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Abstract
A variety of ecosystems exhibit spatial clustering devoid of characteristic sizes, also

known as scale-free clustering. In physics, scale-free behaviour is known to arise when a

system is at a critical point, which occurs at the edge of two phases of matter. Scale-free

clustering in physics therefore indicates that a system is not resilient. Spatial ecological

studies, however, posit that scale-free clustering arises away from critical points and is

therefore an indicator of robustness. This inconsistency is troubling. Here, we synthesize

the literature on cluster-size distributions together with analyses of a spatial ecological

model that incorporates local birth, death and positive feedbacks. We argue that scale-

free clustering in real ecological systems is driven by strong positive feedbacks. Using

the model, we demonstrate that power-law relations may occur far away from, near or

at the critical point of ecosystem collapse depending on the strength of local positive

feedbacks. We therefore infer that clustering patterns are unrelated to critical points of

ecosystem collapse. Power-law clustering, instead, indicates a different critical point,

called a percolation point, that signifies the onset of spanning clusters in a landscape.

Finally, we show that a collapse or a regime shift in an ecosystem is characterized by the

emergence of scale-free spatial correlations in the system, reflected in a scale-free power-

spectrum.

∗ sumithras@iisc.ac.in

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/233429doi: bioRxiv preprint 

mailto:sumithras@iisc.ac.in
https://doi.org/10.1101/233429


I. INTRODUCTION

Desertification of semi-arid ecosystems [1], eutrophication of lakes [2], spread

of diseases [3], invasion [4] and community shifts in coral reefs [5] are some ex-

amples of state transitions in ecological systems. Some of these transitions can be

abrupt and irreversible, leading to the catastrophic loss of wildlife, habitats, and

ecosystem services. In ecology, much of our understanding of the dynamics of

such transitions, which are also called regime-shifts or critical transitions, is based

on principles derived from the theory of phase transitions and bifurcations [6–9].

This theory predicts that the interactions that stabilize a system become increas-

ingly weak as the system nears a critical point. This results in the emergence

of properties, that are independent of system-specific details, such as delays in

the system’s recovery from perturbations. More specifically, perturbations decay

as a power-law function of time in critical systems, in contrast to stable systems

where perturbations decay exponentially fast. This phenomenon, which is called

critical slowing down, has been widely used to devise early warning signals for

ecosystems approaching transition points [6–8]. It is, however, only one of sev-

eral power-law relations that arise at critical points. This emergence of archetypal

features in critical systems is called criticality [10–12]. In the physics literature,

criticality is often used synonymously with power-law relations (see Box I) [13–

15].

Contrastingly, in ecology, power-law clustering is often considered character-

istic of resilient rather than critical ecosystems [16–20]. Power-law clustering

refers to aggregations of individuals, called patches or clusters, over a landscape

such that there is a power-law relationship between the size of clusters and their

frequency of occurrence (see Box I). Previous studies suggest that such clustering

emerges in ecosystems under conditions of high resilience [16, 17]. When ecosys-

tems are stressed, clusters fragment leading to loss of large patches. This results

in a gradual shift from a power-law to an exponential cluster-size distribution,

as stressors increase. The disappearance of power-law clustering is, therefore,

hypothesised to represent loss of resilience in ecosystems [16, 18, 19, 21–23]. Fur-

ther, the emergence of power-laws away from critical points has been referred to

as ’robust criticality’, i.e. the appearance of critical properties over a broad range

of conditions, not in the vicinity of critical points [12, 22]. Power-law relations in
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these systems thus seem at variance with classical physics theories.

Although some empirical studies in ecology contest the generality of the as-

sociation between power-law clustering and resilience [24–27], the theory has

gained much traction in the ecology community. In this paper, we show that

power-law clustering cannot be a signature of resilience. Via a synthesis of re-

cent literature [16, 17, 28, 29], we argue that the power-law clustering observed

in real-world ecosystems is promoted by strong facilitative interactions in these

systems. We then demonstrate with a simple spatial model, that depending on

the facilitative interactions in the system, such clustering may occur far away

from, near or at the critical point of ecosystem collapse and is thus independent

of resilience. Scale-free power-law clustering (Box I) is instead always indicative

of the emergence of clusters that span the landscape, also known as the percola-

tion threshold. We finally show that properties of systems at collapse thresholds

are best captured by a different metric - the spectral density - which decays as a

power-law function of spatial frequency.

