0.70 

r 0.88 0.90 0.97 0.97 0.83 0.94 0.95 0.94 0.82 0.88 0.93 

rCV, 5-fold 0.56 0.48 0.78 0.79 0.59 0.78 0.77 0.69 0.46 0.42 0.68 

rCV, -year 0.58 0.48 0.88 0.88 0.58 0.82 0.83 0.76 0.47 0.50 0.74 

rCV, -family 0.55 0.46 0.74 0.74 0.55 0.76 0.70 0.66 0.38 0.31 0.58 

N 644 644 665 665 759 774 764 763 768 577 604 

.
C

C
-B

Y
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted D
ecem

ber 13, 2017. 
; 

https://doi.org/10.1101/233296
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


16 
 

Correlations between adjusted phenotypic data and genetic values from the ADI model were high, 0.82-322 

0.97 for all focus traits (Table 2). Coefficients of correlation under cross validation were very similar for 5-323 

fold cross validation and when a year was left out. Correlations for cross validation that omitted full-sib 324 

families were the lowest among the three cross validation scenarios. Across all cross-validation 325 

scenarios, those traits with the highest broad-sense heritabilities, fruit dimensions, fruit weight, firmness, 326 

harvest date, and harvest time, had the most consistently high prediction accuracies (r > 0.65). The 327 

lowest prediction accuracies were observed for SSC and TA, which never exceeded 0.50. 328 

Heritability and predictive ability of reduced models 329 

Broad-sense heritability was largely unchanged across the reduced models (ADI to AI and AD) for all 330 

focus traits (Fig. 2). Narrow-sense heritability gradually increased with decreasing model complexity for all 331 

focus traits, from the full model to the AD model and from the AD to the A model. Narrow-sense 332 

heritability was highly similar in the AI and ADI models for all traits except for fruit dimensions and fruit 333 

weight, in which the AI h2 was noticeably higher in the AI model compared to the ADI and AD models 334 

(Fig. 2). In the additive effects-only model (A), H2 was similar in value to the h2 of the other models.  335 

Predictive power, as measured by r2, was consistent between the ADI model and the AI model for 336 

all traits (Fig. 2). The predictive power decreased slightly for the AD model compared to the full model, 337 

and decreased slightly more for the A model compared to the AD model. The r2 values under 5-fold cross 338 

validation varied little across genetic models for all traits, only decreasing slightly in the AD and A reduced 339 

models for harvest date, harvest time, and firmness. Spearman rank correlations between the full and 340 

reduced models indicated minimal changes in rankings of individuals when using the AD and AI models (r 341 

= 0.96–1.00) and small changes in the A model compared to ADI model (r = 0.91–0.96) for genetic values 342 

and breeding values (Additional File 2).  343 

Single year analysis 344 

Variance components estimated with a single year of data varied substantially across years for all focus 345 

traits (Fig. 3). For all traits except harvest date and harvest time, the percentages of additive variance 346 

differed by 10% or more across years. Additive variance for harvest date and harvest time varied the least 347 

among the focus traits, 37 to 44% and 37 to 47%, respectively. Dominance variance components for SSC 348 

and TA were close to zero (<0.0001%) across all years, while at the other extreme, dominance variation 349 
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for fruit dimensions was always greater than 20%. Epistatic variance consistently composed a large 350 

percentage of genetic variance for firmness (>32%) and powdery mildew incidence (>49%). Genotype-by-351 

year effects were greatest for TA (18%), bloom date (18%), and bloom time (12%).  352 

Rankings of individuals by genetic values estimated from each a single year of data significantly 353 

differed from the multi-year genetic rankings in Spearman rank correlation tests (p <0.001, Additional File 354 

2). Rank correlations between the 2010-derived predictions and the multi-year predictions were lower 355 

than the subsequent years (2010: 0.35–0.63; 2011: 0.58–0.92; 2012: 0.85–0.97). However, correlations 356 

between single-year breeding values and phenotype implied a better fit for all years and traits than the 357 

single-year breeding values with their multi-year counterparts (ρ = 0.64–1.00) (Additional File 2). 358 

Correlations among trait genetic values  359 

The genetic values of the focus traits had weak to moderate positive correlations with each when 360 

considering only unreleased offspring and selection, with some exceptions (Table 3). Fruit weight and fruit 361 

dimensions, harvest date and harvest time, and bloom date and bloom time were all highly correlated 362 

pairs of traits (r > 0.90, Table 3). SSC was negatively correlated with all focus traits except TA. Titratable 363 

acidity was also negatively correlated with fruit dimensions, fruit weight and powdery mildew incidence. In 364 

a biplot of the correlation matrix of the named cultivars using eight independent traits, the first two 365 

principal components summarized 55% of the variance (Fig. 4). All variables but SSC and TA skewed to 366 

the left, corresponding to the negative correlations between SSC and all variables except TA. Wild 367 

ancestors and wild offspring were on the right side of the biplot corresponding to their high SSC, low 368 

powdery mildew incidence, and low fruit weight. Additional figure 6 further separates the sweet cherry 369 

founders and derived cultivars by fruit weight and SSC content.  370 
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Table 3: Pairwise trait correlations and covariances between genetic values for sweet cherry selections and unselected offspring. 371 

 

Bloom 
Date 

Bloom 
Time 

Harvest 
Date 

Harvest 
Time 

PFRF 
Fruit 

Dimensions 
Fruit 

Weight 
Firmness SSC TA 

Powdery 
Mildew 

Bloom Date 3.507 0.897*** 0.317*** 0.314*** 0.301*** 0.136* 0.196*** 0.223*** -0.101 0.133* 0.184** 

Bloom Time 18.17 117.1 0.213*** 0.208*** 0.198*** 0.087 0.130* 0.134‡ -0.071 0.064 0.218*** 

Harvest Date 3.446 13.38 33.72 0.998*** 0.255*** 0.340*** 0.346*** 0.547*** -0.364*** 0.107 0.220*** 

Harvest Time 50.93 195.4 502.2 7508 0.251*** 0.334*** 0.341*** 0.549*** -0.355*** 0.106 0.225*** 

PFRF 74.88 283.9 196.2 2883 17630 0.566*** 0.603*** 0.465*** -0.161*** 0.173‡ 0.185*** 

Fruit Dimensions 0.3082 1.142 2.394 35.10 91.09 1.468 0.946*** 0.511*** -0.507*** -0.210*** 0.462*** 

