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 8 
Geographic patterns in human genetic diversity carry footprints of population history1,2 9 
and provide insights for genetic medicine and its application across human 10 
populations3,4.  Summarizing and visually representing these patterns of diversity has 11 
been a persistent goal for human geneticists5–10, and has revealed that genetic 12 
differentiation is frequently correlated with geographic distance.  However, most 13 
analytical methods to represent population structure11–15 do not incorporate geography 14 
directly, and it must be considered post hoc alongside a visual summary.  Here, we use a 15 
recently developed spatially explicit method to estimate “effective migration” surfaces to 16 
visualize how human genetic diversity is geographically structured (the EEMS method16).  17 
The resulting surfaces are “rugged”, which indicates the relationship between genetic 18 
and geographic distance is heterogenous and distorted as a rule.  Most prominently, 19 
topographic and marine features regularly align with increased genetic differentiation 20 
(e.g. the Sahara desert, Mediterranean Sea or Himalaya at large scales; the Adriatic, inter-21 
island straits in near Oceania at smaller scales).  In other cases, the locations of 22 
historical migrations and boundaries of language families align with migration features.  23 
These results provide visualizations of human genetic diversity that reveal local patterns 24 
of differentiation in detail and emphasize that while genetic similarity generally decays 25 
with geographic distance, there have regularly been factors that subtly distort the 26 
underlying relationship across space observed today. The fine-scale population 27 
structure depicted here is relevant to understanding complex processes of human 28 
population history and may provide insights for geographic patterning in rare variants 29 
and heritable disease risk. 30 
 31 
In many regions of the world, genetic diversity “mirrors” geography in the sense that genetic 32 
differentiation increases with geographic distance (“isolation by distance” 17–19); However, due to 33 
the complexities of geography and history, this relationship is not one of constant 34 
proportionality. The recently developed analysis method EEMS visualizes how the isolation-by-35 
distance relationship varies across geographic space16  Specifically, it uses a model based on a 36 
local “effective migration” rate.  For several reasons, the effective migration rates inferred by 37 
EEMS do not directly represent levels of gene flow16; however they are useful for conveying 38 
spatial population structure: populations in areas of high effective migration are genetically more 39 
similar than other populations at the same geographic distance, and conversely, low migration 40 
rates imply genetic differentiation increases rapidly with distance.  In turn, a map of inferred 41 
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patterns of effective migration can provide a compact visualization of spatial genetic structure 42 
for large, complex samples.  43 
 44 
We apply EEMS on a combination of 27 existing single nucleotide polymorphism (SNP) 45 
datasets.  In total, these comprise 6066 individuals from 419 locations across Eurasia and Africa 46 
(Extended Data Table 1), which we organize in seven analysis panels: an overview Afro-47 
Eurasian panel (AEA), four continental-scale panels, and two panel of Southern African 48 
KhoeSan and Bantu speakers.  For all analysis panels, the inferred EEMS surfaces are 49 
“rugged”, with numerous high and low effective migration features (Fig 1a, Fig 2) that are 50 
strongly statistically supported when compared to a uniform-migration model (Extended Data 51 
Table 2). The regions of depressed effective migration often align in long, connected stretches 52 
that are present in more than 95% of MCMC iterations.  To facilitate discussion, we annotate 53 
these stretches with dashed lines and refer to them as “troughs” of effective migration (Figs. 1a, 54 
2, Extended Data Figs. 2-4).  Conversely, intermediate- and high-migration areas between 55 
troughs are referred to as corridors.  56 
 57 
In the broad overview Afro-Eurasia panel (Fig. 1; n=4,697 samples; 370 locales; FST = 0.071) 58 
we see that troughs often align with topographical obstacles to migration, such as deserts 59 
(Sahara), seas (Mediterranean, Red, Black, Caspian, East China Seas) and mountain ranges 60 
(Ural, Himalayas, Caucasus).  Among the main features are several large regions that have 61 
mostly high effective migration, such as Europe, East Asia, Sub-Saharan Africa and Siberia. 62 
Several large-scale corridors are inferred that represent long-range genetic similarity, for 63 
example: India is connected by two corridors to Europe (a southern one through Anatolia and 64 
Persia ‘SC’, and a northern one through the Eurasian Steppe ‘NC’); East Asia (EA) is connected 65 
to Siberia and to southeast Asia and Oceania.  The island populations of the Andaman islands 66 
(Onge) and New Guinea show troughs nearly contiguously around them – possibly reflecting a 67 
history of relative isolation 20,21.  68 
  69 
Analyses on a finer geographic scale highlights subtler features (e.g. compare Europe in Fig. 1 70 
vs Fig. 2a), and reveal that levels of differentiation differ both on both a local and continental 71 
scale (Extended Data Table 2). At these finer scales we continue to see troughs that align with 72 
landscape features, though increasingly we see troughs and corridors that coincide with contact 73 
zones of language groups and proposed areas of human migrations.  For example, in Europe 74 
(Fig. 2b) we observe troughs (NS, CE) roughly between where Northern Slavic speaking 75 
peoples currently reside relative to west Germanic speakers, and relative to the linguistically 76 
complex Caucasus region. In India (Fig. 2e), troughs demarcate regions with samples of 77 
Austroasiatic and Dravidian speakers, as well as central India (CI) relative to Northwestern India 78 
(Sindhi, Punjabi) and Pakistan. In Southeast Asia (Fig. 2h), troughs align with several straits in 79 
the Malay archipelago, but we also observe a corridor from Taiwan through Luzon to the Lower 80 
Sunda Islands (LSI), and further to Melanesia, perhaps reflecting the Austronesian expansion. 81 
In Africa (Fig. 2g), a trough aligns with the Sahara desert and extends south-eastward into a 82 
geographic region that is a complex linguistic contact zone with Afro-Asiatic speakers (North), 83 
Nilo-Saharan and Niger-Congo speakers, and linguistic isolates, the Hadza and Sandawe 84 