Glossary

1. Regime shifts: Qualitative changes in ecosystem state. These shifts can be abrupt or grad-
ual functions of the underlying drivers.

2. Phase transition: A discontinuous change in a macroscopic property of a system. Some
ecological relevant macroscopic quantities are canopy cover, biomass density, connectivity,
etc.

3. Critical point: The value of a state variable (such as density) or the value of an environ-
mental condition (such as rainfall) at which a system undergoes a phase transition.

4. Criticality: Characteristic features of a system at a critical point. These features are often
independent of the system-specific details.

5. Robust criticality: The appearance of critical features over a broad range of conditions, and
not only near the critical point.

6. Scale-free: Lacking a characteristic scale, or a quantity having infinite average value.

7. Diverge: Tending to infinity.

8. Percolation: Existence of a path (of sites in a particular state) from each edge of a system to
all others.

9. Resilience: The amount of disturbance a system can withstand without transitioning to an
alternate state.

10. Stability: The rate at which a system recovers from perturbations.

11. Facilitation: Interactions between individuals resulting in enhanced reproduction and/or
reduced death rates.

12. Spatial autocovariance function: Covariance between states at two locations as a function
of the distance between them.
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13. Power spectrum/Spectral density function: Strength of fluctuations as a function of fre-
quency; it is the Fourier transform of the autocovariance function.

BOX 1: POWER-LAW CLUSTERING

Biology is replete with examples of self-organised spatial clustering ([30–32]; see
Fig 1). Often, this clustering occurs in the form of irregular clumps without a charac-
teristic size (Fig 1). Such a pattern is mathematically described as a power-law function
of clump sizes - i.e the frequency of clumps of a particular size (denoted by x) decays
as a power function of the size i.e. f(x) = c x−β for all x > xmin wherein c is a con-
stant. The lower the value of the exponent β, the heavier the tail of the distribution. This
distribution cannot be normalised if β < 1. Additionally, when β ≤ 2 the mean of this
distribution is infinite.

Exact expressions for the mean (x̄) and variance (σ2x) of the normalised power-law
distribution, denoted by p(x), are given by

x̄ =

∫ ∞
xmin

xp(x)dx =

{
xmin

β−1
β−2 if β > 2

∞ if 1 < β ≤ 2

σ2x =

∫ ∞
xmin

(x− x̄)2p(x)dx =

{
x2min

β−1
(β−3)(β−2)2 if β > 3

∞ if 1 < β ≤ 3

Thus, there is no characteristic size or typical length scale in this distribution, when
1 < β ≤ 2, and the distribution is called scale-free. Power-law distributions of biologi-
cal quantities with exponents ≤ 2 are therefore intriguing. Such distributions, however,
are not uncommon and have been documented in various ecosystems (Fig 1).

Figure 1: Scale-free cluster size distributions in different ecosystems and representative
snapshots (not necessarily from the same study area or time period) of (a) West broad ledges

seagrass near the isle of scilly, [33] (b) Saw-grass in everglades wetlands, USA [34] (c) Forest fires
in Alaskan boreal forests, USA (1990-91) [35] and (d) Vegetation in Kalahari, Namibia [17]

Top row image credits: modified from [36] https://doi.org/10.1016/j.ecss.2017.11.001 [CC BY]
http://creativecommons.org/licenses/by/4.0/, [34], U.S. Geological Survey,Department of the

Interior/USGS U.S. Geological Survey Map created by Tyler Lewis/USGS. Data (1995-2014), [17]
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II. POSITIVE FEEDBACKS PROMOTE POWER-LAW CLUSTERING AT RELA-

TIVELY LOW DENSITIES

Power-law clustering in the real world (Figure 1 in Box 1) is predominantly

seen in ecosystems with strong positive interactions [17, 31, 34, 37]. Power-law

cluster-size distributions, however, are also realised in ‘null models’ that are de-

void of any interactions in space. In null models, birth and death rates are density

independent and individuals occupy space randomly. Consequently, the density

of occupied sites changes from large values to a bare state as a gradual/smooth

function of local birth/death rates [22, 38]. These null models are widely studied

in the physics literature in the context of percolation. Percolation is the move-

ment or spread of an agent through a system via a connected path of sites, from

any edge of the system to all others [39]. Despite the lack of positive feedbacks in

these null models (henceforth called percolation models), power-law clustering

occurs at a particular density of the occupied sites, known as percolation density.

