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Abstract	

	

The	neural	mechanisms	underlying	face	and	object	recognition	are	understood	to	originate	in	ventral	

occipital-temporal	cortex.	A	key	feature	of	the	functional	architecture	of	the	visual	ventral	pathway	is	

its	category-selectivity,	yet	it	is	unclear	how	category-selective	regions	process	ambiguous	visual	input	

which	 violates	 category	 boundaries.	 One	 example	 is	 the	 spontaneous	 misperception	 of	 faces	 in	

inanimate	objects	such	as	the	Man	in	the	Moon,	in	which	an	object	belongs	to	more	than	one	category	

and	face	perception	is	divorced	from	its	usual	diagnostic	visual	features.	We	used	fMRI	to	investigate	

the	representation	of	illusory	faces	in	category-selective	regions.	The	perception	of	illusory	faces	was	

decodable	from	activation	patterns	in	the	fusiform	face	area	(FFA)	and	lateral	occipital	complex	(LOC),	

but	not	from	other	visual	areas.	Further,	activity	in	FFA	was	strongly	modulated	by	the	perception	of	

illusory	faces,	such	that	even	objects	with	vastly	different	visual	features	were	represented	similarly	if	

all	images	contained	an	illusory	face.	The	results	show	that	the	FFA	is	broadly-tuned	for	face	detection,	

not	 finely-tuned	 to	 the	 homogenous	 visual	 properties	 that	 typically	 distinguish	 faces	 from	 other	

objects.	A	complete	understanding	of	high-level	vision	will	 require	explanation	of	 the	mechanisms	

underlying	natural	errors	of	face	detection.	

	

	

Keywords.	 face	 processing,	 fMRI,	 fusiform	 face	 area	 (FFA),	 lateral	 occipital	 complex	 (LOC),	 object	

recognition,	representational	similarity	analysis	
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INTRODUCTION 

 

Face	pareidolia	is	the	perception	of	illusory	faces	in	inanimate	objects.	Recently,	face	pareidolia	has	

been	 demonstrated	 in	 non-human	 primates	 (Taubert	 et	 al.	 2017),	 evidence	 that	 it	 arises	 from	 a	

fundamental	aspect	of	a	face	detection	system	shared	across	primate	species.	Two	key	features	of	

face	 pareidolia	 are	 that	 it	 is	 typically	 a	 spontaneous	 and	persistent	 phenomenon,	with	 the	 object	

perceived	simultaneously	as	both	an	illusory	face	and	an	inanimate	object,	and	secondly	that	the	visual	

attributes	 perceived	 as	 illusory	 facial	 features	 are	 highly	 variable.	 Face	 pareidolia	 thus	 offers	 the	

potential	 to	examine	how	the	brain	processes	faces	 in	a	unique	situation	where	face	perception	 is	

decoupled	from	the	visual	properties	that	typically	define	faces	as	a	category.	In	the	human	brain,	the	

lateral	occipital	complex	(LOC)	(Malach	et	al.	1995;	Kourtzi	and	Kanwisher	2000)	and	fusiform	face	

area	(FFA)	(Kanwisher	et	al.	1997)	in	occipital-temporal	cortex	respond	preferentially	to	either	objects	

or	faces	respectively.	The	involvement	of	these	category-selective	regions	in	the	visual	ventral	stream	

in	processing	false	positive	faces	that	have	a	simultaneous	dual	face	and	object	identity	is	unclear.		

	 Several	 lines	 of	 evidence	 indicate	 that	 the	 response	 of	 the	 FFA	 is	 tightly-tuned	 to	 faces	

(Kanwisher	and	Yovel	2006).	Early	fMRI	studies	showed	that	the	FFA	responds	preferentially	to	faces	

compared	to	other	object	categories,	even	if	the	faces	are	schematic	or	imagined	(Kanwisher	et	al.	

1997;	O'Craven	and	Kanwisher	2000;	Tong	et	al.	2000).	More	recently,	face-related	features	including	

identity	 and	 perceptual	 differences	 have	 been	 successfully	 decoded	 from	 fMRI	 BOLD	 activation	

patterns	 in	 the	FFA	using	multivariate	pattern	analysis	 (Nestor	et	al.	2011;	Goesaert	and	de	Beeck	

2013;	 Anzellotti	 et	 al.	 2014;	 Axelrod	 and	 Yovel	 2015;	 Zhang	 et	 al.	 2016;	 Guntupalli	 et	 al.	 2017).	

Converging	evidence	indicates	that	the	response	of	the	FFA	is	related	to	face	perception.	Activity	in	

the	 FFA	 correlates	with	 face	 detection	 and	 identification,	 but	 not	with	 the	 identification	 of	 other	

complex	objects	(e.g.	cars)	that	require	a	similar	 level	of	visual	expertise	(Grill-Spector	et	al.	2004).	

Similarly,	the	FFA	displays	a	greater	response	to	upright	than	inverted	faces,	consistent	with	the	robust	

behavioral	 observation	 of	 superior	 face	 recognition	 for	 upright	 faces	 (Yovel	 and	 Kanwisher	 2005).	

Although	 the	 face-selectivity	 of	 the	 FFA	 is	 well-established,	 it	 is	 not	 yet	 known	 whether	 the	

spontaneous	perception	of	a	face	in	an	exemplar	from	a	non-preferred	category	(e.g.	in	an	inanimate	

object)	would	modulate	activity	in	the	FFA.	

Given	its	selectivity	for	shape	and	object	properties	(Malach	et	al.	1995;	Kourtzi	and	Kanwisher	

2000;	2001),	it	is	unclear	whether	activity	in	the	LOC	would	differentiate	between	inanimate	objects	

which	contain	illusory	faces	compared	to	similar	objects	without	an	illusory	face.	Although	the	object-

selective	LOC	is	also	responsive	to	faces	to	some	degree	(Yovel	and	Kanwisher	2004;	2005)	,	unlike	the	

FFA,	activity	 in	 LOC	does	not	 correlate	with	behavioral	measures	 such	as	 the	 face	 inversion	effect	

(Yovel	and	Kanwisher	2005)	or	the	degree	of	perceived	face-likeness	for	simple	silhouettes	(Davidenko	
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et	al.	2012).	Thus,	while	the	misperception	of	a	face	in	noise	produces	an	increase	in	the	magnitude	

of	activity	in	the	FFA	(Summerfield	et	al.	2006;	Liu	et	al.	2014)	and	is	suggestive	of	a	role	for	the	FFA	

in	perceiving	illusory	faces,	the	possible	role	of	object-selective	cortex	in	processing	illusory	faces	is	

more	difficult	to	predict.		