(South). Notably, the contiguity of the South-East extension of this trough is sensitive to the 85 
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inclusion of the Hadza and Sandawe (Extended Data Fig. 9). In Sub-Saharan Africa we also find 86 
corridors perhaps reflecting the Bantu expansion from West- into Southern and Eastern Africa, 87 
where contact with Nilo-Saharan speakers resulted in complex local structure. In Southern 88 
Africa, the structure seen in separate EEMS maps prepared for Bantu and Khoe-San speakers 89 
(Fig. 2k/l) appear distinct from each other, illustrating that in some cases, different language 90 
groups can maintain independent genetic structure in the same geographic region.   91 
 92 
Different data visualization methods invariably emphasize different aspects of the data. 93 
Contrasting with EEMS, we find that the widely used, non-spatial principal component analysis 94 
(PCA) highlights large-scale geography, and the PCA-biplots typically reflect the strongest 95 
gradients of diversity in a panel. For example, PCA highlights differentiation along an Out-of-96 
Africa differentiation axis in the AEA panel (Fig. 1b), the circum-Mediterranean and circum-97 
Saharan distribution of diversity in Western Eurasia and Africa, respectively, and gradients from 98 
Europe into East Asia and South Asia in the Central/Eastern Eurasian panel (Fig. 2). On the 99 
other hand, EEMS emphasizes local features, in particular troughs between adjacent groups 100 
that are often imperceptible in the PCA-biplots. This is likely due to geographical information 101 
allowing EEMS to discern subtle structure from effects of uneven sampling16. PCA easily 102 
identifies outlier or admixed individuals (e.g. in Africa) that are not made apparent in EEMS 103 
except when exploring model fit to find populations that are fit poorly (Extended Data Fig. 8). 104 
Locally differentiated populations such as the Sardinians, Basques, and Finnish strongly shape 105 
the PCA results (compare Fig. 2d to e.g. ref 17), whereas they are typically placed in low-106 
migration regions in EEMS. We also compare the model fit of EEMS and low-rank PCA (using 107 
the first 2, 10 and 100 components) to the observed genetic distances as a means of assessing 108 
how well each low-dimensional approach conveys structure in full genetic data. EEMS performs 109 
better for small-scale panels, but PCA provides a better fit on the larger-scale AEA and CEA 110 
panels  (Extended Data Figure 5).  We hypothesize EEMS tends to represent local genetic 111 
differences relatively well, and this is supported by an analysis where we stratify the residuals of 112 
genetic distances (Extended Data Fig. 6): In most panels EEMS fits best in the lowest 113 
percentiles (corresponding to local differences), and the fit quality tends to decrease for larger 114 
genetic distances.  115 
 116 
Overall, the maps we present provide a compact summary of the complex relationship of genes 117 
and geography in human populations. In contrast to methods that identify short bursts of gene 118 
flow (“admixture”) between diverged populations22–24, EEMS models local migration between 119 
nearby groups to represent heterogeneous isolation-by-distance patterns. This leads to the first 120 
of a few limitations that must be considered in interpretation. In some cases, isolation-by-121 
distance may not be the most appropriate model, and human population may overlap spatially 122 
while maintaining differentiation. This can happen either for large perioids of time (e.g. Southern 123 
Africa Bantu vs. KhoeSan speakers) or due to recent migration, displacement or admixture 124 
events (e.g. in Central Asia). In cases of population structure due to “outliers”, we found that 125 
running EEMS at the highest resolutions that are computationally feasible results in easier 126 
interpretable plots as the degrees of freedoms of the surface are high enough that these 127 
samples can be placed in regions of isolation.  128 
 129 
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Second, the maps inferred here represent a model of gene flow that predicts genetic diversity in 130 
humans sampled today – a fuller representation would represent genetic structure dynamically 131 
through time. This is especially relevant as ancient DNA data have recently suggested human 132 
population structure can be surprisingly dynamic (e.g. ref. 25).   133 
 134 
Third, the effective migration rates and their scales needs be interpreted with care.  In each of 135 
our maps the overall levels of differentiation are consistently low across all populations, and 136 
EEMS draws attention to where differentiation is slightly elevated or depressed relative to 137 
expectations from geographic distance. Low effective migration between a pair of populations 138 
does not imply an absence of migration nor large levels of absolute differentiation; conversely, 139 
high levels of effective migration do not imply ongoing gene flow. The emergence of migration 140 
features in the EEMS maps that align with known topography, past historical migrations, and/or 141 
linguistic/cultural distributions does not prove a causal connection and does not constitute a 142 
formal statistical test. Formally testing the influence of specific features and environmental 143 
variables on migration rates remain important future tasks that will require extending EEMS or 144 
using different frameworks26.    145 
  146 
 147 
Finally, ascertainment decisions of which samples to include will affect the outcome of any 148 
analysis. When there is a feature inferred in a region with few samples, the exact positioning of 149 
the inferred change on the map will be imprecise (e.g. the trough presumably associated with 150 
the English Channel in Fig 2b).  The maps of posterior variance (Extended Data Figures 2 and 151 
4) partly convey where there is uncertainty in positioning, but caution is still warranted as the 152 
modelling assumptions will introduce further uncertainty. In other cases, the presence or 153 
absence of a particular group may open or close corridors, sometime depending on resolution. 154 
Examples of this are the Kusundas, a Nepali people with both Tibetan and Indian ancestry 155 
causing a corridor through the Himalayas, the Kalmyk, a mongolian people in Southern Russia 156 
that are linked by a corridor to Mongolia in the CEA, but not the AEA panel, and this corridor 157 
disappears if the Kalmyks are excluded from the analysis and the Hadza and Sandawe, which 158 
cause inference of a trough in Eastern Africa when included.  159 

