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I. ABSTRACT1

1. In diverse ecosystems, organisms cluster together in such a manner that the2

frequency distribution of cluster sizes is a power-law function. Spatially-explicit3

models of ecosystems suggest that loss of such power-law clustering may indicate4

loss of ecosystem resilience. Hence, it is hypothesised that spatial clustering5

properties in ecosystems - which can be readily measured using remotely-sensed6

high-resolution data - can help infer proximity to ecosystem thresholds and may7

even provide early warning signals of ecosystem collapse. Recent empirical and8

simulation studies, however, don’t find consistent relationships between spatial9

clustering and ecosystem resilience. Furthermore, how spatial clustering metrics10

relate to other well-known early warning signals of ecosystems collapse, specifi-11

cally the phenomenon of critical slowing down (CSD), remains unclear.12

2. We synthesize the literature on cluster sizes in empirical and theoretical studies13

that show how local interactions (especially, positive feedback) among organisms14

can cause power-law clustering. In addition, we analyse a minimal spatial model15

of ecosystem transitions that allows us to disentangle the role of environmental16

stressor and positive feedback on spatial patterns and ecosystem resilience.17

3. Our literature synthesis reveals that empirically observed power-law cluster-18

ing in ecosystems is parsimoniously explained by local positive feedback. Our19

synthesis together with model analysis demonstrates that, depending on the20

strength of positive feedback, emergence of power-law clustering can occur at21

any distance from the critical threshold of ecosystem collapse. In fact, we find22

that for systems with strong positive feedbacks, which are most likely to exhibit23

abrupt transitions, loss of power-law clustering may not even occur prior to24

ecosystem thresholds. We also argue that cluster-size distributions are unrelated25

to the phenomenon of CSD.26

4. We demonstrate that, due to CSD, a power-law feature does occur near critical27

thresholds but in a different quantity; specifically, a power-law decay of spatial28

correlations of ecosystem state.29

5. We conclude that loss of power-law clustering cannot be used as a reliable30

indicator of ecosystem resilience. Our synthesis and model analyses highlights31

links between local positive feedback, emergent spatial properties and how they32

may be used to interpret ecosystem resilience.33
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II. INTRODUCTION34

Desertification of semi-arid ecosystems (van de Koppel et al. 2002), eutrophica-35

tion of lakes (Carpenter et al. 1999), spread of diseases (Chaves et al. 2012), inva-36

sion (Hansen et al. 2013) and community shifts in coral reefs (Knowlton 2004) are37

some examples of state transitions or regime shifts in ecological systems. Some38

of these transitions can be abrupt and irreversible, leading to catastrophic loss39

of wildlife, habitats, and ecosystem services. Such transitions are also known as40

critical transitions in the ecology literature. They happen when a system crosses41

a certain threshold, called critical threshold, of environmental conditions. Over42

the last decade, several studies have devised and validated methods to detect43

the vulnerability of ecosystems to transitions (Carpenter et al. 2011, Dakos et al.44

2012, 2011, Eby et al. 2017, Guttal and Jayaprakash 2009, Kéfi et al. 2014, Kéfi et al.45

2007, Scheffer et al. 2009). One such method is based on the idea that patterns of46

self-organisation in ecosystems can offer signatures of resilience (Kéfi et al. 2014,47

Kéfi et al. 2007, Rietkerk et al. 2004, von Hardenberg et al. 2001). Self-organised48

patterns themselves often result from an interplay of facilitative and competitive49

interactions among organisms (Manor and Shnerb 2008, Scanlon et al. 2007, von50

Hardenberg et al. 2010). Therefore, a comprehensive understanding of how lo-51

cal interactions between organisms scale to their spatial distribution and affect52

ecosystem resilience, is of broad ecological interest.53

Of many varieties of self-organization found in nature (D’Odorico et al. 2012,54

Kéfi et al. 2007, Rietkerk and van de Koppel 2008, Scanlon et al. 2007), we focus55

on spatial patterns where organisms exhibit clustering of irregular size and shape56

(see Glossary); these are found in many ecosystems such as semi-arid ecosystems,57

mussel beds or seagrass (Fig 1). Here, the frequency distributions of these cluster-58

sizes may follow a power-law function (henceforth referred to as power-law clus-59

tering). These are interesting because they may imply that systems lack charac-60

teristic size/shape (see Box 1 for a summary of properties of power-laws). Some61

simulation and empirical studies suggest that when ecosystems are stressed, clus-62

ters fragment leading to loss of large patches (Kéfi et al. 2014, Kéfi et al. 2007). This63

results in a qualitative change in the properties of cluster sizes, from a power-law64

to an exponential distribution. The progressive truncation of the tail of the power-65

law clustering has, therefore, been hypothesised to represent loss of resilience in66
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ecosystems (Fernández and Fort 2009, Kéfi et al. 2014, Kéfi et al. 2007, Kéfi et al.67

2011, Lin et al. 2010, Weerman et al. 2012).68

Empirical evidence for this hypothesis, however, is ambiguous (Maestre and69

Escudero 2009, Meloni et al. 2017b, Weerman et al. 2012). Additionally, simu-70

lation studies in more complex models suggest that details of systems matter,71

thus questioning the generality of these cluster based indicators (Génin et al.72