	 To	examine	the	representation	of	illusory	faces	in	human	category-selective	cortex,	we	used	

functional	magnetic	resonance	 imaging	(fMRI)	 to	record	patterns	of	blood-oxygen-level-dependent	

(BOLD)	activation	in	visual	brain	areas	while	subjects	viewed	pictures	of	objects	either	with	or	without	

illusory	 faces	 (Figure	 2a).	 We	 collected	 56	 photographs	 of	 naturally	 occurring	 examples	 of	 face	

pareidolia	in	objects	such	as	food,	accessories,	and	appliances.	For	each	object	with	an	illusory	face,	

we	found	a	similar	image	of	the	same	category	of	object	but	without	an	illusory	face.	Importantly,	this	

yoked	image	set	of	56	images	was	matched	for	object	content	and	visual	features	typical	of	the	object	

category	 but	 did	 not	 contain	 any	 illusory	 faces.	 In	 total	 there	 were	 8	 unique	 image	 sets,	 each	

containing	14	 images	 (Figure	1),	which	were	presented	 in	 a	 standard	 fMRI	blocked	design	 (Figure	

2b,c).	In	order	to	comprehensively	characterize	the	response	of	visual	ventral	areas	to	the	perception	

of	 illusory	 faces	 in	 inanimate	 objects,	 we	 applied	 both	 multivariate	 pattern	 analysis	 and	

representational	 similarity	 analysis	 techniques	 to	 the	 fMRI	 data.	 The	 aims	were	 firstly	 to	 discover	

which	category-selective	areas	of	visual	ventral	cortex	are	sensitive	to	the	perception	of	illusory	faces,	

and	secondly	to	determine	to	what	extent	the	representation	in	these	regions	 is	 influenced	by	the	

presence	of	an	illusory	face.	
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Figure	1.	Experimental	Stimuli.	All	112	experimental	stimuli	from	the	8	image	sets.	Four	image	sets	

contain	images	of	illusory	faces	in	inanimate	objects,	and	four	image	sets	contain	images	of	objects	

matched	for	content	and/or	visual	features,	but	without	an	illusory	face.	
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MATERIALS AND METHODS	

	

Participants.	Nine	participants	(8	naive	to	experimental	aims	(6	female),	1	author)	participated	in	

return	for	financial	compensation	and	provided	informed	consent.	One	additional	participant	was	

excluded	from	analysis	due	to	excessive	movement	in	the	MRI	scanner	(>	20mm).	Ethical	approval	

for	all	experimental	procedures	was	obtained	from	the	Macquarie	University	Human	Research	Ethics	

Committee	(Medical	Sciences).	

	

MRI	Data	acquisition.	MRI	data	were	acquired	with	a	3T	Siemens	Verio	MRI	scanner	at	Macquarie	

Medical	 Imaging,	Macquarie	University	Hospital.	A	high-resolution	 (1	x	1	x	1	mm)	T1-weighted	3D	

whole-brain	 structural	 MRI	 scan	 was	 collected	 for	 each	 participant	 at	 the	 start	 of	 the	 session.	

Functional	scans	were	acquired	with	a	2D	T2*-weighted	EPI	acquisition	sequence:	TR	=	2s,	TE	=	32ms,	

FA	=	80	deg,	voxel	size:	2.5	x	2.5	x	2.5mm,	in	plane	matrix	size:	102	x	102.	A	partial	volume	containing	

33	slices	was	collected	oriented	approximately	parallel	to	the	base	of	the	temporal	lobe	or	anterior	

commissure-posterior	 commissure	 (AC-PC)	 line	 for	 each	 participant,	 ensuring	 coverage	 of	 both	

occipital	and	temporal	lobes.		

	 Visual	stimuli	were	displayed	using	a	projector	for	one	subject	(1	author)	with	resolution	1280	

x	800	and	viewing	distance	150cm.	Experimental	stimuli	(400	x	400	pixels)	subtended	10.5	x	10.5°,	

localizer	 stimuli	 (480	 x	 480	 pixels)	 12.6	 x	 12.6°.	 For	 the	 remaining	 8	 naive	 subjects,	 stimuli	 were	

displayed	 using	 a	 flat-panel	 MRI-compatible	 32"	 Cambridge	 Research	 Systems	 BOLDscreen	 with	

resolution	1920	x	1080	and	viewing	distance	112cm.	Experimental	stimuli	subtended	7.4	x	7.4°	and	

localizer	stimuli	8.8	x	8.8°.	Behavioral	responses	were	collected	using	a	Lumina	MRI-compatible	button	

box.	

	

Experimental	Design	and	Stimuli.	Experimental	code	was	written	in	MATLAB	with	functions	from	the	

Psychtoolbox	(Brainard	1997;	Pelli	1997;	Kleiner	et	al.	2007),	and	run	on	an	Apple	MacBook	Pro	with	

Mac	OSX.	The	scanning	session	for	each	subject	consisted	of	a	high-resolution	structural	MRI	scan,	2	

functional	localizer	runs	to	identify	category-selective	regions	FFA,	LOC,	and	PPA,	and	8	experimental	

runs.	The	functional	localizer	was	run	once	at	the	start	of	the	session	following	the	structural	scan	and	

once	at	the	end	of	the	session.	The	eight	experimental	runs	for	each	participant	were	collected	in-

between	the	localizer	runs.	
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Figure	2.	fMRI	Methods.	(a)	Example	stimuli:	illusory	faces	(left)	and	matched	objects	(right).	(b)	Trial	

sequence	within	each	image	block.	While	in	the	scanner,	participants	(N=9)	performed	a	1-back	task	

to	maintain	attention,	pressing	a	key	whenever	an	image	was	shown	twice	in	a	row.	(c)	Sequence	of	

block	design.	Illusory	face	blocks	alternated	with	matched	object	blocks,	separated	by	fixation	periods.	