Fruit Weight 0.9209 3.695 5.042 74.33 201.1 2.880 6.311 0.514*** -0.435*** -0.208*** 0.505*** 

Firmness 17.26 59.91 131.1 1964 2546 25.55 53.26 1702 -0.392*** 0.065 0.387*** 

SSC -0.3403 -1.387 -3.793 -55.10 -38.44 -1.101 -1.958 -28.99 3.214 0.267*** -0.340*** 

TA 0.02486 0.06856 0.06204 0.9132 2.295 -0.02541 -0.05219 0.2668 0.04778 0.009934 -0.215** 

Powdery Mildew 0.3509 2.409 1.304 19.91 25.11 0.5707 1.295 16.28 -0.6215 -0.02181 1.041 
Correlations and covariances are given in the upper triangle and lower triangle, respectively, and trait variances are bolded on the diagonal. 372 
Statistical significance is labeled as ‡ = p < 0.10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, signaling if the correlations are different from zero.373 
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374 

DISCUSSION 375 

Results indicated high broad-sense heritability for all of the focus traits and also illuminated the 376 

importance of non-additive variation in the sweet cherry traits studied. A poorly-fitting genetic prediction 377 

model can mispresent the genetic variances of traits and the potential for genetic gain.  378 

Importance of model fit and consequences for predictive ability  379 

This study demonstrated that for most traits, non-additive sources of variation comprised an equal or 380 

larger portion of the genetic variance than additive variance. A genetic model including additive, epistatic, 381 

additive-by-year and epistasis-by-year effects was usually the most parsimonious approach for capturing 382 

major sources of variation. Exceptions were fruit dimensions and fruit weight, which instead were best 383 

described by a model with additive, dominance and additive-by-year effects, and harvest date, best 384 

described by a main effects-only model. 385 

Using an incorrect model to determine genome-wide breeding values can provide misleading 386 

information for making breeding decisions. Table 4 illustrates the consequences of using a poorly-fitting 387 

reduced model for estimating breeding values. Breeding values were often larger in relative magnitude in 388 

the reduced models compared to the full model, which can exaggerate genetic gains possible in the 389 

population. For example, days to maturity in an Ambrunes/Sweetheart cross would be overestimated by 390 

twice as many days in the additive-only model compared to the ADI model. Likewise, crosses with the 391 

wild accession MIM 23 were predicted to result in midparent values of fruit size twice as small in the A 392 

model compared to the ADI model (Table 4). The inflation of additive variance when non-additive sources 393 

are omitted has been documented in several other species including apple, loblolly pine, white spruce 394 

cassava, cattle, pigs, Coho salmon, and rainbow trout [27,45,60,64–68]. 395 

  396 
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Table 4: Breeding values and midparent values under different genetic models demonstrated with several 397 
individuals and traits.  398 

Trait Model 
Parental values Midparent values  

Ambrunes Sweetheart MIM 23 Ambrunes/ 
Sweetheart 

Ambrunes/ 
MIM 23 

Sweetheart/ 
MIM 23 

Harvest Date 
(-15.82, 16.35) 

A 14.64 8.43 -9.93 11.53 2.36 -0.75 
AD 8.79 5.57 -6.34 7.18 1.23 -0.38 
AI 7.36 4.76 -6.60 6.06 0.38 -0.92 
ADI 6.48 4.05 -5.73 5.27 0.38 -0.84 

Fruit Weight  
(-11.45, 5.06) 

A -1.86 1.64 -10.67 -0.11 -6.26 -4.51 
AD -0.87 0.95 -4.58 0.04 -2.73 -1.82 
AI -2.55 1.98 -8.80 -0.28 -5.67 -3.41 
ADI -1.11 1.06 -4.72 -0.03 -2.91 -1.83 

SSC 
(-3.77, 5.61) 

A -1.07 -1.98 3.38 -1.53 1.15 0.70 
AD -0.84 -2.00 2.93 -1.42 1.05 0.47 
AI 0.10 -1.81 2.53 -0.86 1.31 0.36 
ADI 0.10 -1.83 2.48 -0.86 1.29 0.33 

Powdery 
Mildew 
Incidence 
(-2.72, 1.99) 

A 0.13 1.28 -2.38 0.70 -1.13 -0.55 
AD 0.39 0.83 -1.67 0.61 -0.64 -0.42 
AI -0.31 0.89 -1.78 0.29 -1.05 -0.45 
ADI -0.28 0.87 -1.74 0.29 -1.01 -0.44 

Intervals given below each trait are the range of values in the additive-only model observed across all 399 
individuals. In the column “Model”, A, D, and I refer to additive, dominance, and epistatic effects, 400 
respectively, and their accompanying genotype-by-year interactions. 401 

 402 

If genetic values are used to select individuals to be clonally propagated for further trialing or 403 

cultivar release, then the genetic model has a lower, perhaps negligible, influence on prediction of total 404 

genetic performance. Ceballos et al [69] argued that using total genetic values from additive and non-405 

additive variance components provides greater potential for genetic gain under clonal selection. However, 406 

our results showed that the estimated broad-sense heritability and the genetic values of sweet cherry 407 

individuals are largely unchanged across the different genetic models. This demonstrates that there is 408 

effectively no change in genetic gain if a more complex model is used for identifying high-performing 409 

individuals (Figure 2, Additional File 2).  410 

Including year as a main effect was warranted in this study, given the statistically significant effect 411 

of year on all traits. However, the effect of including genotype-by-year interactions varied by the trait and 412 

genetic variance component. Genotype-by-year interactions were generally of much smaller magnitude 413 

than the main genetics effects and largely absent for dominance effects (Table 1, Fig. 3). Nevertheless, 414 

year had a major effect on genetic effects estimates and was included as a fixed variable to obtain robust 415 

predictions across years. Year often has a statistically significant effect on the traits of sweet cherry and 416 
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other rosaceous crops, including sweet cherry pedicel-fruit retention force [70], apple fruit texture [71], 417 

sugar content in peach and nectarine [72], and several phenological and fruit quality traits in strawberry 418 