  160 
Nonetheless, the maps presented here provide a useful representation of human genetic 161 
diversity, that complements results from geography-agnostic methods. Our results emphasize 162 
the importance of geographical features on shaping human genetic history and help describe 163 
fine-scale patterns of human genetic diversity27.  By using recent large-scale SNP data and a 164 
novel analysis method, our work expands beyond previous studies of gene flow in humans28–30.  165 
Our rugged migration landscapes suggest a synthesis of the clusters versus clines paradigms 166 
for human structure7,8,31: By revealing both sharp and diffuse features that structure human 167 
genetic diversity, our results suggest that more continuous definitions of ancestry in human 168 
population genetics should complement models of discrete populations with admixture.  As rare 169 
disease variants are commonly geographically localized32,33, the maps presented here may help 170 
predict regions where clustering of alleles should be expected.  The maps also annotate 171 
present-day population structure that ancient DNA and historical/archaeological studies can aim 172 
to explain.   173 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/233486doi: bioRxiv preprint 

https://doi.org/10.1101/233486
http://creativecommons.org/licenses/by-nc-nd/4.0/


  5 

 174 
 175 

 176 
Figure 1: Large-scale patterns of population structure. a: EEMS posterior mean effective migration surface for 177 
Afro-Eurasia (AEA) panel. Regions and features discussed in the main text are labeled. Approximate location of 178 
troughs are annotated with dashed lines (see Extended Data Figure 2). b: PCA plot of AEA panel: Individuals are 179 
displayed as grey dots, Colored dots reflect median of sample locations; with colors reflecting geography and 180 
matching with the EEMS plot. Locations displayed in the EEMS plot reflect the position of populations after alignment 181 
to grid vertices used in the model (see methods). For exact locations, see annotated Extended Data Figure 2 and 182 
Table S1.  The displayed value of FST emphasizes the low absolute level of differentiation in human SNP data.183 

184 
  185 
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 186 
Figure 2: Regional patterns of genetic diversity. a: scale bar for relative effective migration rate. Posterior effective migration 187 
surfaces for b: Western Eurasia (WEA) e: Central/Eastern Eurasia (CEA) g: Africa (AFR) h South East Asian (SEA) k: Southern 188 
African KhoeSan (SAKS) l: Southern African Bantu (SAB) analysis panels.; In panel g, red circles indicate Nilo-Saharan speakers. 189 
Approximate location of troughs are shown with dashed lines (see Extended Data Figure 4). PCA plots: c: WEA d:Europeans in 190 
WEA  f: CEA i: SEA j: AFR m: SAHG+SAB. Individuals are displayed as grey dots. Large dots reflect median PC position for a 191 
sample; with colors reflecting geography matched to the corresponding EEMS figure. In the EEMS plots, approximate sample 192 
locations are annotated. For exact locations, see annotated Extended Data Figure 4 and Table S1. Features discussed in the main 193 
text and supplement are labeled. FST values per panel emphasize the low absolute levels of differentiation.  194 
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Material and Methods 249 