	

	

	 For	the	experimental	runs,	56	color	images	of	natural	examples	of	illusory	faces	in	inanimate	

objects	were	collected	from	the	internet.	For	each	illusory	face	image,	we	sourced	a	photograph	of	a	

similar	object	without	an	illusory	face	and	cropped	it	to	match	the	first	image	as	closely	as	possible	

(Figure	2a).	 Images	were	cropped	to	the	same	size,	but	no	other	manipulation	was	made.	The	112	

photographs	were	grouped	into	8	unique	image	sets	of	14	images	each,	with	4	illusory	face	sets	and	

4	matched	object	sets	(Figure	1).	Stimuli	were	shown	centered	on	a	gray	screen	with	a	central	black	

and	white	 fixation	 bullseye	 (0.4°	 diameter	 for	 subject	 1,	 0.3°	 diameter	 for	 the	 all	 other	 subjects).	

During	fixation	blocks	the	fixation	bullseye	remained	on	the	gray	background.	Each	image	block	was	

16s	 in	 duration,	 followed	 by	 a	 10s	 fixation	 period.	Within	 each	 block,	 every	 image	was	 shown	 in	

random	 order	 for	 800ms	 followed	 by	 a	 200ms	 inter-stimulus-interval	 (Figure	 2b).	 The	 order	 of	

presentation	 of	 the	 images	 within	 each	 block	 was	 yoked	 between	 the	 face	 image	 sets	 and	 their	

matched	object	sets.	A	new	yoked	random	order	was	generated	each	time	an	image	set	block	was	

repeated	in	the	session.	For	each	block	there	were	16	images:	14	unique	images,	and	an	additional	2	
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images	which	were	repeated	for	the	1-back	task.	The	1-back	task	was	yoked	between	illusory	face	and	

matched	object	blocks,	such	that	the	repeated	images	on	a	given	block	presentation	were	identical	

between	 the	 matched	 image	 sets.	 Two	 1-back	 trials	 occurred	 during	 each	 16s	 block	 to	 maintain	

attention,	once	in	the	first	half	and	once	in	the	second	half.	Participants	pressed	a	key	when	they	saw	

the	same	image	twice	in	a	row.	Feedback	on	task	performance	was	given	at	the	end	of	each	run	after	

scanning	was	complete.	Overall	 task	performance	was	high	across	 subjects	and	experimental	 runs	

(Mean	accuracy	=	98.8%,	SD	=	1.5%).	

	 The	order	of	the	experimental	blocks	alternated	between	illusory	objects	and	matched	objects	

in	an	ABAB/BABA	design	(Figure	2c),	with	the	starting	block	type	counterbalanced	across	runs	for	each	

participant.	The	order	of	block	presentation	within	each	run	was	randomized	within	this	design	with	

the	additional	restrictions	that	(1)	a	matched	image	set	never	directly	followed	its	yoked	face	set	and	

vice	versa,	and	(2)	each	image	set	was	cycled	through	once	in	the	run	in	a	random	order	before	being	

repeated.	 Each	 of	 the	 8	 unique	 image	 sets	 was	 repeated	 twice	 per	 7-minute	 experimental	 run.	

Experimental	runs	began	with	a	4s	fixation	period.	

	 The	functional	localizer	stimuli	were	color	pictures	of	faces,	places,	and	objects.	54	images	for	

each	category	were	 selected	 from	The	Center	 for	Vital	 Longevity	 Face	Database	 (Minear	and	Park	

2004),	the	SUN397	database	(Xiao	et	al.	2010),	and	the	BOSS	database	(Brodeur	et	al.	2010;	2014)	

respectively.	 Scrambled	 objects	 for	 localizing	 object-selective	 region	 LOC	 (Kourtzi	 and	 Kanwisher	

2000)	were	pre-generated	in	MATLAB	by	randomly	scrambling	each	object	image	in	an	8	x	8	grid	and	

saving	the	resulting	image.	For	each	stimulus	class,	there	were	3	unique	blocks	of	18	images.	Every	

time	a	block	was	run,	the	images	were	presented	in	a	random	order	and	two	random	images	were	

repeated	twice	for	the	1-back	task.	Participants	performed	a	1-back	task	as	for	the	experimental	runs,	

pressing	a	key	each	time	an	image	was	repeated	twice	in	a	row	(Mean	accuracy	=	96.8%,	SD	=	3.8%).	

Each	of	 the	20	 images	within	a	block	 (18	unique	+	2	 repeats)	was	shown	for	600ms	 followed	by	a	

200ms	inter-stimulus	interval.	The	16s	stimulus	blocks	alternated	with	10s	fixation	blocks.	Each	of	the	

4	stimulus	categories	was	repeated	three	times	per	5-minute	localizer	run,	once	per	unique	image	set.	

The	 order	 of	 block	 presentation	 was	 in	 a	 pseudorandom	 order,	 with	 two	 different	 orders	

counterbalanced	across	runs	for	each	participant.	Localizer	runs	began	with	a	4s	fixation	period	before	

the	first	stimulus	block.	

	 	

fMRI	data	preprocessing.	Minimal	preprocessing	of	the	MRI	data	was	conducted	using	SPM8.	For	each	

observer,	fMRI	data	for	all	experimental	and	localizer	runs	was	motion	corrected	and	co-registered	to	

their	 structural	 scan.	 No	 normalization	 or	 spatial	 smoothing	 was	 applied,	 and	 all	 analyses	 were	

conducted	in	the	native	brain	space	of	each	subject.		
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Region-of-interest	(ROI)	definition.	Cortical	reconstruction	was	performed	using	Freesurfer	5.3	from	

the	structural	scan	for	each	subject.	V1	(range:	886-1244	voxels,	M=1094)	was	anatomically	defined	

in	each	observer	based	on	their	individual	surface	topology	using	cortical	surface	templates	applied	

to	their	inflated	cortical	surface	(Benson	et	al.	2012).	The	category-selective	regions-of-interest	(ROIs)	

were	 functionally	 defined	 using	 standard	 procedures	 from	 the	 independent	 localizer	 runs	

(Kriegeskorte	et	al.	2009).	FFA	(range:	29-78	voxels,	M=58)	was	defined	as	the	contiguous	cluster	of	

voxels	 in	the	fusiform	gyrus	produced	from	the	contrast	between	faces	versus	objects	and	scenes.	