[73].  419 

This study demonstrated the need for a training population to fully capture variation of the target 420 

population in order to maximize prediction accuracy. The single year analysis showed that although a 421 

model built using a single year of data could be used accurately to predict individuals evaluated in that 422 

year, it could not be easily extrapolated to individuals whose genetic values lie outside the distribution of 423 

the training data (Table 2, Additional File 2). The GBLUP approach relies on information from relatives to 424 

improve the accuracy of the estimates [74]. Because there were often sparse observations for a single 425 

year, sampling error biased the single-year estimates and resulted in models that fit the data within each 426 

year, but not across years. These effects were likely exacerbated with wild accession, distantly related 427 

cultivars and derivatives from both groups. However, the true pairwise genetic covariance between the 428 

distantly related germplasm is estimated with less reliability with the realized relationship matrix than more 429 

closely related germplasm [75].  430 

Genetic architecture of focus traits in sweet cherry 431 

This study confirmed the extensive opportunity in North American sweet cherry germplasm for genetic 432 

improvement of the phenological traits of harvest timing and, to lesser extent, bloom timing. Previous QTL 433 

studies for fruit maturity date across several Prunus species determined bloom timing and harvest timing 434 

to be highly heritable with a large-effect QTL on LG4 [76]. Our findings also demonstrate the large broad-435 

sense heritability for these traits – reaching a ceiling of 0.83 for harvest time and 0.65 for bloom date (Fig. 436 

2). There appears to be little advantage to using GDD to Julian days, since pairs of phenological traits for 437 

bloom and harvest timing displayed highly similar genetic architecture and predictive accuracy. The data 438 

were all gathered from a single location, in which GDD did not vary dramatically during the years of 439 

evaluation. This may explain why GDD did not improve the model predictive ability over Julian days (Fig 440 

2, Table 2). Bloom timing has become increasingly important as a trait relevant to productivity, since 441 

variable climatic patterns in temperate regions can result in earlier flowering and an increased risk of floral 442 

freeze damage [77]. Furthermore, since sweet cherries are a fresh market product that is subject to rapid 443 

postharvest deterioration, it is crucial to for sweet cherry breeders and producers to understand  the 444 
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expected time frame for fruit maturation [76]. These results may help sweet cherry breeders identify the 445 

best parents in order to target a harvest timing window. 446 

Moderate prospects were observed for genetic improvement of pedicel-fruit retention force (h2 = 447 

0.20, H2 = 0.46, Table 2), where a low PFRF value is sought for mechanical harvest systems. Positive 448 

correlations observed between PFRF and fruit dimensions, fruit weight, and firmness (Table 3) contrasted 449 

with findings by Zhao et al. [70], in which PFRF was largely uncorrelated with firmness, fruit diameter, or 450 

fruit length. However, that study was smaller in scope, using only 30 named cultivars and 26 unselected 451 

F1 progeny.  452 

The potential for genetic gain in fruit dimensions and fruit weight, two highly correlated 453 

measurements of fruit size, was perhaps the highest among all focus traits due to large additive and 454 

dominance effects (Table 2). These results are consistent with previous sweet cherry studies that showed 455 

high correlations between fruit size measurements and high H2 [18,78–80]. In those studies, six putative 456 

QTLs influencing fruit size in cherry were identified and together accounted for 76–88% of the phenotypic 457 

variance. Because fruit weight was highly correlated with fruit dimensions in the present study (Table 3, 458 

Fig. 4) and can be evaluated rapidly, we considered it an effective proxy for fruit dimensions and general 459 

fruit size. 460 

The high broad-sense heritability for firmness (0.77) (Table 2) was consistent with estimates from 461 

a study conducted on a biparental population in which H2 was estimated at 0.78 to 0.85 [80]. In our study, 462 

the moderate positive correlations (r = 0.51) between fruit firmness and fruit dimensions among the 463 

unreleased progeny suggests genetic linkage among loci influencing these traits. This outcome was in 464 

contrast to that of a multi-year QTL study, in which the Pearson correlations between fruit firmness and 465 

fruit weight ranged from -0.64 to -0.67 for Regina × Lapins and -0.40 to -0.15 for Regina × Garnet F1 466 

families [80]. Those correlations are likely due to unique linkage in Regina, Garnet and Lapins. The 467 

correlations reported here may have also been influenced by the 77 progeny derived from the three wild 468 

parents: MIM 17, MIM 23, and NY54. These individuals all had high SSC, small fruit size, and low fruit 469 

firmness in their estimated genetic values relative to the population mean (Additional File 7).  470 

Expectations for genetic improvement in SSC were moderately positive. Narrow-sense heritability 471 

was estimated at 0.22, typical of the other focus traits in this study, where h2 was most often between 0.2 472 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


23 
 

and 0.3 (Table 2). Broad-sense heritability of SSC (H2 = 0.48) was similar to that of  other stone fruit: 473 

approximately 0.50 for apricot [81], 0.72 for peach [82], and 0.49 to 0.55 for apple [33]. Previous results 474 

confirm SSC had moderately negative correlation with fruit dimensions and fruit weight (-0.55 and -0.48, 475 

respectively). Our results are consistent with previous research, suggesting that SSC is directly related to 476 

photoassimilate partitioning and hence inversely correlated with fruit size [83,84]. Titratable acidity, the 477 

second most important contributor to fruit flavor after SSC, had similar variance component proportions 478 

and predictive accuracy to SSC. Major QTLs for TA have been detected on linkage groups 1, 5, and 6,  479 

explaining 99% of phenotypic variation in an F1 biparental peach population that was segregating for a 480 

large-effect locus [85]. These QTLs have not been reported in cherry. The broad-sense heritability of 481 

sweet cherry TA was lower in this study at H2 = 0.60 and h2 = 0.27. However, the population used in 482 

Dirlewanger et al [85] was created expressly to detect QTLs associated with TA, which might explain its 483 

very high H2. 484 

The large H2 and h2 estimated for foliar powdery mildew incidence indicated excellent potential for 485 

genetic improvement, but the lack of genome-wide dominance effects was surprising (Table 2). Powdery 486 

mildew resistance in U.S. sweet cherry germplasm was first traced to a single dominant allele  in the 487 

ancestor PMR-1 [86,87]. There may be evidence for other sources of powdery mildew resistance among 488 