Merging pipeline 250 

 251 
We obtained SNP genotype data from 27 different studies (Extended Data Table 1). Processing 252 
was done using a reproducible snakemake pipeline34 available under 253 
http://github.com/NovembreLab/eems-merge, heavily relying on plink 1.935 for handling 254 
genotypes. The sources differ in the input format and pre-processing, however in general we 255 
performed the following steps: 256 

1. Remove all non-autosomal, non-SNP variants 257 
2. Map SNP to forward strand of human reference genome b37 coordinates using chip 258 

manufacturer metadata files or SNP identifiers 259 
3. Remove strand-ambiguous A/T and G/C variants 260 

 261 
The remaining SNPs were then merged using successive plink --bmerge commands into a 262 
single master dataset with 9,003 individuals and 1.9M SNPs but a total genotyping rate of only 263 
20.6%. 46 SNPs were removed  because different studies reported different alternative alleles. 264 
We used a relationship filter of 0.6 using the “--rel-cutoff 0.6” flag in plink to remove 667 closely 265 
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related individuals or duplicates.  After merging, each analysis panel had missingness rates 266 
<0.5% (AEA=0.2%, ,WEA=0.3%,  CEA=0.2%, SEA=0.5%, AFR=0.2%, SAHG=0.1%). In all 267 
panels, all SNPs passed a one-sided HWE-test (p-value< 10-5), with the exception of SEA, 268 
where nine (out of 7553 SNPs) failed and were excluded. 269 

Data Retrieval and Filtering 270 

Human Origins data set25 271 

Sampling location information was obtained from table S9.4 of ref. 25, and the data were shared 272 
by David Reich. We used the population information in the `vdata` subset of all ascertainment 273 
panels, except for the analysis where we assess ascertainment bias.The utility `convert` from 274 
`admixtools`22 was used to convert the data into plink format. 275 

Estonian Biocentre data 276 

The data generated by the Estonian Biocentre36 were provided in plink format by Mait Metspalu 277 
on 10/30/15, along with location information where it was available. This data set contained 278 
1,282,568 SNPs. Of those, 6770 SNPs had non-unique ids and were removed.  279 

HUGO Pan-Asian SNP consortium37 280 

The data were downloaded on 6/24/15 from www.biotec.or.th/PASNP. Location-metadata were 281 
obtained on the same day from the map on the same website, and individuals were matched to 282 
populations using the individual identifiers. All individuals with the same tag were assigned the 283 
median of all locations from that tag. The data were first lifted onto hg19 (with 5 out of 54794 284 
SNPs being removed), and then re-formatted into binary plink format. Due to the small size of 285 
the chip used and the low overlap with the human origins array in particular, we only consider 286 
this data in the South-East Asian panel. 287 

Uniform global sample 38 288 

This data were downloaded on 6/20/15 from http://jorde-289 
lab.genetics.utah.edu/pub/affy6_xing2010/. Sampling locations were provided by Jinchuan Xing. 290 
We used version 32 of the annotation file obtained on 6/19/15 from affymetrix.com to map SNPs 291 
onto hg19, remove strand-ambiguous SNPs and to flip SNPs that were on the minus-strand.   292 

POPRES data39 293 

POPRES data were obtained under dbGAP study accession phs000145 to John Novembre, 294 
and we used the data as processed in ref 17, and only retain individuals for which all 295 
grandparents were from the same country, and labelled the Swiss sample according to self-296 
reported language. We used version 32 of the annotation file obtained on 6/19/15 from 297 
www.affymetrix.com ("Mapping250K_sp.na32.annot.csv" and 298 
"Mapping250K_Sty.na32.annot.csv") to filter SNPs that did not map onto hg19 and we removed 299 
strand-ambiguous AT and GC polymorphisms.  300 
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African data 301 

Data from refs 40,41 were obtained on 04/19/17 from David Comas’ website under 302 
http://www.biologiaevolutiva.org/dcomas/?p=607. We used version 32 of the annotation file 303 
GenomeWideSNP_6.na32.annot.csv" obtained on 6/19/15 from affymetrix.com to map SNPs 304 
onto hg19, remove strand-ambiguous SNPs and to flip SNPs that were on the minus-strand.   305 