LOCscr	(range:	7-64	voxels,	M=39)	was	defined	as	activation	on	the	lateral	occipital	surface	from	the	

contrast	 between	 objects	 and	 scrambled	 objects.	 For	 comparison,	 LOCofs	 (range:	 43-245	 voxels,	

M=113)	was	defined	as	activation	on	the	lateral	occipital	surface	for	the	contrast	of	objects	versus	

faces	 and	 places.	 Finally,	 PPA	 (range:	 12-170	 voxels,	M=75)	 was	 defined	 as	 the	 peak	 cluster	 of	

activation	in	the	parahippocampal	gyrus	produced	by	the	contrast	between	scenes	versus	faces	and	

objects	(Kauffmann	et	al.	2015).	Overlapping	voxels	were	permitted	between	LOCscr	and	LOCofs	(range:	

2-31	voxels,	M=12),	but	not	between	the	other	regions.		

	

General	linear	model.	To	estimate	the	beta	weights	for	each	experimental	condition,	the	functional	

MRI	data	from	the	experimental	runs	was	entered	into	a	GLM	in	SPM8	with	a	separate	regressor	for	

each	of	the	8	stimulus	blocks,	producing	one	parameter	estimate	(β	weight)	per	condition	per	run	(64	

in	total	per	participant).	Fixation	was	not	explicitly	modelled	but	provided	an	implicit	baseline.	Percent	

BOLD	signal	change	(Figure	3a)	was	calculated	for	each	participant	and	region-of-interest	across	all	

face	vs.	matched	object	blocks	using	SPM8	and	the	marsbar	(Brett	et	al.	2002)	package.	

	

Decoding	analysis.	Decoding	analyses	were	performed	separately	for	each	participant	in	their	native	

brain	space	in	MATLAB	using	functions	from	The	Decoding	Toolbox	(Hebart	et	al.	2014).	Classification	

using	a	linear	SVM	was	conducted	using	the	beta	weights	for	each	of	the	8	unique	stimulus	blocks.	For	

leave-one-run-out	classification	(Figure	3b),	the	classifier	was	trained	on	the	activation	patterns	for	

each	 pair	 of	 the	 8	 conditions	 for	 7	 runs,	 and	 tested	 on	 the	 one	 run	 left	 out	 of	 the	 training	 set.	

Classification	 accuracy	was	 averaged	 across	 all	 permutations	 of	 leave-one-run-out	 cross-validation	

folds	(n	=	28).	For	face	cross-decoding	(Figure	3c),	the	classifier	was	trained	on	all	data	for	a	yoked	

stimulus	set	 (e.g.	Faces	Set	1	vs.	Matched	Object	Set	1)	and	tested	on	all	data	 for	a	second	yoked	

stimulus	set	(e.g.	Faces	Set	2	vs.	Matched	Objects	Set	2),	and	then	classification	was	repeated	with	the	

test	 and	 training	 sets	 swapped.	 This	 process	 was	 repeated	 for	 all	 possible	 yoked	 pairings,	 with	

classification	accuracy	averaged	across	all	permutations	(n	=	6).	For	object	cross-decoding	(Figure	3d),	
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two-way	 cross	 classification	was	 conducted	 for	 each	 relevant	 pair	 as	 for	 face	 cross-decoding.	 For	

example,	the	classifier	was	trained	on	two	different	image	sets	either	both	with	or	without	faces	(e.g.	

Faces	 Set	 1	 vs.	 Faces	 Set	 2)	 and	 tested	 on	 their	 yoked	matched	 sets	 (e.g.	Matched	Objects	 1	 vs.	

Matched	Objects	2),	and	then	vice	versa.	Classifier	accuracy	was	averaged	across	all	permutations	of	

possible	pairs	(n	=	6).		

	

Representational	similarity	analysis.	Representational	similarity	analyses	(Kriegeskorte	et	al.	2008;	

Kriegeskorte	 and	 Kievit	 2013)	 was	 performed	 in	 MATLAB	 using	 functions	 from	 the	 toolbox	 for	

representational	similarity	analysis	(rsatoolbox)	(Nili	et	al.	2014).	Categorical	models	were	constructed	

based	on	the	stimulus	design,	to	distinguish	between	the	two	potential	outcomes	of	interest:	whether	

the	similarity	of	brain	activation	patterns	was	determined	primarily	by	the	presence	of	an	illusory	face	

or	object	content	(Figure	4c).	Blue	regions	indicate	predicted	similar	patterns	of	activation	between	

image	 set	 pairs,	 yellow	 regions	 indicate	 predicted	 dissimilar	 activation	 patterns,	 and	 grey	 regions	

indicate	moderate	dissimilarity.	The	empirical	dissimilarity	matrices	for	each	brain	region	(Figure	4a,b)	

were	calculated	by		1-correlation	of	the	BOLD	activation	patterns	for	each	image	set	pair.	Dissimilarity	

was	 scaled	 separately	 for	 each	 brain	 region	 to	 fall	 between	 0	 and	 1	 (min	 and	max	 dissimilarity).	

Correspondence	between	the	categorical	RSA	models	and	the	dissimilarity	matricies	for	each	brain	

region	(Figure	4d)	were	assessed	by	computing	the	correlation	(Kendall	tau-a)	and	applying	condition-

label	randomization	with	FDR	correction	applied	for	multiple	comparisons	(p	<	.05)	(Nili	et	al.	2014).	

 

RESULTS 

 

We	 focused	 our	 analysis	 on	 specific	 predefined	 regions-of-interest	 in	 ventral	 occipital-temporal	

cortex.	In	each	participant,	we	localized	three	category-selective	regions:	the	fusiform	face	area	(FFA),	

the	lateral	occipital	complex	(two	versions:	LOCscr	and	LOCofs),	and	the	parahippocampal	place	area	

(PPA),	using	standard	functional	localizers	(Kanwisher	et	al.	1997;	Epstein	and	Kanwisher	1998;	Kourtzi	

and	Kanwisher	2000;	Kravitz	et	al.	2011;	Park	et	al.	2011;	Kauffmann	et	al.	2015).	As	an	additional	

comparison	region,	we	defined	V1	anatomically	in	each	subject	(Benson	et	al.	2012).		