For ecological contexts, a relevant geometry is that of two dimensional square

lattice for which the percolation density is 0.59 [38].

The densities that correspond to power-law clustering in ecosystems are typi-

cally lower than the above mentioned percolation density. For example, regions

in the Kalahari, ranging in density from 0.14 to 0.54, all show power-law size dis-

tributions of vegetation clusters [17]. Spatial ecological models of ecosystems that

aim to explain these scale-free clustering all assume varying degrees of positive-

feedback interactions in the system [16, 17, 40–42]. Although these models often

incorporate system-specific processes and are consequently complex involving

many parameters, they have commonalities. For example, they all assume, in

some form, increased birth (or reduced death) rates of individuals who are sur-

rounded by others (Box 2). Below, we explain how positive feedbacks lower the

density at which scale-free clustering can occur.

The emergence of clustering depends on how local interactions between indi-

viduals scale to cluster dynamics. In percolation (null) models, bigger clusters

are more likely to merge with other clusters, resulting in larger growth rates for

larger clusters. This baseline difference in growth rates between clusters of dif-

ferent sizes is determined only by the density of the landscape [28]. Facilitation

further increases these size-dependent differences in cluster growth rates, at all

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/233429doi: bioRxiv preprint 

https://doi.org/10.1101/233429


densities. Theory predicts that scale-free clustering emerges whenever clusters

grow in proportion to their size, known as proportionate growth [29]. In percola-

tion models, proportionate growth occurs only at the percolation density, which

is 0.59 for a square lattice [28, 38]. In models with local facilitation, proportionate

growth and thus scale-free clusters occur at lower densities than 0.59 [17], offer-

ing potential explanation for the lowered densities at which scale-free clustering

is seen in ecosystems.

Indeed, there is ample empirical evidence of such local facilitative interactions

in these ecosystems [5, 16, 17, 31, 34, 37, 43–45]. For example, in semi-arid land-

scapes, seed germination and seedling survival probabilities are higher in the

neighbourhood of other plants than out in the open [37, 43]. This results from

reduced light and heat stress as well as increased water availability to young

saplings in the vicinity of adult plants. Similarly, in mussel-beds, steadfast attach-

ment of mussel to the substrate is directly dependent on the attachment of neigh-

bours [42]. Moving beyond terrestrial landscapes, in macroalgal beds, recruit-

ment and survival of macroalgal fronds shows density dependence due to the

protection offered by neighbours from herbivory by sea urchin and fish [44, 45].

Thus, models together with empirical data indicate that positive feedbacks lower

the density at which power-law clustering in ecosystems.

BOX 2: SPATIAL MODEL WITH POSITIVE FEEDBACK

Several spatial models in ecology try to explain power-law clustering in the context
of facilitation and/or ecosystem resilience [16, 17, 31, 41]. These models incorporate de-
tailed ecological processes that are relevant to some focal ecosystems. Owing to their
complexity, however, it is difficult to infer generic relationships between different micro-
scopic processes (facilitation) and macroscopic patterns (e.g. clustering and ecosystem
resilience). To address this problem, we employ a simple spatially-explicit model with
only two parameters - one to control baseline reproduction rates, and the other to control
strength of local positive feedbacks. Each cell in this cellular automata model is updated
probabilistically depending on states of cells in its neighbourhood and all interactions
are local (see Fig 2). The simplicity of this model allows us to decouple the effects of
environmental stress and facilitation on spatial patterns in ecosystems. The simulation
rules and sequence are illustrated in Fig 2 and described in Appendix B. Detailed model
description and analytical methods can be found in [46]

Facilitation induces abrupt regime shifts: Local positive feedbacks in ecosystems are
known to cause non-linear responses to stress [47–49]. Consider the example of plants
in a semi-arid ecosystem. The presence of neighbours offsets water and heat stress to
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Figure 2: Schematic representation of the model and simulation procedure, for a given ‘Initial
lattice’ shown at the centre of the top row. Light blue circles represent (randomly) chosen cells to
update. Depending on the states of chosen cells, the update scheme results in reproduction (left
part of second row) or facilitation (right part of the second row). The box at the bottom shows (i)
neighbours of a focal pair of cells and (ii) state dependent transition probabilities of chosen cells.