South-East Asian data42  306 

 The data were obtained on 7/14/15 from Mark Stoneking in three different source files. After 307 
merging the three different source files, SNPs not mapping to hg19 using the annotation file 308 
"GenomeWideSNP_6.na32.annot.csv" were removed, as were AT and GC SNPs. Sampling 309 
locations were extracted from Figure 1 of ref 42 310 

Mediterranean Panel43 311 

Data were obtained on 8/13/15 in binary plink format from 312 
http://drineas.org/Maritime_Route/RAW_DATA/PLINK_FILES/MARITIME_ROUTE.zip. 313 
Sampling location information was obtained from Supplementary Table 3 in ref. 43. SNPs not 314 
mapping to hg19 using the annotation file "GenomeWideSNP_6.na32.annot.csv" were removed, 315 
as were AT and GC SNPs. 316 

Tibetan and Himalayan data 317 

Data from refs 44–46 were obtained from Choongwon Jeong and Anna Di Rienzo. We used the 318 
same filtering as in the 44 study, but only added the samples originating from these three studies 319 
with permission from the respective authors. 320 

Combining Meta-information 321 

All sources with the exception of the Estonian Biocentre data provided (approximate) sampling 322 
coordinates. However, the level of accuracy varied between sources, with some providing 323 
specific ethnicities, some (such as POPRES) only providing country information and others just 324 
providing city- or state-level information. For POPRES-derived data, and most countries, we 325 
assigned individuals to the country’s centerpoint, with the exception of Sweden and Finland, 326 
which were assigned their capital.  For the Estonian Biocentre data, sampling location data were 327 
highly heterogeneous. Samples that could not be confidently assigned to a region with an 328 
accuracy of 100km were excluded. For populations with samples from multiple studies,  the 329 
most accurate source location was used. For locations covered with  different accuracy, only the 330 
most accurate samples were retained. For example, we dropped all Spanish individuals from 331 
POPRES (only country level data), as the Human Origins data provided higher resolution, with 332 
samples from eleven different regions in Spain. The resulting table is given as Table S1. 333 
 334 

Language data 335 

To validate troughs correlating with presumed language barriers, we cross-referenced the 336 
genetic data with linguistic data from the Glottolog 3.2 database 47. To do so, we compared the 337 
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correlation of pairwise genetic distance and geographic distances within and between pairs of 338 
language groups. As there was frequently no primary data recording the language of speakers, 339 
we proceeded as follows: For population identifiers that correspond to languages / or ethnic 340 
groups with a clear majority language, we used that language. For samples with country-level 341 
information where the country has a clear majority language (e.g. Germany, Slovenia), that 342 
language was assigned (Table S1). Otherwise, if a sample was from a region with a clear 343 
majority language that is not obviously due to recent colonization, that language was assigned. 344 
All other samples were not assigned a language. For simplicity, we group Nilotic, Central 345 
Sudanic and Mande languages into “Nilo-Saharan”, Khoe, Kxa and Tuu speakers into 346 
“KhoeSan” and Armenic, Circassian, Kartvelian and Nakh-Daghesanian into “Caucasus”. For all 347 
troughs we hypothesize that they align with boundaries between linguistic groups, we now 348 
perform a partial mantel test comparing genetic distances and language groups as a categorical 349 
variable using the implementation in the R-package “vegan”48. We note that results need to be 350 
interpreted cautiously, as the mantel test is generally poorly calibrated for spatially 351 
autocorrelated data49. 352 
 353 

Samples omitted from model fitting 354 

Besides samples whose geographic origin we could not unambiguously assign (n=74), we 355 
removed a small number of samples that would violate some assumptions of the EEMS model. 356 
In particular, we excluded all Jewish samples (n=379), due to complexity of the diaspora and 357 
subsequent local admixture50) and Han-Chinese in Taiwan and Singapore(n=170), who both are 358 
recent migrant population to those locales. To avoid any possible distortion due to uneven 359 
sampling, we downsampled all single locales to at most 50 individuals, drawn independently for 360 
different panels.  This resulted in a total of 6066 individuals used in at least one panel (Table 361 
S1). 362 