2018b, Schneider and Kéfi 2016). Nevertheless, the possibility of inferring ecosys-73

tem resilience from a single snapshot and the increasing availability of low-cost74

remotely-sensed spatial datasets, where these methods can be applied, is attrac-75

tive. Therefore, an evaluation of the generality and robustness of clustering prop-76

erties as a signature of ecosystem resilience is needed.77

To understand issues of generality, we must discuss another class of power-78

law behaviours that are considered universal features near/at critical points of79

phase transitions. Here, we emphasize that the theoretical underpinnings of80

ecosystem dynamics and indicators of stability are based on principles derived81

from the theory of phase transitions and bifurcations (Scheffer et al. 2009, Stro-82

gatz et al. 1994). This theory predicts that as a system nears a critical point of83

phase transitions, it takes increasingly longer to recover from perturbations. This84

phenomenon of slowed recovery is called critical slowing down (CSD) in the con-85

text of continuous phase transitions in the physics literature. However, a similar86

effect of slowed recovery appears even in ecological models that show abrupt87

transitions (Scheffer et al. 2009, Strogatz et al. 1994, Wissel 1984). Consequently,88

CSD has been widely used to devise methods to detect the approach of critical89

thresholds in ecosystems (Scheffer et al. 2009, Wissel 1984). An aspect of CSD90

that is much less known in the ecology literature is that close to, and at the crit-91

ical point, the strength of perturbation decays as a power-law function of time92

- indicating a very slow recovery (Ma 2000, Sethna 2006, Stanley 1999); this is93

in contrast to systems far away from thresholds where perturbations decay ex-94

ponentially fast. In fact, many power-law behaviours arise near/at continuous95

phase transitions (Ma 2000, Sethna 2006, Stanley 1999).96

We highlight an interesting contrast between the two power-law relationships97

we have discussed thus far: While the power-laws associated with CSD are ex-98

pected to emerge near/at critical points of phase transitions (Ma 2000, Sethna 2006),99
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the power-laws in clustering are hypothesised to be lost near/at critical thresh-100

olds of ecosystem collapse (Kéfi et al. 2007). It is now fairly well established101

that many mechanisms cause emergence of power-laws even away from critical102

thresholds (Newman 2005, Pascual and Guichard 2005, Roy et al. 2003). However,103

the theoretical basis for why a loss of power-law clustering can indicate approach104

to a critical threshold in ecosystem models is unclear. Furthermore, elucidating105

relationships (if any) between the dynamical phenomenon of CSD and cluster106

size properties, has not gained attention in the literature. Such an exercise will107

not only prove helpful in evaluating the generality of ecosystem resilience in-108

dicators but also reveal the crucial role of local positive feedback in ecosystem109

patterning.110

Figure 1: Power-law cluster size distributions in different ecosystems (top panel) and
representative snapshots which are not necessarily from the same study area or time period
(bottom panel). (a) West broad ledges seagrass near the isle of scilly (Irvine et al. 2016) (b)

Saw-grass in everglades wetlands, USA (Foti et al. 2013) (c) Forest fires in Alaskan boreal forests,
USA (1990-91) (Malamud et al. 1998) and (d) Vegetation in Kalahari, Namibia (Scanlon et al.

2007). Top row image credits: (a) modified from (Duffy et al. 2017), (b)
https://doi.org/10.1016/j.ecss.2017.11.001 [CC BY]

http://creativecommons.org/licenses/by/4.0/, (Foti et al. 2013), (c) U.S. Geological Survey,
Department of the Interior/USGS U.S. Geological Survey Map created by Tyler Lewis/USGS. (d)

Data (1995-2014) (Scanlon et al. 2007).

In this article, we review and synthesize the literature on how local ecological111

processes lead to the formation and dynamics of clusters, and how the resulting112

spatial patterns relate to ecosystem stability. Owing to the interdisciplinary na-113

ture of the study, we introduce important terms and concepts via summaries in114

Boxes 1, 2 and 3 and a glossary in Table 1.115

We summarize our main findings here: First, our synthesis reveals the im-116
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portance of local positive feedback in the emergence of power-law clustering in117

various ecosystems. To probe the relationship between positive feedback, clus-118

tering and resilience, we use a spatially-explicit model which, unlike previous119

relatively complex models, decouples the effects of positive feedback and envi-120

ronmental stress. Together with synthesis of previous studies, our analyses en-121

ables us to demonstrate that power-law clustering (or loss thereof) is unrelated122

to resilience. We then demonstrate how CSD - a universal feature of dynamical123

systems near thresholds - manifests as a power-law decay of spatial correlations.124

We discuss the important role of positive feedback in shaping clustering proper-125

ties and suggest future directions of research to quantify patterns/dynamics of126

clustering and to infer ecological interactions.127

Glossary128

1. Regime shifts: Changes in qualitative nature of ecosystem states. These changes can be129

abrupt or gradual functions of the underlying drivers.130

2. Critical threshold: The value of an environmental condition (such as rainfall) and/or state131

variable (e.g. woody cover) at which a system undergoes an abrupt regime shift. In some132

ecology papers, it is used interchangeably with critical point but here we avoid doing so.133

3. Resilience: The amount of change a system can withstand without transitioning to an al-134

ternative state. In the model described in Box 2, we interpret resilience as the distance to135

the threshold driver (or density).136

4. Stability: The rate at which a system recovers to its original equilibrium from small pertur-137

bations.138

5. Critical point: In the physics literature, this term refers to the value of driver at which the139

system typically undergoes a continuous phase transition from one state to the other.140