	

Univariate	analysis	

To	characterize	the	amount	of	activation	in	each	region,	we	calculated	BOLD	percent	signal	change	for	

all	illusory	face	blocks	versus	all	non-face	blocks	(Figure	2a).	Statistical	significance	was	assessed	for	

percent	signal	change	for	illusory	face	versus	non-face	blocks	on	the	mean	activation	averaged	across	

participants	for	each	region	of	interest	(Figure	2a)	using	two-tailed	paired	t-tests	with	the	Bonferroni	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint 

https://doi.org/10.1101/233387
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

correction	applied	for	multiple	comparisons	(k	=	5)	to	maintain	α	<	0.05	(α/k	=	.01).	Illusory	face	blocks	

produced	 significantly	higher	activation	 than	non-face	blocks	as	measured	by	percent	BOLD	signal	

change	for	LOCscr	(t(8)=	4.25,	p	=	.002814)	and	FFA	(t(8)=	8.15,	p	=	.000038).	There	was	no	significant	

difference	in	activation	for	illusory	faces	versus	non-faces	for	LOCofs	(t(8)=	2.89,	p	=	.020278),	PPA	(t(8)=	

-2.68,	p	=	.027728),	or	V1	(t(8)=	-2.41,	p	=	.042692).		

	

	
	

Figure	3.	fMRI	results	averaged	across	subjects	(N=9)	for	each	region-of-interest.	(a)	BOLD	%	signal	

change	 for	 illusory	 face	 blocks	 and	matched	 object	 blocks.	 Error	 bars	 are	 between-subjects	 SEM.	

Asterisks	denote	a	significant	difference	assessed	with	Bonferroni	paired	t-tests	(*	α	<	.05,	**	α	<	.01).		

(b)	 Leave-one-run-out	 pairwise	 decoding	 of	 the	 8	 image	 sets.	 For	 panels	 b-d,	 asterisks	 denote	 a	

significant	difference	from	chance	decoding	performance	(50%)	assessed	with	Bonferroni	one-sample	

t-tests	(*	α	<	.05,	**	α	<	.01)	and	error	bars	are	between-subjects	SD.	(c)	Illusory	face	cross-decoding	

results.	Cross-classification	of	illusory	faces	versus	yoked	objects	without	illusory	faces	across	image	

sets	(e.g.	train	classifier	on	Faces	Set	1	vs.	Matched	Set	1;	test	classifier	on	Faces	Set	2	vs.	Matched	Set	

2).	(d)	Object	cross-decoding	results.	Cross-classification	of	object	 identity	across	yoked	image	sets	

(e.g.	train	classifier	on	Faces	Set	1	vs.	Faces	Set	2;	test	classifier	on	Matched	Set	1	vs.	Matched	Set	2).	
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Multivariate	pattern	classification	

Leave-one-run	out	classification	

For	an	initial	sanity	check,	we	performed	a	standard	leave-one-run-out	classification	analysis	on	the	

patterns	of	BOLD	activation	evoked	by	 the	8	unique	 image	 sets.	Using	pairwise	 classification	with	

cross-validation,	a	linear	support	vector	machine	was	trained	on	the	data	for	all	runs	minus	one,	and	

tested	on	the	remaining	set	(Hebart	et	al.	2014).	Figure	2b	shows	the	mean	classification	accuracy	for	

each	 region-of-interest,	 averaged	 across	 subjects.	Decoding	 accuracy	was	 assessed	 statistically	 for	

each	ROI	using	two-tailed	one-sample	t-tests	on	the	mean	classification	accuracies	across	participants	

against	 chance	 decoding	 performance	 of	 50%	with	 the	 Bonferroni	 correction	 applied	 for	multiple	

comparisons	(k	=	5)	to	maintain	α	<	0.05	(α/k	=	.01).	Decoding	performance	was	significantly	above	

chance	for	all	five	ROIs	(Figure	2b).	V1:	(t(8)=	7.27,	p	=	.000086),	LOCscr	(t(8)=	4.35,	p	=	.002444),	LOCofs	

(t(8)=	7.40,	p	=	.000076),	PPA	(t(8)=	6.33,	p	=	.000226),	FFA	(t(8)=	11.16,	p	=	.000004).	Note	that	as	the	

classifier	is	trained	on	examples	of	BOLD	activation	patterns	evoked	by	each	of	the	unique	stimulus	

blocks	using	this	classification	method,	successful	classification	could	be	based	on	sensitivity	to	low-

level	visual	features	rather	than	the	object	or	face	content	of	the	image	sets.	It	is	likely	that	successful	

classification	 was	 based	 on	 different	 visual	 features	 in	 each	 ROI,	 however	 the	 consistently	 high	

classifier	performance	validates	the	high	power	of	the	fMRI	design	and	verifies	the	robustness	of	the	

data	for	the	subsequent	analyses	of	interest.	

	

Illusory	face	cross-classification	

We	used	cross-decoding	as	the	critical	test	for	defining	whether	each	brain	region	was	sensitive	to	the	

presence	or	absence	of	illusory	faces	in	inanimate	objects	(Figure	2c).	A	linear	classifier	was	trained	

on	the	patterns	of	BOLD	activation	evoked	by	one	yoked	set	of	images	(e.g.	Face	Set	1	vs.	Matched	

Set	1),	and	tested	on	the	brain	activation	patterns	for	a	new	yoked	set	(e.g.	Face	Set	2	vs.	Matched	Set	

2).	 This	 analysis	 requires	 that	 the	 classifier	 be	 able	 to	 generalize	 across	 new	 images	 in	 order	 to	

correctly	 classify	 the	 test	 set,	 excluding	 the	 possibility	 of	 illusory	 face	 decoding	 based	 upon	 brain	

responses	to	the	low-level	visual	features	of	particular	images.	Cross-decoding	accuracy	was	assessed	

using	two-tailed	one-sample	t-tests	with	the	Bonferroni	correction	applied	for	multiple	comparisons	

(k	=	5)	to	maintain	α	<	0.05	(α/k	=	 .01).	Cross-classification	of	 illusory	faces	was	significantly	above	

chance	 in	 LOCscr	 (t(8)=4.97,	 p	 =	 .001096),	 LOCofs	 (t(8)=	 7.21,	 p	 =	 .000092),	 and	 FFA	 (t(8)=	 13.29,	 p	 =	

.000001),	but	not	for	V1	(t(8)=3.10,	p	=	.014737)	or	PPA	(t(8)=2.44,	p	=	.040749).		
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Object	cross-classification	

As	 our	 stimulus	 set	 included	 matched	 objects,	 we	 also	 tested	 whether	 object	 identity	 could	 be	

decoded	from	each	brain	region	across	different	photographs	(Figure	2d).	In	this	analysis,	we	ignored	

the	presence/absence	of	an	illusory	face,	and	instead	trained	the	classifier	to	discriminate	between	

two	different	object	sets	that	either	both	did	or	did	not	contain	illusory	faces	(e.g.	Face	Set	1	vs.	Face	

Set	2).	The	classifier	was	then	tested	on	the	matched	sets	corresponding	to	the	two	training	sets	(e.g.	