Visualization pipeline 363 

We developed a second pipeline using snakemake34 to perform all subsetting and demographic 364 
analyses, available under github.com/NovembreLab/eems-around-the-world. The pipeline 365 
allows for defining panels using a flexible set of features, latitudinal and longitudinal boundaries, 366 
continent or country of samples, source study, as well as the addition and exclusion of particular 367 
samples or populations. Based on these subsets, different modules allow performing EEMS and  368 
PCA analyses, as well as generating all the figures, that were then annotated using inkscape. 369 
All configuration variables are stored in json and yaml config files. We perform EEMS and PCA 370 
for each panel independently.  Structural variants are a potential confounding factor for genome-371 
wide SNP based analysis. In PCA, these variants may result in a number of neighboring SNP in 372 
high LD to have very high loadings, thus overemphasizing the effect of these variants. For this 373 
reason, it is advisable to remove regions containing SNP that have extremely high loadings on 374 
some Principal component. Thus, for each panel, we perform a preliminary PCA analysis using 375 
flashpca51. The loading-scores for each PC were normalized by dividing them by the standard 376 
deviations on each PC [outlier_score = L[i]/sd(L[i]) ], and then we removed a 200kb window 377 
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around any SNP for which |outlier_score| > 5. We also dropped individuals with more than 5% 378 
missingness, and SNPs with more than 1% missing data from each panel. 379 

EEMS  380 

To generate the map surfaces, we must choose a grid size and boundaries.   Choosing a 381 
coarse grid results in faster computation, but only produces a map with broad-scale patterns. A 382 
finer grid, on the other hand, is able to reveal more details, but at a steep increase in 383 
computational cost and with an increased danger of introducing patterns that are harder to 384 
interpret.  Grid density and sizes are given in Extended Data Table 1, along with population 385 
level FST calculated using plink, and FST  based on the mean migration rate inferred by eems and 386 
equilibrium stepping stone model theory52. 387 
 388 
We evaluated the impact of SNP ascertainment bias by running EEMS on the multiple, 389 
documented SNP ascertainment panels of the Human Origins data25.  We found that while 390 
ascertainment bias has an effect on the heterozygosity surfaces that EEMS estimates, the 391 
migration surfaces remain relatively unaffected (Extended Data Fig. 1). Therefore, we restrict 392 
our presentation to the migration surfaces. 393 
 394 
For each panel, we performed four pilot runs of 2-8 million iterations each. The run with the 395 
highest likelihood was then used for a second set of four runs of 4-10 million iteration each, with 396 
the first 500,000 million discarded as burn-in. Number of iteration were chosen such that total 397 
computation time was around 10 days. Every 20,000th iteration was sampled. EEMS 398 
approximates a continuous region with a triangular grid, which has to be specified. We 399 
generated global geodesic graphs at three resolutions (approximate distance between demes of 400 
120, 240 and 500km, respectively) using dggrid v6.153 and intersected these graphs with the 401 
area representing each panel (Extended Figures 2,3). All other (hyper-)parameters were kept at 402 
their default values16. We compared EEMS to an isolation-by-distance model with a constant 403 
migration rate by re-fitting EEMS allowing only a single migration rate tile, but arbitrary diversity 404 
rate tiles using the otherwise same settings. The resulting log Bayes Factors are given in 405 
Extended Data Table 2. 406 

Evaluating fit of EEMS and PCA to genetic distances 407 

For EEMS, the posterior samples imply an expected distance matrix between populations. For 408 
PCA, the components and their loadings provide an approximation to the genetic distance 409 
matrix between individuals. We use the median PCA values of individuals across ten PC 410 
components to produce an expected genetic distance matrix between populations.  We use ten 411 
PC components as most investigators evaluate population structure based on only the first 412 
several PCs. For each method the expected genetic distance matrices are compared to the 413 
observed matrices using a simple linear correlation computed between all pairwise distances.   414 
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Supplementary Text on Regional Scale Analyses 431 