6. Critical slowing down: The phenomenon in which systems near threshold of transitions141

are slow to recover from perturbations.142

7. Positive feedback: Interactions between individuals that resuls in enhanced reproduction143

and/or reduced death rates of both individuals.144

8. Cluster: A set of individuals who are within a minimum distance (typically the nearest145

neighbor distance) of at least one member of the same set.146

9. Scale-free: A quantity having infinite average value, thus lacking a characteristic scale.147

Also see Box 1.148

10. Percolation: In the physics literature, percolation is the movement/spread of an agent149

through the entire extent of the system via a connected path of sites.150

11. Percolation density: The lowest density of occupied sites at which a fully connected path in151

the system is possible. At the same density, we observe a scale-free distribution of cluster152

sizes in the landscape.153

12. Spatial autocovariance function: Covariance between states at two locations as a function154

of the distance between them. Also see Box 3.155
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13. Power spectrum/Spectral density function: Strength of fluctuations as a function of fre-156

quency; it is the Fourier transform of the autocovariance function. Also see Box 3.157

BOX 1: POWER-LAW AND SCALE-FREE BEHAVIOURS158

Biology is replete with examples of self-organised spatial clustering (Guichard159

et al. 2003, Rietkerk and van de Koppel 2008, von Hardenberg et al. 2001). In160

some cases, clumps have a wide range of sizes such that the frequency of occur-161

rence of clumps of a particular size (denoted by x) decays as a power function of162

the size i.e. f(x) = c x−β (defined for all clusters above a size x > xmin with c and163

β being constants).Below we describe two interesting properties of this function.164

165

166

Heavy-tailedness167

– exponential : ce-ax          – power law : cx-β

Figure 2: The plot on the left shows that the power-law
function has a heavier tail, i.e. higher frequency (f(x)) of
occurrence of large events, than in an exponential func-
tion. The plot on the right shows that power-law func-
tion is a straight line on log-log axes; the heavier tail of
power-law is evident here too.

The power-law frequency168

distribution has much higher169

occurrences of extreme events170

than predicted by commonly171

used distributions such as172

Gaussian or exponential distri-173

butions (Fig 2); this feature of174

the power-law distribution is175

also called heavy-tailedness.176

177

Scale-free power-laws

Power-laws with an exponent β ≤ 2 mathematically describe features that lack a

characteristic size/length scale. To see this, we observe that when β ≤ 2 the mean of

this distribution is infinite. Exact expressions for the mean (x̄) and variance (σ2
x)

of the (normalised) power-law probability density function, denoted by p(x), are

given by

x̄ =

∫ ∞
xmin

xp(x)dx =

xmin
β−1
β−2 if β > 2

∞ if 1 < β ≤ 2

7
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σ2
x =

∫ ∞
xmin

(x− x̄)2p(x)dx =

x
2
min

β−1
(β−3)(β−2)2 if β > 3

∞ if 1 < β ≤ 3

Thus, there is no characteristic size or typical length scale in this distribution,178

when β ≤ 2, and therefore the distribution is called scale-free. Power-law distri-179

butions of biological quantities with exponents β ≤ 2 are therefore intriguing.180

Such distributions, however, are not uncommon and have been documented in181

various ecosystems (Fig 1).182

BOX 2: SPATIAL MODEL WITH POSITIVE FEEDBACK183

Several spatial models in ecology try to explain power-law clustering but due184

to their relative complexity, it is difficult to clearly elucidate the role of positive185

feedback on clustering and resilience (Guichard et al. 2003, Kéfi et al. 2007, Man-186

rubia and Solé 1997, Scanlon et al. 2007). To address this problem, we employ187

a simple spatially-explicit model with only two parameters. In this model, we188

consider a discrete two-dimensional space where each grid cell is updated prob-189

abilistically depending on states of cells in its neighbourhood. The simplicity190

of this model allows us to independently tune, and thus study effects of, envi-191

ronmental driver and positive feedback on spatial patterns via two parameters p192

and q, respectively. See Fig 3 for a schematic of the update rules; detailed model193

description is available in Appendix A and was first described in the physics lit-194

erature in Lübeck (2006) and has been recently adopted in the context of regime195

shifts (Eby et al. 2017). Using this model, we study the effect of positive feedback196

(q) on steady-state density (defined as proportion of occupied sites) and spatial197

patterns (quantified via cluster size distributions and spatial power-spectrum) as198

a function of the environmental driver p. We add that reducing p in this model199

can also be interpreted as increasing environmental stress.200

Positive feedback and abrupt regime shifts: Stronger positive feedback201

in ecosystems are known to cause non-linear and even abrupt responses to202

stress (Kéfi et al. 2010, 2016, Xu et al. 2015b). In our model too, when positive203

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/233429doi: bioRxiv preprint 

https://doi.org/10.1101/233429


Figure 3: Schematic representation of the model and simulation procedure, for a given ‘Initial
lattice’ shown at the centre of the top row. The parameter p represents baseline birth rate

whereas q represents the strength of local positive feedback; reducing p in this model can be
interpreted as increasing environmental stress. Light blue circles represent (randomly) chosen
cells to update. Depending on the states of chosen cells, the update scheme results in baseline

birth or death (left part of second row), or increased birth or reduced death due to positive
feedback (right part of the second row). The box at the bottom shows (i) neighbours of a focal

pair of cells and (ii) model udpate rules captured via transition probabilities.

feedback is weak, the system undergoes a continuous transition from an occu-204

pied to a bare state as we increase environmental stress (Fig 4a). As positive205

feedback strength increases, the system can maintain a high density state even206

for higher levels of stress; but the system also exhibits an abrupt transition to a207

bare state when the stressor crosses the critical threshold. Henceforth, we refer208

to the point of transition (defined by either driver value (p) or density (ρ)) from209

an occupied to a bare state as threshold. When we specifically refer to a continu-210

ous transition, we call it a critical point whereas the corresponding term for the211

discontinuous transition is critical threshold (also see Glossary).212
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a . b .