Pacific Northwest-adapted germplasm (Zhao et al, In Prep). Haploblock analysis might be required to 489 

detect dominance effects, which appeared to be absorbed by the other relationship matrices. The large 490 

epistatic component (42%) determined for this trait in sweet cherry was consistent with resistance to other 491 

plant diseases such as soybean to sudden death disease (causative agent Fusarium virguliforme) and 492 

rice to rice blast disease (Pyricularia oryzae) [88–90]. 493 

Implications for sweet cherry genetic improvement 494 

The improvement in prediction accuracy when incorporating epistasis into the genetic model is 495 

consistent with studies on apple, Eucalyptus, wheat, cassava and maize [45,68,91–96]. Additive by 496 

additive epistasis is difficult to untangle from additive main effects due to selection, assortative mating 497 

and nongenetic covariances [44], all common facets of many breeding programs. The genomic 498 

relationship matrix for epistasis used here is considered to be an approximation since the assumption of 499 

random mating is not met [60,97]. The additive and dominance genomic relationship matrices used in this 500 
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study were not necessarily orthogonal due to linkage disequilibrium between SNPs [27], and the modest 501 

correlations between the additive dominance, and epistatic values were evidence of covariance between 502 

the different genetic effects. 503 

Epistasis has not typically been targeted for parental selection in genetic improvement programs, 504 

although it can be captured indirectly with additive effects if epistatic alleles are fixed through inbreeding 505 

or drift [68,98]. Allele fixation is challenging in predominantly heterozygous crop such as sweet cherry 506 

whose high heterozygosity is maintained by a self-incompatibility mechanism [99]. However, knowledge 507 

of allele phasing, a feature of the RosBREED sweet cherry Crop Reference Set, could enable the capture 508 

of valuable epistatic interactions through known allelic interactions for both clonal performance and 509 

breeding parent utility. 510 

Distributions of genome-estimated breeding values from the ADI model (Additional File 7) reveals 511 

a broad base of genetic diversity and opportunity for cherry improvement. This study confirmed that the 512 

cultivar Moreau has lowest breeding values for harvest date, denoting earliness. Early Burlat and several 513 

unreleased offspring mature several days after Moreau. The highest breeding values for harvest date, 514 

designating late-season maturation, included many unreleased offspring with higher breeding values than 515 

the highest-value cultivar (Ambrunes), particularly among the families Fam35 and Fam30 that might be 516 

useful as parents. There are also many unreleased offspring with desirable breeding values for certain 517 

traits. Families Fam1 and Fam21 have high breeding values for SSC and TA. Families Fam35 and 518 

Fam16have high fruit weight and firmness breeding values, in addition to the cultivars Cowiche, 519 

Sweetheart and Selah. The breeding values reported here will enable breeders to identify valuable 520 

parents earlier in the breeding program than through phenotyping alone. Identification of parents earlier in 521 

a breeding program is a major application of genomic selection [100] and has been widely used for many 522 

crops including long-lived perennial trees [40,45,67,101–103]. 523 

Using genomic selection to skip a breeding phase has also been proposed or implemented in 524 

several crops including apple, loblolly pine, Eucalyptus and several self-pollinated and hybrid crops 525 

[29,102,104–107]. The genetic values among unreleased progeny and selections described here 526 

revealed several promising individuals with commercial potential (Additional File 7, results not shown for 527 

selections). Because sweet cherry maintains the same genetic composition and genetic potential through 528 
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the breeding phases, genetic values obtained early in the breeding process will not change due to 529 

recombination. Knowing the genetic potential of an individual will help cherry breeders discard low-530 

performing individuals and advance selections to the next phase with strong evidence. Knowledge of the 531 

genetic potential of a candidate selection may enable breeders to skip a cycle of field evaluation, thus 532 

increasing the pace of cultivar release and saving resources that can be diverted elsewhere. Given the 533 

lengthy time period for developing a sweet cherry cultivar, shortening this process may represent 534 

considerable savings.  535 

CONCLUSIONS 536 

The genetic values and the improved understanding of the genetic architecture of important traits 537 

in sweet cherry obtained from this multi-year data set of a large pedigree-connected population represent 538 

a clear opportunity for genetic improvement. This application – estimating genetic variance components 539 

and genome-enabled genetic values – extended the original purpose of the RosBREED sweet cherry 540 

Crop Reference Set: QTL detection and validation. We plan to update the genetic models by 541 

incorporating new phenotypic data on the existing germplasm, adding new individuals and expanding the 542 

genome-wide SNP set for denser genome coverage. Further research is needed to validate the accuracy 543 

of the genetic predictions on an independent data set and to understand the extent of genotype-by-544 

environment effects for the obtained breeding values and genetic values.    545 

DECLARATIONS 546 

Ethics approval and consent to participate 547 

Not applicable. 548 

Consent for publication 549 

Not applicable.  550 

Availability of data and material 551 

All data used in the analyses are available at the Genome Database for Rosaceae at www.rosaceae.org 552 

[108] (persistent web link available upon article acceptance). 553 

Competing interests 554 

The authors declare no competing interests. 555 

Funding 556 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


26 
 

RosBREED: Combining disease resistance with horticultural quality in new rosaceous cultivars, provided 557 

by the USDA-NIFA Specialty Crop Research Initiative (2014-51181-22378) 558 

Authors' contributions 559 

Julia Piaskowski was responsible for the bulk of the data analysis and interpretation. Craig Hardner 560 

advised on model building interpretation. Lichun Cai prepared the SNP data and Yungyang Zhao 561 

gathered phenotypic data. Amy Iezzoni and Cameron Peace contributed to study design and 562 

interpretation. All authors contributed to manuscript preparation.  563 

Acknowledgements 564 

We gratefully acknowledge our funding source, RosBREED: Combining disease resistance with 565 

horticultural quality in new rosaceous cultivars, provided by the USDA-NIFA Specialty Crop Research 566 

Initiative (2014-51181-22378).  We also gratefully acknowledge the contributions of an anonymous 567 

reviewer via the Peerage of Science review process, and Laura Giradeau for manuscript editing.  568 

ADDITIONAL FILES 569 

Seven supplementary materials accompany this manuscript: Additional File 1 includes germplasm 570 

information on all individuals included in the study; Additional File 2 lists Spearman rank correlations by 571 

year and model and the number of observations for each year; Additional File 3 is the additive 572 

relationship matrix diagonals and off-diagonals, labeled by relationship to wild germplasm; Additional File 573 