Matched	Set	1	vs.	Matched	Set	2).	Successful	classification	requires	extrapolation	based	on	responses	

to	either	object	 identity	or	 shared	visual	 features	across	different	 images,	but	 it	 is	not	possible	 to	

distinguish	between	the	two	possibilities.	Object	cross-decoding	was	significantly	above	chance	for	

LOCscr	(t(8)=4.14,	p	=	.003250),	LOCofs	(t(8)=5.63,	p	=	.000491),	and	PPA	(t(8)=4.37,	p	=	.002379),	but	not	

for	V1	(t(8)=	1.12,	p	=	.296317)	or	FFA	(t(8)=	1.34,	p	=	.216760).	Thus	both	face	and	object	cross-decoding	

were	successful	in	LOC,	but	only	faces	and	not	objects	could	be	cross-decoded	across	image	sets	from	

activity	in	FFA,	and	only	objects	but	not	faces	from	activity	in	PPA.	Neither	form	of	cross-decoding	was	

successful	in	V1,	yet	the	identity	of	the	8	unique	image	sets	could	be	decoded	from	V1	activity	using	

leave-one-run-out	classification,	consistent	with	its	known	sensitivity	to	low-level	visual	properties.			
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Figure	4.	Representational	similarity	analysis.	(a)	Dissimilarity	matrix	showing	the	normalized	pairwise	

dissimilarity	(1	-	correlation)	in	BOLD	activation	patterns	evoked	by	each	of	the	8	unique	image	sets	in	

the	FFA.	Blue	indicates	more	similar	activation	patterns,	yellow	more	dissimilar.	Note	that	the	four	

unique	face	blocks	produce	similar	patterns	of	activity	(upper	left	quadrant	is	blue).	(b)	Dissimilarity	

matrices	 for	 LOCscr,	 LOCofs,	PPA	and	V1	 (legend	as	 for	panel	a).	 (c)	Categorical	models	of	expected	

patterns	of	 similarity	 in	 the	BOLD	activation	patterns	evoked	by	each	 image	set	 if	 faces	or	objects	

dominate	the	underlying	representation.	(d)	Correlation	(Kendall	tau-a)	between	the	categorical	RSA	

models	 and	 the	 FFA	 RDM.	 Mean	 correlation	 across	 subjects	 (N=9)	 is	 shown,	 asterisks	 denote	 a	

significant	difference	from	chance	calculated	using	condition-label	randomization	with	FDR	correction	

applied	for	multiple	comparisons	(p	<	.05).	Error	bars	are	SEM.	The	gray	band	represents	the	upper	

and	lower	boundaries	of	the	noise	ceiling,	indicating	the	maximum	possible	correlation	possible	for	

any	 model	 given	 the	 noise	 in	 the	 data	 (Nili	 et	 al.	 2014).	 Note	 that	 no	 correlations	 between	 the	

categorical	models	and	the	other	regions	of	interest	(LOCscr,	LOCofs,	PPA,	V1)	were	significant.	
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Representational	Similarity	Analysis	

To	 further	 characterize	 the	 response	 to	 illusory	 faces	 in	 visual	 ventral	 cortex,	 we	 applied	

representational	similarity	analysis	(Kriegeskorte	and	Kievit	2013)	to	examine	similarities	in	activation	

patterns	for	the	different	image	sets.	The	representational	dissimilarity	matrices	for	each	region	of	

interest	quantify	the	degree	of	similarity	in	the	BOLD	activation	patterns	across	voxels	between	each	

pair	 of	 image	 sets	 (Figure	 4a,b).	 Different	 models	 of	 the	 underlying	 representational	 space	 are	

predicted	if	faces	or	objects	are	the	dominant	organizing	principle	in	a	particular	brain	region	(Figure	

4c).	 Notably,	 the	 dissimilarity	 matrix	 for	 the	 FFA	 (Figure	 4a)	 reveals	 a	 strong	 dominance	 of	 the	

presence	 of	 an	 illusory	 face	 on	 the	 brain	 activation	 patterns	 (upper	 left	 quadrant).	 Image	 sets	

containing	illusory	faces	produce	more	similar	responses	in	FFA	than	their	matched	image	sets,	even	

though	the	matched	image	sets	share	many	more	visual	features	with	the	face	sets	than	is	present	

between	different	face	sets.	This	relationship	is	well-described	by	the	face	model	(Figure	4c),	which	

significantly	correlates	with	the	FFA	dissimilarity	matrix	(Figure	4d).		

	 Beyond	 a	 similar	 representation	 of	 illusory	 faces	 irrespective	 of	 their	 visual	 features,	 the	

response	of	the	FFA	is	strongly	modulated	by	the	presence	or	absence	of	a	face.	Objects	which	do	not	

have	an	illusory	face	elicit	dissimilar	activation	patterns	to	each	other	in	FFA	(bottom	right	quadrant	

in	Figure	4a),	as	would	be	expected	from	differences	in	their	object	identity	and/or	visual	features.	

This	is	in	sharp	contrast	to	the	activation	patterns	elicited	by	their	yoked	objects	with	illusory	faces,	

which	elicit	highly	similar	activation	patterns	to	each	other	in	the	FFA	despite	their	substantial	visual	

differences	 (compare	 upper	 left	 and	 bottom	 right	 quadrants	 in	 Figure	 4a).	 In	 contrast,	 objects	

containing	illusory	faces	are	moderately	dissimilar	to	those	without	illusory	faces	(top	right	quadrant	

in	Figure	 4a),	 despite	 their	 visual	 similarity	 resulting	 from	 the	 yoked	 stimulus	 design.	Overall,	 the	

results	 indicate	that	the	response	of	FFA	is	dominated	by	the	presence	or	absence	of	a	face	to	the	

extent	 that	 it	overrides	any	 influence	of	 the	similarity	of	visual	properties	or	object	 identity	 in	 the	

representation.		

	 These	 relationships	 are	 well-captured	 by	 the	 face-nonface	 model	 (Figure	 4c),	 which	

significantly	correlates	with	the	FFA	dissimilarity	matrix	(Figure	4d)	and	approaches	the	theoretical	

limit	of	the	maximum	possible	correlation	with	the	fMRI	data	as	defined	by	the	noise	ceiling	(Nili	et	al.	