individual plants. Consequently, reproduction and death rates are heterogeneous over
the landscape with local areas of high plant density having a higher rates of reproduc-
tion (and lower death rates) than the landscape’s average. Strong positive feedback in-
teractions, thus, offset the effects of environmental stressors like aridity. However, this
produces an allee effect on the landscape with a minimum threshold of neighbourhood
density for plants to survive and increasing stress can then potentially collapse the entire
system [48].

a . b .

Figure 3: (a) shows steady state density as a function of changing driver value for different
values of positive feedback. (b) shows a close look at the nature of this change for two values of
positive feedback, q = 0 and 0.92. We find that facilitation increases the non-linearity and may

even cause an abrupt collapse in response to stress.
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Indeed, our model too shows that when facilitation is weak, the system undergoes a
continuous transition from an occupied to a bare state (Fig 3). As facilitation strength
increases, the system can maintain a high density state even for higher levels of stress;
but the system also exhibits an abrupt transition to a bare state when the stressor crosses
a threshold.

III. POWER-LAW CLUSTERING IS RELATED TO PERCOLATION POINT AND

NOT CRITICAL POINT OF ECOSYSTEM COLLAPSE

As mentioned in earlier sections, several studies over the last decade have sug-

gested that a power-law distribution of patch sizes indicates a resilient ecosystem

[16–18]. Researchers have argued for a phenomenon they called ’robust critical-

ity’, based on the emergence of power-laws over a range of driver conditions in

certain types of systems [12, 22], to explain the counter-intuitive shift away from

a power-law pattern as the system approaches a transition. Further, they suggest

that the fragmentation of large patches and consequent thinning of the tail of the

cluster-size distribution could serve as an indicator of a stressed ecosystem on

the brink of collapse [16, 18], while others do not [24–27]. Based on our model

analyses, we argue that a) there is no relationship between spatial clustering and

transitions in the overall density of the ecosystem, and b) power-law clustering

is indeed associated with a transition, but in a different quantity which is known

as the percolation probability.

Few ecological studies have examined the association between power-law

clustering and percolation in (non-null) models with spatial-interactions (but

see [50]). As we argued in Section II, facilitation lowers the density at which

clusters grow proportionally to their size. This reflects as a reduction in the den-

sity at which power-law clustering emerges. Further, as we have shown for our

model as well (see Box II), positive feedbacks also promote non-linearities in the

system’s response to stress, thus promoting abrupt collapse from high densities

(Fig 3 b). Consequently, depending on the strength of facilitation, power-law

clustering can occur at any distance from the critical density of collapse; for ex-

ample, the inset of Fig 4a shows the emergence of power-law clustering far from

the critical point whereas the inset of Fig 4b shows power-law clustering very

near, even possibly at, the critical point of collapse. Thus, cluster-size distribu-

tion reveals little about the ecosystem’s resilience.
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Figure 4: Strength of facilitation, rather than distance to critical transition, determines the
cluster size distribution. The Inverse CDF is the inverse cumulative distribution function. The
values of driver and density at which we find a scale-free cluster size distribution are shown as

crosses in the insets of (a) and (b). (a) shows that when facilitation is weak (q = 0), scale-free
clustering is seen far from ecosystem transition, consistent with previous hypotheses [12, 16, 17].

(b) shows that when facilitation is strong (q = 0.92), scale-free clustering can occur right at the
transition point; this contradicts previous hypotheses associating scale-free cluster size

distributions with resilience. For the fitted function kx−β wherein k = (β − 1)xβ−1
min , xmin = 17 in

(a) and 3 in (b). See Appendix D for cluster size distributions at other values of p and q.

Cluster size distributions, however, are frequently associated with a critical

phenomenon called percolation. Percolation probability is the probability that

an agent (e.g. fire) permeates through a substance (forest). This depends on the

availability of a connected path of sites in a conducive state (e.g. vegetated) from

one edge of the system to all others. The percolation probability can, therefore,

be measured by the probability of occurrence of a spanning cluster of occupied

cells in the system. As stated previously, for a square lattice, null models exhibit

a phase transition from zero percolation probability to finite values at a density

of 0.59. This is exactly the density, also called percolation density, at which the

system exhibits power-law clustering. Consequently, the average cluster size di-

verges and the system exhibits no scale, or is called scale-free. In other words,

power-law clustering characterises the percolation transition in null models.