4 lists all variances and standard errors for all traits whose models converged; Additional File 5 lists 574 

percent variance for all components and heritability for all traits whose models converged; Additional File 575 

6 is a biplot of the cultivars and ancestors; Additional File 7 lists breeding values, dominance values and 576 

genetic values for all individuals except selections and all traits whose models converged. An online app 577 

for exploring the breeding and genetic values presented in Additional File 7 is available at 578 

<https://jpiaskowski.shinyapps.io/cherry_gebv_xplorr/>. 579 

  580 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

REFERENCES 581 

1. FAOSTAT Data [Internet]. FAOSTAT. [cited 2017 Sep 10]. Available from: 582 
http://www.fao.org/faostat/en/#data 583 

2. National Statistics for Cherry [Internet]. NASS. [cited 2017 Sep 10]. Available from: 584 
https://quickstats.nass.usda.gov/results/A8988197-374E-3950-BA97-9CBECA511544?pivot=short_desc 585 

3. Sweet Cherry Production Up 36 Percent [Internet]. NASS. [cited 2017 Sep 10]. Available from: 586 
https://www.nass.usda.gov/Statistics_by_State/Washington/Publications/Fruit/2017/CH06.pdf 587 

4. Yue C, Gallardo RK, Luby JJ, Rihn AL, McFerson JR, McCracken V, et al. An evaluation of U.S. tart 588 
and sweet cherry producers trait prioritization: evidence from audience surveys. HortScience. 589 
2014;49:931–7.  590 

5. Zheng X, Yue C, Gallardo K, McCracken V, Luby J, McFerson J. What attributes are consumers 591 
looking for in sweet cherries? Evidence from choice experiments. Agric. Resour. Econ. Rev. 592 
2016;45:124–42.  593 

6. Miller D, Casavant K, Buteau J. An analysis of Japanese consumer preferences for Pacific Northwest 594 
and Japanese sweet cherries. 1986. Report No.: XB0974.  595 

7. Crisosto CH, Crisosto GM, Metheney P. Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly 596 
dependent on fruit SSC and visual skin color. Postharvest Biol. Technol. 2003;28:159–67.  597 

8. Hu Y. Sensory influences on consumers’ willingness to pay: the apple and cherry markets [Doctoral 598 
Dissertation]. [Pullman, WA]: Washington State University; 2007.  599 

9. Gallardo RK, Li H, McCracken V, Yue C, Luby J, McFerson JR. Market intermediaries’ willingness to 600 
pay for apple, peach, cherry, and strawberry quality attributes. Agribusiness. 2015;31:259–80.  601 

10. Gallardo RK, Li H, Yue C, Luby J, McFerson JR, McCracken V. Market intermediaries’ ratings of 602 
importance for Rosaceous fruits’ quality attributes. Int. Food Agribus. Manag. Rev. 2015;18:121–54.  603 

11. Sweet Cherries Grades and Standards [Internet]. USDA Agric. Mark. Serv. [cited 2017 Feb 1]. 604 
Available from: https://www.ams.usda.gov/grades-standards/sweet-cherries-grades-and-standards 605 

12. Olmstead JW, Ophardt DR, Lang GA. Sweet cherry breeding at Washington State University. Acta 606 
Hortic. 2000;103–10.  607 

13. Oraguzie NC, Watkins CS, Chavoshi MS, Peace C. Emergence of the Pacific Northwest sweet cherry 608 
breeding program. Acta Hortic. 2017;73–8.  609 

14. Haldar S, Haendiges S, Edge-Garza D, Oraguzie N, Olmstead J, Peace C. Applying genetic markers 610 
for self-compatibility in the WSU sweet cherry breeding program. ISHS Acta Hortic. [Internet]. 2009;859. 611 
Available from: http://www.actahort.org/books/859/859_45.htm 612 

15. Sandefur P, Oraguzie N, Peace C. A DNA test for routine prediction in breeding of sweet cherry fruit 613 
color, Pav-R f -SSR. New Strateg. Plant Improv. 2016;36:1–11.  614 

16. Quero-García J, Campoy JA, Castède S, Pitiot C, Barreneche T, Lerigoleur-Balsemin E, et al. 615 
Breeding sweet cherries at INRA-Bordeaux: from conventional techniques to marker-assisted selection. 616 
Acta Hortic. 2017;1–14.  617 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

17. Iezzoni A. Variance components and sampling procedures for fruit size and quality in sour cherry. 618 
HortScience. 1986;21:1040–2.  619 

18. Rosyara U, Bink MAM, van de Weg E, Zhang G, Wang D, Sebolt A, et al. Fruit size QTL identification 620 
and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of 621 
sweet cherry. Mol. Breed. 2013;32:875–87.  622 

19. Srivastava K, Verma M, Ahmad N, Ravi S, Ahmad S. Genetic variability and divergence analysis in 623 
sweet cherry (Prunus avium L.). Indian J. Hortic. 2014;71:156–61.  624 

20. Besford RT, Hand P, Peppitt SD, Richardson CM, Thomas B. Phase Change in Prunus avium: 625 
differences between juvenile and mature shoots Identified by 2-dimensional protein separation and in 626 
vitro translation of mRNA. J. Plant Physiol. 1996;147:534–8.  627 

21. Henderson CR. Sire evaluation and genetic trends. J. Anim. Sci. 1973;1973:10–41.  628 

22. Lynch M, Walsh B. Genetic and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates, 629 
Inc; 1998.  630 

23. E Silva FF, Viana JMS, Faria VR, de Resende MDV. Bayesian inference of mixed models in 631 
quantitative genetics of crop species. 2013;126:1749–61.  632 

24. Henderson CR. Use of relationships among sires to increase accuracy of sire evaluation. J. Dairy Sci. 633 
1975;58:1731–8.  634 

25. Hayes B, Visscher P, Goddard M. Increased accuracy of artificial selection by using the realized 635 
relationship matrix. Genet. Res. [Internet]. 2009;91. Available from: 636 
http://dx.doi.org/10.1017/S0016672308009981 637 

26. Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and covariance of 638 
individuals within the genomic selection scope. Genetics. 2013;195:1223–30.  639 

27. Muñoz PR, Resende MFR, Gezan SA, Resende MDV, de los Campos G, Kirst M, et al. Unraveling 640 
additive from non-additive effects using genomic relationship matrices. Genetics [Internet]. 2014; 641 
Available from: http://www.genetics.org/content/early/2014/10/15/genetics.114.171322.abstract 642 

28. Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship Information on genome-643 
assisted breeding values. Genetics. 2007;177:2389–97.  644 

29. Vela-Avitua S, Meuwissen THE, Luan T, Odegard J. Accuracy of genomic selection for a sib-645 
evaluated trait using identity-by-state and identity-by-descent relationships. Genet. Sel. Evol. GSE. 646 
2015;47:9.  647 

30. Junqueira VS, Cardoso FF, Oliveira MM, Sollero BP, Silva FF, Lopes PS. Use of molecular markers 648 
to improve relationship information in the genetic evaluation of beef cattle tick resistance under pedigree-649 
based models. J. Anim. Breed. Genet. 2017;134:14–26.  650 

31. Durel CE, Laurens F, Fouillet A, Lespinasse Y. Utilization of pedigree information to estimate genetic 651 
parameters from large unbalanced data sets in apple. Theor. Appl. Genet. 1998;96:1077–85.  652 

32. de Souza VAB, Byrne DH, Taylor JF. Predicted breeding values for nine plant and fruit characteristics 653 
of 28 peach genotypes. J. Am. Soc. Hortic. Sci. 2000;125:460–5.  654 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

33. Kouassi A, Durel C-E, Costa F, Tartarini S, van de Weg E, Evans K, et al. Estimation of genetic 655 
parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in 656 
Europe. Tree Genet. Genomes. 2009;5:659–72.  657 

34. Stephens MJ, Alspach PA, Beatson RA, Winefield C, Buck EJ. Genetic parameters and breeding for 658 
yield in red raspberry. J. Am. Soc. Hortic. Sci. 2012;137:229–35.  659 

35. Whitaker VM, Osorio LF, Hasing T, Gezan S. Estimation of genetic parameters for 12 fruit and 660 
vegetative traits in the University of Florida strawberry breeding population. J. Am. Soc. Hortic. Sci. 661 
2012;137:316–24.  662 

36. Fresnedo-Ramírez J, Crisosto CH, Gradziel TM, Famula TR. Pedigree correction and estimation of 663 
breeding values for peach genetic improvement. Acta Hortic. 2015;249–56.  664 

37. Gezan SA, Osorio LF, Verma S, Whitaker VM. An experimental validation of genomic selection in 665 
octoploid strawberry. Hortic. Res. 2017;4:16070.  666 

38. Tancred SJ, Zeppa AG, Cooper M, Stringer JK. Heritability and patterns of inheritance of the ripening 667 
date of apples. HortScience. 1995;30:325–8.  668 

39. Hardner CM, Kumar S, Peace CM, Luby J, Evans KM. Reconstructing relationship matrices from 669 
dense SNP arrays for the prediction of genetic potential in unreplicated multilocation plantings of apple 670 
progeny. Acta Hortic. 2016;275–82.  671 

40. Furlani RCM, Moraes MLT de, Resende MDV de, Furlani Junior E, Gonçalves P de S, Valério Filho 672 
WV, et al. Estimation of variance components and prediction of breeding values in rubber tree breeding 673 
using the REML/BLUP procedure. Genet. Mol. Biol. 2005;28:271–6.  674 

41. Hardner CM, Healey AL, Downes G, Herberling M, Gore PL. Improving prediction accuracy and 675 
selection of open-pollinated seed-lots in Eucalyptus dunnii Maiden using a multivariate mixed model 676 
approach. Ann. For. Sci. 2016;73:1035–46.  677 

42. Imai A, Kuniga T, Yoshioka T, Nonaka K, Mitani N, Fukamachi H, et al. Evaluation of the best linear 678 
unbiased prediction method for breeding values of fruit-quality traits in citrus. Tree Genet. Genomes. 679 
2016;12:119.  680 

43. Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S, et al. Genome-wide 681 
association study and genomic prediction in citrus: Potential of genomics-assisted breeding for fruit 682 
quality traits. Sci. Rep. 2017;7:4721.  683 

44. Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for 684 
complex traits. PLOS Genet. 2008;4:e1000008.  685 

45. Kumar S, Molloy C, Muñoz P, Daetwyler H, Chagne D, Volz R. Genome-enabled estimates of additive 686 
and nonadditive genetic variances and prediction of apple phenotypes across environments. G3. 687 
2015;5:2711–8.  688 

46. Iezzoni A, Weebadde C, Luby J, Yue C, van de Weg E, Fazio G, et al. RosBREED: enabling marker-689 
assisted breeding in Rosaceae. Acta Hortic. 2010;859:389–94.  690 

47. Long L, Kaiser C. Sweet cherry rootstocks for the Pacific Northwest. Corvallis: Oregon State 691 
University; 2010 p. 1–8. Report No.: PNW 619.  692 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


30 
 

48. Peace C, Luby J, Van de Weg WE, Bink M, Iezzoni A. A strategy for developing representative 693 
germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree 694 
Genet. Genomes. 2014;10:1679–94.  695 

49. Chavoshi M, Watkins C, Oraguzie B, Zhao Y, Iezzoni A, Oraguzie N. Phenotyping protocol for sweet 696 
cherry (Prunus avium L.) to facilitate an understanding of trait inheritance. Am. Pomol. Soc. 2014;68:125–697 
34.  698 

50. Washington State University. AgWeatherNet Roza Station Data [Internet]. AgWeatherNet. [cited 2017 699 
Jul 11]. Available from: www.weather.wsu.edu 700 

51. McMaster G, Wilhelm W. Growing degree-days: one equation, two interpretations. Agric. For. 701 
Meteorol. 1997;87:291–300.  702 

52. Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, Stegmeir T, et al. Development and evaluation of 703 
a genome-wide 6K SNP Array for diploid sweet cherry and tetraploid sour cherry. PLoS ONE. 704 
2012;7:e48305.  705 

53. Cai L, Voorrips RE, van de Weg E, Peace C, Iezzoni A. Genetic structure of a QTL hotspot on 706 
chromosome 2 in sweet cherry indicates positive selection for favorable haplotypes. Mol. Breed. 707 
2017;37:85.  708 

54. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase 709 
inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 2009;84:210–23.  710 

55. Wimmer V, Albrecht T, Auinger H-J, Schoen C-C. Synbreed: a framework for the analysis of genomic 711 
prediction data using R. Bioinformatics. 2012;28:2086–7.  712 