2014).	Notably	the	object	model	fails	to	capture	the	representational	structure	of	the	visual	stimuli	in	

FFA,	indicated	by	a	lack	of	a	significant	correlation	with	the	FFA	dissimilarity	matrix	(Figure	4d).	In	sum,	

the	perception	of	an	illusory	face	mediates	activity	in	FFA,	regardless	of	the	particular	visual	properties	

that	 compose	 the	 facial	 features.	 Although	 the	 presence	 of	 an	 illusory	 face	 could	 be	 successfully	

decoded	from	activation	patterns	in	LOCscr	and	LOCofs	(Figure	4b),	none	of	the	dissimilarity	matrices	
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for	the	other	regions	of	interest	(Figure	4b)	significantly	correlated	with	the	categorical	models	(Figure	

4c),	suggesting	this	organization	of	the	representational	space	is	unique	to	the	FFA.	

	

DISCUSSION 

 

We	 investigated	 the	 representation	 of	 illusory	 faces	 in	 inanimate	 objects	 throughout	 category-

selective	human	ventral	visual	cortex.	Importantly,	we	used	a	yoked	fMRI	design	to	compare	patterns	

of	BOLD	activation	evoked	by	images	of	objects	containing	illusory	faces	with	that	evoked	by	similar	

matched	 objects	 without	 illusory	 faces.	 We	 selected	 only	 naturally-occurring	 examples	 of	 face	

pareidolia	in	order	to	investigate	spontaneous	false	positives	of	face	detection	with	a	high	degree	of	

variance	in	their	specific	visual	properties.	The	cross-decoding	results	revealed	that	activity	 in	both	

face	 (FFA)	 and	object-selective	 (LOC)	 regions	was	modulated	by	 images	 that	 elicit	 face	pareidolia,	

regardless	of	 the	particular	visual	elements	 that	compose	the	 facial	 features	and	 its	configuration.	

Given	that	V1	is	particularly	sensitive	to	low-level	visual	features	and	is	implicated	in	the	early	stages	

of	retinotopic	visual	processing,	it	is	unsurprising	that	the	classifier	failed	to	decode	the	presence	of	

an	 illusory	 face	 from	activation	patterns	 in	 this	 region.	We	also	 found	no	evidence	 that	activity	 in	

scene-selective	PPA	is	mediated	by	the	perception	of	illusory	faces.	This	is	notable	as	PPA	is	frequently	

functionally	 defined	 as	 voxels	which	 exhibit	 a	 greater	 response	 to	 scenes	 than	 faces	 (Epstein	 and	

Kanwisher	 1998;	 Kravitz	 et	 al.	 2011;	 Park	 et	 al.	 2011;	 Kauffmann	 et	 al.	 2015),	 thus	 a	 reduction	 in	

activity	 for	 illusory	 faces	might	have	been	expected.	However,	 there	was	also	no	difference	 in	 the	

magnitude	of	BOLD	activation	in	PPA	for	illusory	faces	versus	matched	objects.	

	 In	addition	to	successful	classification	of	 illusory	 faces	across	 image	sets,	activity	 in	object-

selective	regions	was	also	informative	about	object	content.	Successful	object	cross	decoding	in	LOC	

is	 consistent	 with	 previous	 results	 suggesting	 patterns	 of	 activation	 in	 these	 regions	 are	 strongly	

associated	with	object	identity	(MacEvoy	and	Epstein	2009)	and	object	shape/features	(Kourtzi	and	

Kanwisher	2000).	Notably,	object	cross	decoding	was	also	successful	 in	PPA,	but	not	 in	FFA	or	V1.	

There	is	considerable	influence	of	low-level	visual	features	on	the	response	of	scene-selective	regions	

(Groen	et	al.	2017),	thus	cross-classification	of	objects	in	PPA	may	be	based	upon	responses	evoked	

by	shared	visual	features	between	different	pictures	of	the	same	object	class.		

	 Although	both	FFA	and	LOC	contained	decodable	information	about	the	perception	of	illusory	

faces	in	inanimate	objects,	it	is	likely	that	the	structure	of	the	corresponding	representations	of	these	

categorically	ambiguous	 stimuli	 is	 substantially	different	between	 these	 two	 regions.	Beyond	 their	

difference	 in	 preferred	 category	 (faces	 vs.	 objects)	 as	 measured	 by	 the	 magnitude	 of	 the	 BOLD	

response	 (Kanwisher	 et	 al.	 1997;	 Kourtzi	 and	 Kanwisher	 2000),	 there	 are	 other	 known	 functional	

differences.	Previous	studies	have	observed	that	activity	 in	LOC	does	not	correlate	with	behavioral	
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measures	of	face	processing	(Yovel	and	Kanwisher	2005;	Davidenko	et	al.	2012),	while	activity	in	FFA	

does	(Grill-Spector	et	al.	2004;	Yovel	and	Kanwisher	2005).	This	is	consistent	with	our	finding	that	the	

face	models	significantly	correlated	with	the	FFA	dissimilarity	matrix,	and	not	with	that	 for	object-

selective	LOC.	This	suggests	that	the	presence	of	illusory	faces	is	a	stronger	predictor	of	the	underlying	

representation	of	these	objects	in	the	FFA,	while	the	representation	in	LOC	is	likely	to	involve	other	

factors.	Further,	the	object	cross-decoding	analysis	revealed	that	activity	in	LOC	was	also	informative	

about	object	identity,	while	object	content	could	not	be	decoded	from	the	FFA.	Together	these	results	

point	 to	 genuine	 functional	 differences	 in	 the	 representation	of	 illusory	 faces	 in	 face-	 and	object-

selective	cortical	regions.	