Here we provide a more expanded discussion of the regional-scale results.  To help identify 432 
features that we discuss, we have added labels to discussed features in the figures, and refer to 433 
them in the text here in parentheses. The labels are typically capitalized abbreviations and in 434 
some cases are full words.   435 
 436 
Western Eurasia.  Europe appears largely homogeneous in the Afro-Eurasia panel, but a finer-437 
scale analysis (Western Eurasia panel, Fig. 2a; n=2,049; 122 locales, FST=0.010) reveals 438 
abundant fine-scale structure: bodies of waters are consistently covered by lower effective 439 
migration regions, with migration being lower in southern seas (Mediterranean, Adriatic, Black 440 
Sea) relative to those in northern Europe (North Sea, Irish Sea, English Channel).  Terrestrial 441 
barriers are observed in: the Alps (and an adjacent region extending into Southern France), 442 
surrounding the Mozabites in Tunisia and the Saami in Scandinavia, the western and northern 443 
edges of the Arabian Desert (though we note the region has few samples). Troughs reflecting 444 
historical domains are observed: between Germanic and Northern Slavic-speakers (CE, 445 
Extended Data Figure 7) and between domains of Slavic-speakers and the Caucasus (NS). 446 
Remaining regions are generally inferred to have average or above average migration, with one 447 
obvious corridor being that between Iceland and Scandinavia (IS), presumably due to the recent 448 
colonization of Iceland. One interesting feature is an area of East-West low migration between 449 
the Italian peninsula and Greece (GI).  A corridor between Crete and Sicily is inferred south of it, 450 
and between mainland Greece and southern Italy north of it.  This likely reflects a pattern of 451 
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close genetic similarity among coastal Mediterranean populations observed previously43 but 452 
suggests it may have north-south structure. Ancient DNA results suggest that the patterns we 453 
observe are recent54,55 and have been shaped in the last 3,000-5,000 years with contributions 454 
from multiple sources. Strikingly, proposed expansion routes through the Eurasian Steppe and 455 
Levant into Europe partially align with corridors of high effective migration. 456 
 457 
Central/Eastern Eurasia. The Central/Eastern Eurasia surface (Fig. 2e; n=2,578; 181 locales, 458 
FST=0.042) is overall similar to the patterns seen in the AEA panel, with a trough through the 459 
Himalayas/Tien-Shan but we observe a corridor from Mongolia to the Caspian Sea, possibly 460 
reflecting the Mongol empire, as the Kalmyk, Kazhaks, and Uygurs all have well documented 461 
Mongolian-like genetic ancestry. The presence of this corridor depends on a small number of 462 
samples; if Uygurs and Kalmyks are removed, we find a pattern similar to that in the AEA panel 463 
in that region. 464 
 465 
 Where the global analysis did not reveal any strong patterns in South Asia, at the higher 466 
resolution we observe troughs in the Indian subcontinent between a central Indian region (CI) of 467 
mainly Indo-Aryan languages and an Eastern and Southern region with two Austroasiatic 468 
speaking (Kharia, Ho), and Dravidian speaking populations, but this trough is not significantly 469 
correlated with linguistic group (Extended Data Figure 7d) We also find that the Himalayas 470 
generate a trough between India and Tibet, but the Kusunda population adds a corridor there, 471 
which is explained by the fact that they have both Tibetan and Indian ancestry 56. 472 
 473 
In East Asia, we observe marine troughs in the East China Sea, strait of Tartary and the 474 
Andaman Sea (Onge).  Terrestrially, we observe troughs between coastal China (CC), a central 475 
region with several Tibeto-Burman samples (TB, along with the Tu who speak a Mongolic 476 
language, and have been suggested to have received European admixture 1,200y ago24), and a 477 
western region anchored by Tibetan samples. The coastal Chinese region contains a high-478 
effective-migration area that extends into Korea and Japan.  479 
 480 
Overall, the Central/East Asia panel is particularly complex with one of the lowest levels of r² 481 
between EEMS expected genetic distances and the observed distances (r² = 0.66, Extended 482 
Data Fig. 5), and the residuals are very high (Extended Data Fig. 8).  This is expected as the 483 
relatively open steppe has been the site of repeated long-range population movements and 484 
invasions, by e.g. Bronze Age Steppe populations, Mongols and Turkic speakers, that we 485 
expect are difficult to depict using the model of steady-state gene flow model fit by EEMS. 486 
 487 
South-East Asia.  In the South-East Asian panel (n=1,054, 58 locales; FST=0.037; Fig. 2k) 488 
troughs align with the many seas and channels in this region: the South-Chinese Sea (SCS), 489 
the waterway running east of the Philippines (PH) and Sulawesi south to the Flores Sea  (SEP), 490 
the waterway between western New Guinea into the Banda Sea (BS), the Malacca strait 491 
between Sumatra and Malaysia (SM), the Sunda Strait between Java and Sumatra (JS), the 492 
Java Sea between Bali and Java (BJ), as well as the Makassar strait and Celebes Sea between 493 
Borneo and Sulawesi (EB).  Two corridors, one from Taiwan/Luzon through Western Mindanao 494 
to Sulawesi, and one from Ternate through the Lower Sunda Islands (LSI) into Melanesia  495 
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possibly reflect the Austronesian expansion that started roughly 3,000 years ago57.  On the 496 
mainland, we find low effective migration north of Bangkok (BAN) and near samples from 497 
Northern Thailand (TH) (including the Southern Chinese Wa and Jinuo samples (SC)). These 498 
two samples have low inferred effective migration with South-Eastern Chinese samples (SEC). 499 
Two Malay Negrito samples in Northern Malaysia  (MN) are placed in a trough, revealing their 500 
genetic distance to other South-East Asian populations also apparent on PC2 (Figure 2l). 501 
 502 
Africa.  In Africa (AFR, n=749, 71 locales, FST=0.055; Fig. 2g) two troughs corresponding to the 503 
Sahara desert and Mozambique Channel are observed. In Northern Africa (NAA), we see a 504 
small trough of low effective migration separating two latitudinal corridors; one following the 505 
Mediterranean coast and one inland (Fig 2g). The inland corridor disappears in our lower-506 
resolution Afro-Eurasia panel (Figure 1a) and presumably reflects Sub-Saharan ancestry in 507 
some Moroccans, perhaps through trans-Saharan trade.  508 
 509 
 In the AFR-panel, we observe a trough reflecting the language group boundaries between 510 
Niger-Congo and Afro-Asiatic language speakers58 (Extended Data Figure 7), with the West-511 
African Afro-Asiatic speaking Hausa and Mada being placed in a barrier together with the 512 
admixed Fulani 59. West Africa appears as a high-gene-flow region (WA), and two corridors 513 
pass from Nigeria - one along the coast of Congo (CO) southwards and another further east 514 
(EC) connecting to Kenya and Tanzania. In both Central and Eastern Africa Nilo-Saharan and 515 
Niger-Congolese speakers overlap, resulting in low effective migration uncorrelated with langu: 516 
the Nilo-Saharan Kaba, Dinka and Bulala are in a region of high gene flow, separated by a 517 
trough from the Biaka and Mbuti Pygmies. Southern and Eastern Africans are separated by low 518 
effective migration through Mozambique and South-Western Tanzania (SWT). 519 
 520 
Southern Africa Patterns in southern Africa are complex, with a troughs separating out 521 
Western Bantu speaking populations, and the KhoeSan Khwe and Xuun. Stratifying Southern 522 
Africans into a KhoeSan (SAKS, n=109, 16 locales, FST=0.025, Fig. 2k) and Bantu speakers 523 
(SAB, n=30, 11 locales, FST=0.014; Fig. 2l) reveals very different spatial structure. The Bantu 524 
speakers are separated by a single barrier into an eastern and western location. For the South 525 
African Hunter-Gatherers most samples fall into a central region with high effective migration, 526 
including the Taa, Naro and Hoan (TNH). Troughs in the North separate this region from the 527 
Sua and Tswa (ST) and in the south-west from the Khomani and Nama (Nama), respectively. 528 
The remaining samples fall either into a Northern high migration area (Khwe and Xuun, KX) or a 529 
North-Western low migration area  (Damara and Haiom, DH). These results are broadly 530 
consistent with existing work on African population structure59–62, and emphasize African 531 
population structure appears largely determined by the Sahara desert, the Bantu and Arabic 532 
expansions, and the complex structure of hunter-gatherer groups specifically in South Africa.  533 
 534 