Figure 4: Positive feedback increases the non-linearity and cause an abrupt collapse in
response to stress. (a) Steady-state density as a function of driver value (p) and positive feedback
(q). (b) shows a closer look for two values of positive feedback, q = 0 (continuous transition) and

0.92 (discontinuous transition). Lattice size 1024× 1024.

III. POSITIVE FEEDBACK PROMOTES POWER-LAW CLUSTERING AT RELA-213

TIVELY LOW DENSITIES214

Power-law cluster size distributions are seen in diverse ecosystems, includ-215

ing drylands, mussel beds, seagrass beds, sawgrass and forest fires (Fig 1). Many216

studies propose that these systems are likely shaped by positive feedback (Aguiar217

and Sala 1994, Boada et al. 2017, Dell et al. 2016, Foti et al. 2013, Guichard et al.218

2003, Kéfi et al. 2007, Knowlton 2004, Maestre et al. 2003, Scanlon et al. 2007).219

For example, in semi-arid landscapes, seed germination and seedling survival220

probabilities are higher in the neighbourhood of other plants than out in the221

open (Aguiar and Sala 1994, Maestre et al. 2003). This results from reduced light222

and heat stress as well as increased water availability to young saplings in the223

vicinity of adult plants. Similarly, in mussel-beds, steadfast attachment of mussel224

to the substrate is directly dependent on the attachment of neighbours (Guichard225

et al. 2003). In macroalgal beds, recruitment and survival of macroalgal fronds226

shows density dependence due to the protection offered by neighbours from her-227

bivory by sea urchin and fish (Boada et al. 2017, Dell et al. 2016).228

To understand how positive feedback promotes such clustering, it is insight-229

ful to first discuss how power-law cluster-size distributions are also realised in230

‘null models’ that are devoid of any interactions among organisms. In spatial231

null models, individuals are initially assigned to random locations on a two-232
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dimensional discrete lattice. They then either die or give birth to an offspring233

at a rate that does not depend on presence/absence of any individual on the234

landscape (Kéfi et al. 2011). Consequently, the proportion of occupied sites in the235

landscape (henceforth called density) changes from nonzero values to zero (a bare236

state) as a gradual function of decreasing birth (or increasing death) rates (Grim-237

mett 1999, Kéfi et al. 2011). These null models correspond to classic models in238

the physics literature in the context of a phenomenon called percolation (Stauffer239

1979). The lowest density at which there is a non-zero probability of emergence240

of a fully connected path in the system is called the percolation density; at the per-241

colation density (denoted by ρp), the system also shows a scale-free clustering. In242

other words, despite the lack of positive feedback in these null models, a power-243

law cluster size distribution with β < 2, and hence scale-free clustering, occurs244

at the percolation density (ρp). The value of percolation density depends on the245

geometry of the landscape. For ecological contexts, a relevant geometry is that of246

two dimensional square lattice where the percolation density is 0.59 (Grimmett247

1999, Stauffer 1979).248

In many ecosystems, densities that correspond to power-law clustering are249

typically lower than the above mentioned percolation density of the null model.250

For example, regions in the Kalahari show power-law cluster-size distributions251

of vegetation for densities ranging from 0.14 to 0.54 (Scanlon et al. 2007); a bulk252

of these areas also exhibit power-laws with exponent β < 2, and are thus scale-253

free (see Box 1 and Glossary). Power-law cluster-size distributions observed in254

several other ecosystems also show exponents within the scale-free range (e.g.255

Fig 1). To explain such power-law clustering, many spatial ecological models of256

ecosystems have been developed (Grassberger 1993, Guichard et al. 2003, Kéfi257

et al. 2007, Manrubia and Solé 1997, Scanlon et al. 2007). These models often in-258

corporate ecosystem-specific processes and are consequently complex, involving259

many parameters. Nevertheless, they have commonalities. For example, they all260

assume local positive feedback in some form that causes increased birth (or re-261

duced death) rates of individuals who are surrounded by others (Box 2). Below,262

we explain how local positive feedback can lower the percolation density.263

The emergence of power-law clustering depends on how local interactions be-264

tween individuals scale to cluster dynamics. Even in spatial null models that are265
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devoid of any positive interactions, clusters form entirely due to random filling266

of the lattice; furthermore, larger clusters are more likely to merge with other267

clusters and therefore have higher growth rates. Theory predicts that power-law268

clustering emerges whenever clusters grow in proportion to their size, a phe-269

nomenon known as proportionate growth (Grimmett 1999, Manor and Shnerb270

2008, Stauffer 1979). Such growth occurs at the percolation density of 0.59 for the271

spatial null models for a square lattice. In models with local positive interactions,272

empty sites near an existing cluster of occupied states are more likely to become273

occupied. This not only expands the original cluster but also increases chances274

of merger of this cluster with a nearby cluster. This dynamic of clusters is con-275

trast to the spatial null model where expansion as well as merger of clusters are276

driven entirely by the random filling of the landscape. Therefore, in models with277

positive feedback, proportionate growth and scale-free cluster size distributions278

(i.e. a power-law with 1 < β < 2) occur at densities lower than the percolation279

density of the null model (Scanlon et al. 2007). This may offer a potential expla-280

nation for the observed low densities at which power-law clustering is seen in281

many ecosystems (Fig 1).282

Figure 5: Percolation probability
changes from zero to nonzero at density
0.59 for the spatial null model, 0.53 for
low positive feedback (q = 0) and 0.31

for high positive feedback (q = 0.92).
For each of these cases, these transitions
in percolation probability occur exactly
at the density where power-law cluster
size distributions are observed; see Fig 6.
Lattice size 256× 256.