56. Butler D, Cullis B, Gilmour A, Gogel B. Analysis of mixed models for S language environments: 713 
ASReml-R Reference Manual (version 3). The State of Queensland, Department of Primary Industries 714 
and Fisheries; 2009.  715 

57. R Development Core Team. R: A language and environment for statistical computing [Internet]. 2011. 716 
Available from: http://www.R-project.org/ 717 

58. Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. 718 
Plant Genome. 2011;4:25–255.  719 

59. VanRaden PM. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008;91:4414–23.  720 

60. Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. Estimating additive and non-additive 721 
genetic variances and predicting genetic merits using genome-wide dense single nucleotide 722 
polymorphism markers. PLOS ONE. 2012;7:e45293.  723 

61. Piaskowski J. Genomic Dominance Relationship Matrix [Internet]. 2017. Available from: 724 
https://github.com/jpiaskowski/Genomic-Dominance-Relationship-Matrix 725 

62. Brien C. asremlPlus [Internet]. 2016. Available from: https://cran.r-726 
project.org/web/packages/asremlPlus/asremlPlus.pdf 727 

63. Gabriel K. The biplot graphic display of matrices with application to principal component analysis. 728 
Biometrika. 1971;58:453–67.  729 

64. Rodriguez-Almeida FA, Van Vleck LD, Willham RL, Northcutt SL. Estimation of non-additive genetic 730 
variances in three synthetic lines of beef cattle using an animal model. J. Anim. Sci. 1995;73:1002–11.  731 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

65. Pante M, Gjerde B, McMillan I, Misztal I. Estimation of additive and dominance genetic variances for 732 
body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2002;204:383–92.  733 

66. Gallardo JA, Lhorente JP, Neira R. The consequences of including non-additive effects on the genetic 734 
evaluation of harvest body weight in Coho salmon (Oncorhynchus kisutch). Genet. Sel. Evol. 2010;42:19.  735 

67. Gamal El-Dien O, Ratcliffe B, Klapste J, Porth I, Chen C, El-Kassaby YA. Implementation of the 736 
realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling 737 
additive from nonadditive genetic effects. G3. 2016;6:743–53.  738 

68. Wolfe MD, Kulakow P, Rabbi IY, Jannink J-L. Marker-based estimates reveal significant non-additive 739 
effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic 740 
value and the selection of varieties. G3. 2016;  741 

69. Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH. Conventional breeding, marker-742 
assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for 743 
cassava. Theor. Appl. Genet. 2015;128:1647–67.  744 

70. Zhao Y, Athanson B, Whiting M, Oraguzie N. Pedicel-fruit retention force in sweet cherry (Prunus 745 
avium L.) varies with genotype and year. Sci. Hortic. 2013;150:135–41.  746 

71. Schmitz CA, Clark MD, Luby JJ, Bradeen JM, Guan Y, Evans K, et al. Fruit texture phenotypes of the 747 
RosBREED U.S. apple reference germplasm set. HortScience. 2013;48:296–303.  748 

72. Cantín CM, Gogorcena Y, Moreno MÁ. Analysis of phenotypic variation of sugar profile in different 749 
peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Sci. Food Agric. 2009;89:1909–750 
17.  751 

73. Mathey MM, Mookerjee S, Mahoney LL, Gündüz K, Rosyara U, Hancock JF, et al. Genotype by 752 
environment interactions and combining ability for strawberry families grown in diverse environments. 753 
Euphytica. 2017;213:112.  754 

74. Clark S, van de Werf J. Genomic best unbiased linear prediction (gBLUP) for the estimation of 755 
genomic breeding values. In: Gondro C, van de Werf J, Hayes B, editors. Genome-Wide Assoc. Stud. 756 
Genomic Predict. Springer; 2013. p. 321–30.  757 

75. Heslot N, Jannink J-L, Sorrells ME. Perspectives for genomic selection applications and research in 758 
plants. Crop Sci. 2015;55:1–12.  759 

76. Dirlewanger E, Quero-Garcia J, Le Dantec L, Lambert P, Ruiz D, Dondini L, et al. Comparison of the 760 
genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: 761 
peach, apricot and sweet cherry. Heredity. 2012;109:280–92.  762 

77. Kim Y, Kimball JS, Didan K, Henebry GM. Response of vegetation growth and productivity to spring 763 
climate indicators in the conterminous United States derived from satellite remote sensing data fusion. 764 
Agric. For. Meteorol. 2014;194:132–43.  765 

78. Zhang G, Sebolt A, Sooriyapathirana S, Wang D, Bink M, Olmstead J, et al. Fruit size QTL analysis of 766 
an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest 767 
sweet cherry. Tree Genet. Genomes. 2010;6:25–36.  768 

79. De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, et al. Cell 769 
number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour 770 
cherry. Mol. Breed. 2013;32:311–26.  771 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


32 
 

80. Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J. New insights into fruit 772 
firmness and weight control in sweet cherry. Plant Mol. Biol. Report. 2015;33:783–96.  773 

81. Bassi D, Bartolozzi F, Muzzi E. Patterns and heritability of carboxylic acids and soluble sugars in fruits 774 
of apricot (Prunus armeniaca L.). Plant Breed. 1996;115:67–70.  775 

82. Brooks SJ, Moore JN, Murphy JB. Quantitative and qualitative changes in sugar content of peach 776 
genotypes [Prunus persica (L.) Batsch.]. J. Am. Soc. Hortic. Sci. 1993;118:97–100.  777 

83. Genard M, Lescourret F, Gomez L, Habib R. Changes in fruit sugar concentrations in response to 778 
assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). 779 
Tree Physiol. 2003;23:373–85.  780 

84. Morandi B, Corelli Grappadelli L, Rieger M, Lo Bianco R. Carbohydrate availability affects growth and 781 
metabolism in peach fruit. Physiol. Plant. 2008;133:229–41.  782 

85. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, et al. Mapping QTLs controlling 783 
fruit quality in peach (Prunus persica (L.) Batsch). Theor. Appl. Genet. 1999;98:18–31.  784 

86. Olmstead J, Lang G. A leaf disk assay for screening sweet cherry genotypes for susceptibility to 785 
powdery mildew. HortScience. 2000;35:274–7.  786 