We show that our spatial ecological model too exhibits a transition in per-

colation probability as a function of density (Fig 5). Just as in null model,

this transition is associated with scale-free clustering. We find this associa-

tion to be true for a wide range of values of strengths of facilitation, q = 0

to 0.95, and we expect it to be true for all the entire range (i.e, up to q = 1).
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Figure 5: Percolation transition for dif-
ferent strengths of facilitation and a null
model. Percolation transition occurs close
to density 0.59 for the null model, 0.53

for low facilitation (q = 0) and 0.31 for
high facilitation (q = 0.92). We note that
the percolation transition is exactly at that
density where power-law cluster size dis-
tributions are observed; see Fig 4.

The percolation density is lower for the sys-

tem with higher facilitation (Fig 5), consis-

tent with our synthesis of empirical results

in the previous section. Weak facilitation

leads to continuous change in percolation

probability whereas strong facilitation, ow-

ing to stronger nonlinear response of the sys-

tem, makes it discontinuous (Fig 5).

Thus, power-law cluster size distribu-

tions are indeed a signature of criticality but

associated with a percolation transition. At

the percolation point, the average cluster

size diverges and the system becomes scale-

free (Fig 5). However, cluster size distributions are not associated with the regime

shift or critical transition typically studied in the context of ecosystems where a

global density variable (e.g., cover) collapses.

IV. SCALE-FREE SPATIAL CORRELATIONS ARISE AT CRITICAL POINTS OF

ECOSYSTEM COLLAPSE

So far, we have demonstrated that scale-free cluster sizes do not represent re-

silience and hence can not indicate imminent regime shifts. However, the theory

of phase transitions posits the emergence of scale-free features near/at critical

points. Here, we argue that the right way to characterise criticality associated

with regime shifts is by scale-free behaviour in spatial autocovariance function

(Fig 6; Appendix E).

As an ecosystem approaches a critical point, its return to equilibrium state,

when disturbed, becomes progressively slower. This phenomenon, known as

critical slowing down [8, 9, 13, 51], has two implications - increased spatial cor-

relations [52] and increased spatial variance [53]. To understand this, consider

how a perturbation at any location in the ecosystem will spread in space. First,

as the system approaches a critical point, ripples caused by each perturbation

will propagate to ever larger distances in the system [13, 14]. A measure of per-

turbation spread, the correlation length, rapidly increases [52]. Second, as the
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perturbations persist for longer, further disturbances enhance the amplitudes of

the ripples. This manifests as increasing spatial variance in the ecosystem as it

moves towards the critical point [53]. Here, we consider the spatial autocovari-

ance function, defined as covariance of densities at two locations separated by a

distance r (Box I). This function captures both spatial variance and correlations.

Below we argue that spatial autocovariance function at the critical point becomes

a power-law function of distance (r), with an exponent that reflects an infinite cor-

relation length [14]. Thus, the system has scale-free spatial correlations at critical

points of ecosystem collapse.

Before we show calculations of spatial autocovariance for our model, we make

a couple of technical remarks. First, physicists often refer to the autocovariance

function as the ‘correlation function’; some theoretical papers in ecology also do

the same [50]. Here, we have adopted the standard terminology that is used in

quantitative ecology literature (see Appendix E) for the definition). Second, the

theory of phase transition predicts critical slowing down and consequent scale-

free behaviour at critical points of continuous phase transitions. So far critical slow-

ing down has been well demonstrated in both models and empirical systems of

even discontinuous ecological transitions. Here, using our ecological model, we

demonstrate that scale-free behaviour characterises critical points of both the con-

tinuous and discontinuous transitions.