We support this argument by showing283

how percolation density changes with pos-284

itive feedback in our model (Box 2). To do285

so, we use the concept of percolation proba-286

bility which is defined as the probability of287

occurrence of a fully-connected path of oc-288

cupied cells in the landscape. In Fig 5, we289

display the percolation probability as a func-290

tion of density for two different values of291

positive feedback and the spatial null model.292

We then identify percolation density as the293

lowest density at which this probability is294

non-zero. We find that the percolation den-295

sity is lower for the system with higher pos-296

itive feedback, consistent with our synthesis297

of previous theoretical and empirical stud-298
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ies discussed above. Interestingly, we also observe that weak positive feedback299

leads to continuous change in percolation probability whereas strong positive300

feedback, owing to stronger nonlinear response of the system, makes it discon-301

tinuous (Fig 5).302

Putting empirical studies together with spatially-explicit models of clustering,303

we conjecture that strong positive feedback is likely to be the key interaction low-304

ering percolation density in many ecosystems.305

IV. CLUSTER-SIZE DISTRIBUTIONS ARE NOT INDICATORS OF ECOSYSTEM306

RESILIENCE307

Let us now use the above link we established between positive feedback and308

cluster-size distributions to address the larger question: how general is the rela-309

tionship between cluster-size distributions and ecosystem resilience?310

Studies over the last decade have suggested that fragmentation of large clus-311

ters leads to a thinning of the tail of the cluster-size distribution. Consequently,312

this causes loss of a power-law clustering, which can be used as an indicator of a313

stressed and less resilient ecosystem (Génin et al. 2018a, Kéfi et al. 2014, Kéfi et al.314

2007). A corollary to this hypothesis is that ecosystems with power-law cluster-315

ing are relatively farther from critical thresholds, and hence are likely to be more316

resilient. The evidence for this hypothesis in both models and data, however,317

has been ambiguous (Maestre and Escudero 2009, Meloni et al. 2017b, Moreno-318

de las Heras et al. 2011, Schneider and Kéfi 2016). Therefore, the generality of the319

relationship between cluster sizes and resilience remains unknown.320

To resolve this, let us first consider how positive feedback affects both spatial321

clusters and resilience. As we argued in section III, positive feedback lowers the322

percolation density. Additionally, positive feedback promotes abrupt transitions323

and increases the threshold value of density from which the regime shift happens324

(Fig 4). Therefore, we hypothesize that, depending on the strength of positive325

feedback, power-law clustering can occur at any distance from the threshold of326

regime shift. We make predictions for two scenarios: we predict that in systems327
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with weak positive feedback, the distance between percolation density and thresh-328

old of regime shift will be relatively large. Thus, increasing stress and an ap-329

proach to threshold follows the previously expected pattern of loss of power-law330

clustering (Kéfi et al. 2014). In contrast, for systems with strong positive feedback,331

which are most likely to exhibit abrupt transitions, the distance between percola-332

tion density and the critical threshold of collapse will be negligble or even zero.333

Hence, power-law clustering may occur at the critical threshold itself and the loss334

of power-law clustering cannot be used as a resilience indicator.335

To buttress our arguments, we analyse the model presented in Box 2. Indeed,336

our model analysis confirms our expectations: A weak positive feedback scenario337

shows that percolation density (ρp) is relatively far from the threshold of transi-338

tion (ρp) (Fig 6a and inset); moreover, we find that loss of power-law clustering339

and appearance of thin-tailed (exponential) cluster-size distribution precedes the340

transition (see Appendix C). Our model reveals that this distance between the341

density of threshold of transition and percolation density reduces as a function342

of positive feedback and becomes even zero for large values of positive feedback343

(Fig 6c, d). Consequently, the qualitative features of cluster size distribution (e.g.344

being a power-law, truncated power-law or exponential) do not follow a general345

trend as a function of ecosystem stress see Appendix C. In Fig 6b and inset, we346

show a case where a strong positive feedback scenario shows a power-law clus-347

tering occurring very near, even possibly at, the critical threshold of collapse. Put348

together, our model analyses suggests that the relationship between cluster-sizes349

and ecosystem resilience heavily depends on the strength of positive feedback350

in the ecosystem. We recall that systems with strong positive feedback are most351

likely to exhibit abrupt shifts; it is precisely in these systems that the expected352

trend of cluster-size distributions, of loss of power-law as the system approaches353

thresholds, is least likely to be true. This questions the generality as well as po-354

tential utility of cluster-size distributions as indicators of ecosystem resilience.355

We discuss above results in light of theoretical studies which too have found356

the association of cluster-size distributions with resilience to be tenuous (Génin357

et al. 2018b, Schneider and Kéfi 2016). These studies investigate spatially-explicit358

models of dryland vegetation and forest gap dynamics. They include, for exam-359

ple, a lowered grazing-induced mortality for individuals with more neighbours,360
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Figure 6: Strength of positive feedback, rather than distance to thresholds, determines the
density at which power-law (scale-free) clustering occurs. The values of driver and density at

which we find a power-law distribution are shown as crosses in the phase-diagrams (a) and (b),
with their insets showing the corresponding inverse cumulative distribution function (CDF) of

the patch-sizes. (a) When positive feedback is weak (q = 0), power-law clustering occurs far
from ecosystem transition, consistent with previous hypotheses. (b) When positive feedback is
strong (q = 0.92), power-law clustering can occur close to (or even at) the critical threshold of
collapse. For the fitted function kx−β wherein k = (β − 1)xβ−1

min , xmin = 17 in (a) and 3 in (b);
lattice size used: = 1024× 1024. (c) shows the driver values at which power-law clustering
moves closer to the threshold of transition as positive-feedback (q) increases. (d) shows that

ρp − ρc, i.e. the difference between the density at which patches follow a power-law distribution
(ρp) and the density of the transition threshold (ρc), reduces as positive feedback (q) increases.