87. Olmstead J, Lang G, Grove G. Inheritance of powdery mildew resistance in sweet cherry. 787 
HortScience. 2001;36:337–40.  788 

88. Wilfert L, Schmid-Hempel P. The genetic architecture of susceptibility to parasites. BMC Evol. Biol. 789 
2008;8:187–187.  790 

89. Divya B, Biswas A, Robin S, Rabindran R, Joel AJ. Gene interactions and genetics of blast resistance 791 
and yield attributes in rice (Oryza sativa L.). J. Genet. 2014;93:415–24.  792 

90. Zhang J, Singh A, Mueller DS, Singh AK. Genome-wide association and epistasis studies unravel the 793 
genetic architecture of sudden death syndrome resistance in soybean. Plant J. Cell Mol. Biol. 794 
2015;84:1124–36.  795 

91. Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H. Epistasis in the expression of relevant 796 
traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J. Hered. 2005;96:586–92.  797 

92. Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H. Joint modeling of additive and non-additive 798 
genetic line effects in single field trials. Theor. Appl. Genet. 2006;113:809–19.  799 

93. Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, et al. The evidence for non‐additive effect as the 800 
main genetic component of plant height and ear height in maize using introgression line populations. 801 
Plant Breed. 2010;129:376–84.  802 

94. Wang D, Salah El-Basyoni I, Stephen Baenziger P, Crossa J, Eskridge KM, Dweikat I. Prediction of 803 
genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity. 804 
2012;109:313–9.  805 

95. Dudley JW, Johnson GR. Epistatic models and pre-selection of markers improve prediction of 806 
performance in corn. Mol. Breed. 2013;32:585–93.  807 

96. Nazarian A, Gezan SA. Integrating nonadditive genomic relationship matrices into the study of genetic 808 
architecture of complex traits. J. Hered. 2016;107:153–62.  809 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


33 
 

97. Cockerham CC. An extension of the concept of partitioning hereditary variance for analysis of 810 
covariances among relatives when epistasis is present. Genetics. 1954;39:859–82.  811 

98. Holland J. Epistasis and plant breeding. In: Janick J, editor. Plant Breed. Rev. Oxford, UK: Oxford, 812 
UK: John Wiley & Sons, Inc.; 2010. p. 27–92.  813 

99. Tao R, Iezzoni AF. The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits 814 
distinct genetic and molecular features. Sci. Hortic. 2010;124:423–33.  815 

100. Heffner EL, Sorrells ME, Jannink J-L. Genomic selection for crop improvement. Crop Sci. 816 
2009;49:1–12.  817 

101. Ratcliffe B, El-Dien OG, Klapste J, Porth I, Chen C, Jaquish B, et al. A comparison of genomic 818 
selection models across time in interior spruce (Picea engelmannii x glauca) using unordered SNP 819 
imputation methods. Heredity. 2015;115:547–55.  820 

102. Muranty H, Troggio M, Sadok IB, Rifaï MA, Auwerkerken A, Banchi E, et al. Accuracy and responses 821 
of genomic selection on key traits in apple breeding. Hortic. Res. 2015;2:15060.  822 

103. Biscarini F, Nazzicari N, Bink M, Arús P, Aranzana MJ, Verde I, et al. Genome-enabled predictions 823 
for fruit weight and quality from repeated records in European peach progenies. BMC Genomics. 824 
2017;18:432.  825 

104. Garcia MR, Carbonell EA, Asíns MJ. QTL analysis of yield and seed number in Citrus. Theor. Appl. 826 
Genet. 2000;101:487–93.  827 

105. Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, et al. Accelerating the 828 
domestication of trees using genomic selection: accuracy of prediction models across ages and 829 
environments. New Phytol. 2012;193:617–24.  830 

106. Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, et al. 831 
Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding 832 
with an additive-dominant model. Heredity. 2017;119:245–55.  833 

107. Marulanda JJ, Mi X, Melchinger AE, Xu J-L, Würschum T, Longin CFH. Optimum breeding strategies 834 
using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor. Appl. 835 
Genet. 2016;129:1901–13.  836 

108. Jung S, Ficklin SP, Lee T, Cheng C-H, Blenda A, Zheng P, et al. The Genome Database for 837 
Rosaceae (GDR): year 10 update. Nucleic Acids Res. 2014;42:D1237-44.  838 

 839 

  840 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/233296doi: bioRxiv preprint 

https://doi.org/10.1101/233296
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

FIGURE CAPTIONS 841 

Figure 1: Violin plots of nine traits by year, adjusted for fixed effects due to year and overlaid with the 842 
observations from each year. 843 

Figure 2: Heritability and predictive ability of four genetic models for each of nine focus traits. 844 

Figure 3: Variance components by each year and across years for the full (ADI) model. 845 

Figure 4: Biplot of genetic values among the RosBREED sweet cherry Crop Reference Set using the 846 
correlation matrix of eight traits. Trait rotations were scaled by the first eigenvalue. 847 

 848 

ADDITIONAL FILE CAPTIONS 849 

Additional File 1: Individuals from the RosBREED sweet cherry Crop Reference set used in this study. 850 
“Self” refers to individuals derived from self-pollination, and “Unk” means that at least one parent is not 851 
known (file extension is .csv). 852 

Additional File 2: Number of observations (N) and Spearman rank correlations (ρ) between genetic 853 
values derived from a single year and the multi-year genetic values using the ADI model (Panel A) or the 854 
phenotypic data (Panel B), genetic values derived from the reduced models and the full model (Panel C), 855 
and breeding values derived from the reduced models and the full model (Panel D) (file extension is 856 
.xlsx). 857 

Additional File 3: Histogram of the diagonals and off-diagonal from the additive relationship matrix (file 858 
extension is .png). 859 

Additional File 4: Variance component estimates and standard errors for all RosBREED sweet cherry 860 
traits (file extension is .csv). 861 

Additional File 5: Variance component percentages for all RosBREED sweet cherry traits (file extension 862 
is .csv). 863 

Additional File 6: Biplot of genetic values among sweet cherry cultivars and their ancestors using the 864 
correlation matrix of eight traits. Trait rotations were scaled by the first eigenvalue (file extension is .png). 865 

Additional File 7: Breeding values, dominance values, epistatic values and genetic values of all 866 
individuals for all traits in the RosBREED sweet cherry Crop Reference Set (file extension is .xlsx). 867 
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