Calculation of the spatial autocovariance function is often beset with statis-

tical and computational difficulties. Therefore, we focus on a mathematically

equivalent measure of correlations in spatial patterns via its power spectrum [18]

(Appendix E). It can be shown that the power spectrum is the Fourier transfor-

mation of the autocovariance function [54]. The power spectrum of a spatial pat-

tern provides a measure of the relative contribution of fluctuations at different

spatial frequencies in the system, to its overall pattern. It is known in the ecol-

ogy literature that as systems approach critical points, the low frequency modes

begin to dominate their power spectrum [18, 55]. However, the full functional

form of the power-spectrum is rarely quantified but is crucial to inferring critical

behaviour. Simulations of our model described above shows that the power-

spectrum becomes scale-free at critical points (Fig 6). We explain in Appendix E

that a scale-free power spectrum is indicative of a scale-free autocovariance func-
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tion. Criticality associated with density collapse of an ecosystem is thus captured

in its power-spectrum.

Figure 6: The power-spectrum of systems very near/at the critical point decays as a power-law
function of spatial frequency. This is independent of the nature of interactions in the system,

with (a) showing the model with low facilitation i.e. q = 0 and (b) showing high facilitation i.e.
q = 0.92). Lines represent the mean trend and bands, the SD. For the fitted function kx−β ,

k = 2.02 ∗ 10−7 when q = 0 and 4.65 ∗ 10−8 when q = 0.92. Grey colour represents trends for the
null model.

V. DISCUSSION

Scale-free behaviour is known to occur in critical systems. It is thus intriguing

that several ecological studies associate scale-free clustering with resilient ecosys-

tems. We show in this paper that scale-free clustering is unrelated to ecosystem

resilience. When ecosystems are in the vicinity of a critical point of collapse, we

do indeed observe scale-free behaviour but in the spatial autocovariance, or spec-

tral function, of local densities. Scale-free clustering, on the other hand, is asso-

ciated with the emergence of spanning clusters, also called percolation, which

represents a phase transition in a different state variable and is not necessarily

associated with a collapse. We argue that an understanding of how local facili-

tation scales to macroscopic patterns reveals intricate connections between scale-

free clustering, ecosystem resilience and critical phenomena.

A. Positive feedbacks and clustering

Previous ecological models that have attempted to resolve these connections

include complex interactions often specific to particular ecosystems [17, 22, 26, 27,
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56]. In such models, many parameters contribute to local positive feedback and

environmental stress, thus making it difficult to disentangle causal links between

local processes and macroscopic patterns. Specifically, seminal models relating

clustering and resilience [16, 17] also assumed that local birth/death of trees was

negatively regulated by global density of vegetation in the landscape. Mecha-

nisms such as rapid spread of water in the landscape [57] are offered as potential

explanation for global-scale feedbacks. However, based on our synthesis( [28, 29]

and Fig 4), we posit that local positive feedbacks alone can explain the emergence

of scale-free clustering in these systems.

A recent theoretical study found that this association of cluster-size distribu-

tions with resilience can fail [26]. This study investigated the effect of incorporat-

ing grazing in a previous model of dryland vegetation dynamics. Here, grazing-

induced mortality is lowered for individuals with more neighbours, called asso-

ciative protection. When the associative protection is high, they find scale-free

clustering at the critical point. These results are consistent with our synthesis

because associative protection in their model is analogous to increased positive

feedback (q) in our model. Indeed, with low positive-feedbacks, our model re-

sults match that of previous studies [16, 17], away from the critical point. How-

ever, increasing the strength of positive feedbacks can result in scale-free clus-

tering occurring at lower densities, closer and even at the critical point. In other

words, any form of cluster size distribution (exponential, scale-free, etc) can occur

at the critical point of ecosystem collapse .

Some studies extend and aim to generalise the idea of cluster size distribu-

tions to infer resilience [19]. They argue that fragmentation and concomitant

loss of large patches, or shift in mean-patch size, has a wider applicability ex-

tending even to systems with Turing-like (regular) patterns. That the geometry

of clusters can reflect resilience-loss was in fact first proposed for systems with

Turing-like spatial structures [58]. A few empirical studies that have quantified

such patterns, however, don’t find the expected shifts in the cluster shapes/size-

distributions with increasing stress in the ecosystem [19, 20, 25]. Nevertheless,

they do not question the premise of the original hypothesis. Instead, some stud-

ies invoke explanations based on the relative strengths of local versus long-range

negative feedbacks in the ecosystem [19, 20] or based on geographical constraints
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imposed by the landscapes [25]. We think that complexity of previous models

was the limiting factor in revealing the absence of a link between resilience and

cluster properties. Our model analysis shows that facilitative interactions alone

can alter cluster properties. Although we investigated systems with irregular

sized clusters, our result that cluster properties do not relate to resilience can po-

tentially extend even to Turing-like systems.