For (c) and (d), lattice size of 256× 256 was chosen to reduce computational time. See Appendix
C for cluster size distributions at other values of p and q.

a process termed associative protection. When the associative protection is high,361

they find power-law clustering at/near the critical thresholds of collapse. These362

results are consistent with our synthesis because associative protection in their363

model (i.e., reduced mortality for plants with neighboring plants) is analogous to364

increased positive feedback in our model (which causes reduced death rates for365

individuals with neighbors).366
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Synthesizing our results together with these recent studies, we argue that367

cluster-size distribution primarily depends on the strength of the positive feed-368

back and that it cannot be employed as an indicator of ecosystem resilience.369

Furthermore, since cluster-size distributions do not primarily depend on prox-370

imity to critical threshold in these stochastic and spatial ecological models, we371

conclude that it is also unrelated to critical slowing down (CSD); we recall that372

CSD is a generic dynamical feature of systems near critical thresholds. See next373

section on how CSD influences spatial properties and causes power-law features374

in them.375

V. SCALE-FREE SPATIAL CORRELATIONS MAY ARISE AT CRITICAL THRESH-376

OLDS OF ECOSYSTEM COLLAPSE377

So far, we have demonstrated that cluster-size distribution do not represent378

resilience and hence cannot reliably indicate imminent regime shifts. However,379

the theory of phase transitions posits the emergence of scale-free features near/at380

critical points. Here, using our spatially-explicit ecological model, we illustrate381

how critical slowing down - a canonical features of dynamical systems near382

thresholds - causes scale-free behaviour in the spatial autocovariance function383

(Fig 7; Box 3;).384

As an ecosystem approaches a critical threshold, its return to equilibrium385

state, when perturbed, becomes increasingly slower. This phenomenon of crit-386

ical slowing down (Ma 2000, Scheffer et al. 2009, Wissel 1984) has two impli-387

cations - increased spatial correlations (Dakos et al. 2010) and increased spatial388

variance (Guttal and Jayaprakash 2009). To understand this, consider how a per-389

turbation from the equilibrium state at any location in the ecosystem will spread390

in space. First, owing to slowed dynamics, the perturbation lives longer and,391

via spatial connectedness in the system, propagates to larger distances in the392

system (Ma 2000, Sethna 2006). Consequently, a measure of spread of perturba-393

tion, the correlation length, increases (Dakos et al. 2010, Ma 2000, Sethna 2006).394

Second, as the perturbations persist for longer duration, further disturbances395

enhance amplitudes of the fluctuations. This manifests as increasing spatial vari-396
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ance in the ecosystem as it moves towards the threshold (Guttal and Jayaprakash397

2009). Here, we consider the spatial autocovariance function, defined as covari-398

ance of local densities at two locations separated by a distance r (Box 3). This399

function captures both spatial variance and correlations.400

Before we illustrate computations of spatial autocovariance for our model, we401

make a couple of technical remarks. First, physicists often refer to the autoco-402

variance function as the ‘correlation function’; some theoretical papers in ecology403

also do the same (Roy et al. 2003). Here, we have adopted the standard termi-404

nology that is used in quantitative ecology literature (Eq 2 in Box 3). Second, the405

theory of phase transition predicts critical slowing down and consequent scale-406

free behaviour at critical points of continuous phase transitions (Ma 2000, Sethna407

2006). However, it has been shown that signatures of CSD are present, albeit408

with a relatively less magnitude, even in ecological models exhibiting abrupt409

transitions (Dakos et al. 2011, Scheffer et al. 2009). Consequently, we argue and410

demonstrate using the simple ecological model presented in Box 2 that scale-free411

behaviour may characterize critical thresholds of abrupt transitions as well.412

Calculation of the spatial autocovariance function is often beset with statistical413

and computational difficulties. Therefore, we focus on a mathematically equiva-414

lent measure of correlations in spatial patterns via its power spectrum (Kéfi et al.415

2014) (Box 3; Appendix D). It can be shown that the power spectrum is the Fourier416

transform of the autocovariance function (Reif 2009). The power spectrum of a417

spatial pattern provides a measure of the relative contribution of fluctuations at418

different spatial frequencies in the system, to its overall pattern. It is known in the419

ecology literature that as systems approach critical thresholds, the low frequency420

modes begin to dominate their power spectrum (Carpenter and Brock 2010, Kéfi421

et al. 2014). However, the full functional form of the power-spectrum is rarely422

quantified (but see Barbier et al. (2006), Bonachela et al. (2015), Couteron (2002)423

in the context of periodic and multi-scale patterns of dryland vegetation). Simu-424

lations of our model shows that the power-spectrum indeed becomes scale-free425

at critical thresholds for systems with both weak and strong positive feedback426

(Fig 7). We explain in Box 3 that a scale-free power spectrum is indicative of a427

scale-free autocovariance function. Thus, scale-free power-spectrum character-428

izes the structure of spatial perturbations near/at critical thresholds of ecosystem429
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collapse.430

Figure 7: The power-spectrum of systems at very near (or at) the threshold of transitions
decays as a power-law function of spatial frequency, (a) for q = 0 and (b) for q = 0.92. Lines

represent the mean trend and bands, the SD. Insets show the location of parameter values for
which power-spectrum are plotted. Blue is far from transition, Red is close/at the threshold and
Grey represents the spatial null model. For the fitted function kx−β , k = 2.02 ∗ 10−7 when q = 0

and 4.65 ∗ 10−8 when q = 0.92. We used = 1024× 1014 lattice.