	 The	functional	architecture	of	human	ventral	temporal	cortex	is	understood	to	involve	both	

clustered	 category-selective	 regions	 such	 as	 the	 FFA,	 and	 more	 distributed	 patterns	 of	 category-

selectivity	across	larger	regions	of	cortex	(Grill-Spector	and	Weiner	2014).	An	important	outstanding	

question	is	to	understand	the	functional	significance	of	the	information	the	FFA	contains	about	non-

face	 objects	 (Haxby	 et	 al.	 2001;	 O'Toole	 et	 al.	 2005),	 which	 is	 a	 challenge	 to	 its	 face-specificity	

(Kanwisher	2017).	A	relevant	point	raised	by	our	results	is	that	the	response	of	the	FFA	to	inanimate	

objects	 is	 strongly	modulated	 by	 the	 spontaneous	 perception	 of	 an	 illusory	 face.	 Image	 sets	with	

diverse	visual	properties	and	object	identities	elicited	similar	representations	if	they	contained	illusory	

faces.	Conversely,	image	sets	with	the	same	degree	of	variance	in	visual	properties	and	object	identity	

elicited	highly	dissimilar	representations	if	no	illusory	faces	were	present.	Notably	even	yoked	image	

sets	matched	for	visual	features	and	object	identity	produced	markedly	dissimilar	representations	if	

only	one	set	contained	illusory	faces,	despite	their	considerable	visual	and	semantic	similarity	on	other	

dimensions.	This	suggests	that	any	non-face	object	information	contained	in	the	FFA	is	secondary	to	

the	dominance	of	face	information	in	its	representational	organization.		

	 A	 significant	 current	 issue	 in	 studying	 the	 neural	 mechanisms	 of	 object	 recognition	 is	 in	

disentangling	 the	 degree	 to	which	 category-selective	 responses	 in	 inferior	 temporal	 cortex	 reflect	

category	representations	per	se,	versus	sensitivity	to	the	low	level	visual	features	(e.g.	shape,	color,	

symmetry)	that	co-vary	with	category	membership	(Cox	and	Savoy	2003;	Baldassi	et	al.	2013;	Rice	et	

al.	2014;	Wardle	and	Ritchie	2014;	Andrews	et	al.	2015;	Bracci	and	Op	de	Beeck	2016;	Coggan	et	al.	

2016;	Kaiser	et	al.	2016;	Proklova	et	al.	2016;	Bracci	et	al.	2017).	It	is	intuitive	that	by	definition,	any	

high-level	visual	representations	must	be	related	to	the	visual	features	that	define	object	categories	

to	 some	 degree.	 However,	 the	 impossibility	 of	 comprehensively	 accounting	 for	 all	 possible	

combinations	 of	 visual	 features	 at	 different	 levels	 of	 description	 entails	 that	 it	 is	 empirically	

challenging	 to	 provide	 evidence	 of	 category-representations	 that	 are	 not	 in	 principle	 reducible	 to	

some	set	of	co-varying	visual	elements.	The	novel	approach	we	take	here	is	to	use	a	stimulus	class	in	
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which	face	perception	is	decoupled	from	the	typical	visual	features	that	define	real	faces.	Secondly,	

the	use	of	a	yoked	experimental	design	means	that	the	sets	of	illusory	faces	share	more	visual	features	

with	their	corresponding	matched	objects	than	with	each	other,	ensuring	that	the	visual	variance	is	

higher	within-category	than	across-category	in	our	design.	This	is	an	extreme	example	of	introducing	

high	variance	into	the	category	exemplars	(Bracci	and	Op	de	Beeck	2016;	Bracci	et	al.	2017),	as	the	

visual	features	in	our	stimulus	set	are	instead	diagnostic	of	non-preferred	object	categories	(for	the	

FFA).	A	further	advantage	of	this	approach	is	that	it	does	not	require	artificially	controlling	the	visual	

content	of	the	experimental	stimuli	and	therefore	reducing	their	ecological	validity	(Talebi	and	Baker	

2012).	Instead,	in	our	design	we	exploit	the	high	variability	in	naturally	occurring	false	positives	of	face	

detection	made	by	the	primate	visual	system	(Taubert	et	al.	2017).	

	 Together	our	results	show	that	the	FFA	strongly	responds	to	false	positive	faces	in	inanimate	

objects	 and	 is	 tolerant	 to	 a	 high	 degree	 of	 visual	 variance	 in	 what	 constitutes	 a	 "face".	 Previous	

arguments	 for	 the	 face-selectivity	 of	 the	 FFA	 have	 been	 predominantly	 based	 on	 its	 preferred	

response	to	faces,	typically	quantified	by	a	higher	magnitude	of	fMRI	BOLD	percent	signal	change	to	

faces	 compared	 to	 other	 categories	 (Kanwisher	 and	 Yovel	 2006).	 In	 addition	 to	 human	 faces	

(Kanwisher	et	al.	1997),	the	FFA	is	known	to	respond	to	animal	faces	(Tong	et	al.	2000),	schematic	

faces	(Tong	et	al.	2000),	and	imagined	faces	(O'Craven	and	Kanwisher	2000).	More	recently,	further	

corroborating	evidence	has	arisen	from	successful	decoding	of	face-related	properties	from	activation	

patterns	in	the	FFA	such	as	identity	(Nestor	et	al.	2011;	Zhang	et	al.	2016),	famous	faces	(Axelrod	and	

Yovel	2015),	differences	in	facial	features	and	their	configuration	(Goesaert	and	de	Beeck	2013),	and	

tolerance	to	viewpoint	rotation	(Anzellotti	et	al.	2014).	Importantly,	our	results	show	that	the	face-

selective	 response	 in	 the	 FFA	 is	 not	 reducible	 to	 the	 specific	 low-level	 visual	 features	 that	 often	

distinguish	 real	 faces	 from	 inanimate	objects.	 The	FFA	 is	not	 finely-tuned	 to	a	homogenous	 set	of	

visual	features.	Instead,	we	find	that	the	FFA	is	broadly-tuned	to	the	detection	of	a	face,	independently	

of	the	particular	visual	features	that	form	this	perception.		

	 Object	 recognition	 and	 face	 processing	 are	 two	 of	 the	 most	 impressive	 computational	

achievements	 of	 the	 human	 visual	 system,	 and	 the	 underlying	 neural	 mechanisms	 are	 still	 being	

revealed.	To	date	 the	development	of	 the	 theoretical	 framework	 for	understanding	 the	 functional	

architecture	 of	 ventral	 temporal	 cortex	 and	 its	 role	 in	 high-level	 visual	 processing	 has	 focused	 on	

exemplars	with	distinct	category	membership	(Kravitz	et	al.	2013;	Grill-Spector	and	Weiner	2014).	Our	

results	 with	 categorically	 ambiguous	 exemplars	 emphasize	 the	 complexity	 with	 which	 visual	

information	is	modulated	by	higher	level	perception	in	category-selective	regions	of	the	ventral	visual	

stream.	Further	examination	of	natural	'errors'	or	false	positives	such	as	in	the	case	of	face	pareidolia	

may	help	constrain	models	of	high-level	visual	processing	in	the	future.		
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