B. Relevance of cluster sizes

Cluster-size distributions are nevertheless relevant in ecological contexts where

connectivity or porosity of the landscape is of focal interest, such as in the case

of forest fires or disease spread [3, 59]. We showed that scale-free clustering in

our ecological model is associated with a transition in percolation probability,

representing the emergence of a spanning cluster in the system. In the context

of fire or disease outbreaks, presence of a cluster of vegetation (susceptible indi-

viduals) allows fire (disease) to easily spread within each cluster. Consequently,

scale-free clustering, which indicates a highly connected landscape, signals the

possibility of catastrophic fire (or disease) outbreaks. As we discuss below, these

models represent a fundamentally different class of models from what we have

discussed in this paper.

Our model, as well as those reviewed in our syntheses such as those of dry-

land vegetation and mussel bed dynamics, all exhibit critical transitions when

parameter values of the model are tuned to specific values (critical points). There

are however several models where, surprisingly, the dynamics always take the

system to a critical state, even without tuning any parameters. Therefore these

models are called ‘self-organised critical systems’. A classic example relevant to

ecology is that of forest fire models. Here, criticality is characterised by the simul-

taneous occurrence of power-laws associated with both percolation and collapse

transitions [10]. Here too, unlike the hypothesis of [16–18], scale-free clusters do

not indicate resilient systems.
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C. Critical transitions and early warning signals

Our analyses show that scale-free behaviour in spatial correlations, measured

via autocovariance or spectral functions, can characterise criticality. How does

this relate to the relatively vast literature on early warning signals (EWS) of

regime shifts or critical transitions [8]? The EWS of critical transitions (as noted in

the Introduction), as well as the emergence of scale-free correlations (Section IV),

arise from critical slowing down. Although we argue that scale-free correlations

are a reliable signature of criticality, we do not intend to propose that they offer

better early warning signals of critical transitions. The purpose of early warning

signals is to detect signatures of approach to critical points. In that sense, comput-

ing simpler metrics of spatial autocorrelation at lag-1 [52] or spatial variance [53]

may have advantages such as ease of computation and better statistical reliability

in comparison to characterising the complete form of autocovariance or spectral

functions. On the other hand, simpler metrics are also easily affected by external

factors, such as increased spatial heterogeneity or external variability [18, 52] and

hence confound interpretations. Therefore, further investigations are required

to reveal the relative efficacy of looking for features like scale-free correlations.

The key focus of our synthesis, however, is to disentangle processes that generate

scale-free cluster sizes, scale-free correlations and how they relate to criticality.

D. Concluding remarks

Real world analyses can sometimes misleadingly yield power-laws due to

sampling artefacts [60] or misfitting [61–63]. Various ways in which patterns are

misconstrued as power-laws have been discussed in detail in multiple other fo-

rums [61, 64, 65]. Where there is a true power-law with an exponent less than 2,

since it is indicative of diverging quantities, there is a tendency to associate such

a pattern with a critical phenomenon. However, scale-free patterns can also arise

when underlying processes operate at multiple scales [66, 67]. Naive association

of observed scale-free behaviours with either criticality or stability are both prob-

lematic. Our study highlights the importance of having a clear understanding

of how local-interactions drive macroscopic behaviours. Criticality can then be

inferred by measurements and analyses of appropriate ecological quantities.
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VI. DATA AND CODES

All simulation analyses codes, with simulation datasets corresponding to re-

sults presented in this paper, have been made publicly available at

https://github.com/ssumithra/PowerLawCriticalityPaper. Detailed instruction

on execution of these codes are also provided.

VII. ONLINE SUPPLEMENTARY MATERIALS

Appendix A: Power-law Vs exponential functions.

Appendix B: Detailed model description.

Appendix C: Statistical fitting of cluster-size distributions.

Appendix D: Cluster-size distributions across the phase-diagram for low and

strong facilitation.

Appendix E: Power-spectrum fitting.
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