BOX 3: COVARIANCE, CORRELATION AND SPECTRAL FUNCTION431

One way to capture the spread of disturbance in a system or the length scale of432

spatial fluctuations, is by constructing the spatial covariance function. The spatial433

autocovariance function for local density ρ for a distance r is defined as434

C(r) = 〈(ρ(x)− ρ̄)(ρ(x′)− ρ̄)〉 (1)

where ρ̄ represents mean density over the entire landscape, angular brackets de-435

note average over all locations x and x′ in the landscape that are separated by a436

distance r. Ecologists widely use the correlation function which is defined as437

K(r) =
〈(ρ(x)− ρ̄)(ρ(x′)− ρ̄)〉

σ2
) (2)

where σ2 is the spatial variance of densities in the ecosystem. Thus the covariance438

function is a production of the correlation function and the variance.439

The correlation length is defined as the mean of the covariance function and can440

be interpreted as the average distance to which local fluctuations spread. The cor-441
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relation length becomes infinite at the critical thresholds. This means that the co-442

variance function then follows a power-law with an exponent less than 2 (Box 1).443

The power spectrum, denoted by S(k), is the Fourier transform of its autocovari-444

ance function (Baugh and Murdin 2006, Reif 2009). Therefore, it can be calculated445

as446

S(k) =

∫
C(r)e−ikrdr (3)

At critical thresholds, we expect the spatial covariance function to exhibit a447

power-law relation with distance448

C(x) = c0x
−α (4)

where c0 is a constant and α is an exponent less than two. The corresponding

spectral function for an n-dimensional system is given by

|S(k)| ∼ k−(n−α)

Therefore, evidence of a power-law spectral function is also evidence of a power-449

law autocovariance function.450

VI. DISCUSSION451

In this study, we set out to investigate the generality of the conclusion that452

loss of power-law clustering in ecosystems is indicative of reducing resilience.453

First, our synthesis reveals that power-law clustering (or lack thereof) is unrelated454

to ecosystem resilience. We argue that this is because power-law clustering is455

fundamentally associated with local positive feedback rather than any generic456

dynamics of systems near critical thresholds of ecosystem collapse. Second, when457

ecosystems are in the vicinity of critical thresholds of collapse, critical slowing458

causes a power-law (scale-free) behaviour but in a different metric - the spatial459

autocovariance, or spectral function, of local densities.460
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A. Local positive feedback, clustering and resilience461

Previous ecological models that have attempted to resolve these connections462

include complex interactions often specific to particular ecosystems (Kéfi et al.463

2011, 2007, Meloni et al. 2017b, Scanlon et al. 2007, Schneider and Kéfi 2016). In464

such models, many parameters contribute to local positive feedback and environ-465

mental stress, thus making it difficult to disentangle causal links between local466

processes and macroscopic patterns. Here, we deliberately used a simple model467

with only two parameters representing environmental stress and local positive468

feedback. The simplicity of the model we employed may also be seen as a limi-469

tation. However, it helped us conclude that loss of power-law clustering is not a470

robust indicator of approach to ecosystem transitions. Furthermore, it allowed us471

to disentangle the effects of environmental stress and positive feedback on clus-472

tering and resilience. Specifically, we propose a hypothesis that distance between473

power-law clustering (percolation threshold) and critical threshold of collapse re-474

duces as the strength of positive feedback increases.475

Seminal ecological models that try to explain power-law clustering observed476

in ecosystems (Kéfi et al. 2007, Scanlon et al. 2007) assume that local births/deaths477

of trees, in addition to being positively influenced by local density, is negatively478

regulated by global-scale feedback. Mechanisms such as rapid spread of water in479

the landscape (von Hardenberg et al. 2010) are offered as potential explanations480

for negative regulation of local growth due to global-scale vegetation density.481

Indeed, based on our synthesis ((Manor and Shnerb 2008, 2009) and Fig 6), we482

demonstrate that there is no need to invoke global-scale feedback; in fact, local483

positive feedback alone can explain the emergence of scale-free clustering in these484

systems.485

Several empirical studies find neither scale-free clustering (Weerman et al.486

2012, Xu et al. 2015a) nor the expected shifts of cluster-size distributions with487

increasing stress (Casey et al. 2016). However, they attribute this to an ab-488

sence/disruption of global negative feedback in their systems (Casey et al. 2016,489

von Hardenberg et al. 2010, Weerman et al. 2012)(but also see Moreno-de las490

Heras et al. (2011)). As we argued in the previous paragraph, negative feed-491
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back isn’t even a necessary condition for scale-free clustering. Further, based492

on our synthesis that cluster-sizes do not relate to resilience, we posit that these493

empirical results are not surprising.494

Cluster-size distributions are nevertheless relevant in ecological contexts where495

connectivity or porosity of the landscape is of focal interest, such as in the case of496

forest fires or disease spread (Chaves et al. 2012, Turcotte and Malamud 2004). We497

illustrated that power-law clustering in our ecological model is associated with498

a transition in percolation probability, representing the emergence of a spanning499

cluster (i.e. a fully connected path) in the system. This is also seen in spatial mod-500

els of predator-prey interactions (Roy et al. 2003). In the context of fire or disease501

outbreaks, presence of a cluster of vegetation (susceptible individuals) allows502

fire (disease) to easily spread within each cluster. Consequently, scale-free clus-503

tering, which indicates a highly connected landscape, allows the possibility of504

catastrophic fire (or disease) outbreaks. These models represent a fundamentally505

different class of models from what we have discussed in this paper (Dickman506

et al. 2000, Solé et al. 1999).507

B. Cluster-sizes and Critical slowing down508

Our synthesis predicts that scale-free behaviour in spatial correlations, mea-509

sured via autocovariance or spectral functions, can characterise critical thresh-510

olds. This feature, we argued, arises from the critical slowing down - i.e. slowed511

response of ecosystems near threshold points - which is a generic feature of many512

ecological transitions. How do scale-free correlations in density (described in V)513

and scale-free clustering (Section III) relate to each other? They both indicate514

emergence of large spatial scales in the system. However, they capture fun-515

damentally different properties. Scale-free correlations in density indicate that516

perturbations spread to large distances in ecosystems as a consequence of critical517

slowing down. Therefore, it captures the dynamics of perturbations and hence518

can be used to infer stability or lack thereof. In contrast, scale-free clusters indi-519

cate the presence of large clusters, which do not correspond to dynamics of how520

perturbations decay. Therefore, clustering properties are unrelated to resilience,521
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as we indeed demonstrate in Fig 6.522

How efficient is it to use scale-free features of density correlations as an early523

warning signals (EWS) of regime shifts or critical transitions (Scheffer et al. 2009)?524

The purpose of early warning signals is to detect signatures of approach to crit-525

ical thresholds. In that sense, computing simpler metrics of spatial autocorrela-526

tion between neighboring sites (Dakos et al. 2010) or spatial variance (Guttal and527

Jayaprakash 2009) may have advantages such as ease of computation and better528

statistical reliability in comparison to characterising the complete form of autoco-529

variance or spectral functions. On the other hand, simpler metrics are also easily530

affected by external factors, such as increased spatial heterogeneity or external531

variability (Dakos et al. 2010, Kéfi et al. 2014) and hence confound interpreta-532

tions. Further investigations can reveal the relative efficacy of different spatial533

metrics.534

C. Future directions535

Our synthesis suggests some exciting directions for future research. The focus536

of recent research, as reviewed in this paper, has been to understand how local537

interactions produce clustering properties, and how clustering properties can be538

used to infer resilience. However, the inverse problem of inferring ecological539

interactions from spatial images of ecosystems remains poorly studied. For ex-540

ample, the occurrence of power-law or such heavy-tailed distributions can itself541

be used to infer the role of local facilitative interactions in the ecosystem. Indeed,542

one recent study does suggest that skewness of cluster-size distributions can sug-543

gest positive feedback in dryland-vegetation systems (Xu et al. 2015a). The bigger544

question remains open: can we quantify the strengths and spatial scales of posi-545

tive feedback and other ecological interactions between organisms by analysis of546

spatial images, for example via geometrical properties of clusters such as cluster547

sizes, fractal dimensions of clusters, and the strength of spatial correlations in the548

system.549

With recent advancements in remote sensing and reducing costs of spatial im-550

ages, we can also procure extensive high-resolution spatial data over time. This551
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will enable us to quantify not only patterns, as described above, but also dynam-552

ics of various cluster properties. Unlike static properties available from a single553

image, dynamical properties may reflect stability of ecosystems by capturing how554

systems respond to perturbations. Theoretical works, inspired by studies of do-555

main growth in phase transitions, describe the dynamics of clusters in simple556

ecological models exhibiting continuous and discontinuous transitions (Manor557

and Shnerb 2008, Weissmann et al. 2017). However, much remains to be done in558

integrating these studies with real data. This requires extensive theoretical and559

computational studies to identify suitable metrics of clustering properties, devel-560

opment of statistical frameworks including appropriate spatial null models and561

finally, empirical validations/applications based on analyses of aerial images of562

ecosystems.563

D. Concluding remarks564

Our synthesis helps us disentangle processes that generate power-law cluster565

sizes, scale-free correlations and how they relate to ecosystems’ critical thresh-566

olds. Real world analyses however can sometimes yield misleading patterns,567

including power-laws and scale-free behaviours due to sampling artefacts (Plank568

and Codling 2009) or misfitting (Clauset et al. 2009, Meloni et al. 2017a, White569

et al. 2008). Various ways in which patterns are misconstrued as power-laws570

have been discussed in detail in multiple other forums (Breed et al. 2015, Clauset571

et al. 2009, Stumpf and Porter 2012). Where there is a true power-law with an572

exponent less than two, since it is indicative of diverging quantities, there is a573

tendency to associate such a pattern with a critical phenomenon. However, scale-574

free patterns can also arise when underlying processes operate at multiple scales575

and due to landscape heterogeneity (Khaluf et al. 2017, Petrovskii et al. 2011).576

Naive association of observed scale-free behaviours with either criticality or sta-577

bility is problematic. An additional challenge in interpreting spatial patterns in578

ecosystems is to disentangle effects of underlying spatial heterogeneity from true579

self-organisation. With the increasing availability of high-resolution spatial datas,580

from satellites to drone based imagery, of various ecosystems, spatial analyses are581

likely to be widely deployed in the future. Our study highlights the importance582
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of having a clear understanding of how local-interactions drive macroscopic be-583

haviours to infer ecological interactions and resilience of ecosystems.584

VII. DATA AND CODES585

All simulation analyses codes, with simulation datasets corresponding to re-586

sults presented in this paper, have been made publicly available at: https://587

github.com/ssumithra/PowerLawCriticalityPaper. Detailed instruc-588

tion on execution of these codes are also provided.589

VIII. ONLINE SUPPLEMENTARY MATERIALS590

Appendix A: Power-law Vs exponential functions.591

Appendix B: Detailed model description.592

Appendix C: Statistical fitting of cluster-size distributions.593

Appendix D: Cluster-size distributions across the phase-diagram for low and594

strong positive feedback.595

Appendix E: Power-spectrum fitting.596
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