  535 
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Extended Data 536 

 537 

Study Abbrev. Samples Locations Source 
Bryc et al. 2009 B09 121 11 Ref 40 
Behar et al. 2010 Be10 295 22 Ref 50 
Behar et al. 2013 B13 131 20 Ref 63 
Bigham et al. 2010 Bi10 45 3 Ref 45 
Chaubey et al. 2011 C11 37 5 Ref 64 
Cardona et al. 2014 C14 192 37 Ref 65 
Di Cristofaro et al. 2013 D13 14 3 Ref 66 
Fedorova et al. 2013 F13 30 6 Ref 67 
HUGO Consortium 2009 H09 975 47 Ref 37 
Hunter-Zinck et al. 2010 H10 85 1 Ref 41 
Jeong et al. 2017 J17 53 2 Ref 44 
Kovacevic et al. 2014 K14 70 6 Ref 68 
Lazaridis et al. 2014 L14 1590 159 Ref 69 
Metspalu et al. 2011 M11 127 11 Ref 70 
Migliano et al. 2013 M13 68 6 Ref 71 
Nelson et al. 2008 N08 531 29 Ref 39 
Paschou et al. 2014 Pa14 626 29 Ref 43 
Pierron et al. 2014 Pi14 114 5 Ref 72 
Raghavan et al. 2014 R14 83 9 Ref 73 
Rasmussen et al. 2010 R10 101 9 Ref 74 
Rasmussen et al. 2011 Ra11 19 3 Ref 56 
Reich et al. 2011 Re11 106 16 Ref 75 
Skoglund et al. 2014 S14 15 1 Ref 76 
Xing et al. 2010 X10 92 4 Ref 38 
Xu et al. 2011 X11 28 3 Ref 46 
Yunusbayev et al. 2012 Y12 183 14 Ref 77 
Yunusbayev et al. 2015 Y15 299 42 Ref 36   
Extended Data Table 1: Data Sources. Abbrev: Abbreviation; Ind: total number of individuals; 538 
Loc. Number of unique sample locations 539 
  540 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/233486doi: bioRxiv preprint 

https://doi.org/10.1101/233486
http://creativecommons.org/licenses/by-nc-nd/4.0/


  17 

 541 
Panel Abb. Ind. Locations SNPs Grid Size  

(# of demes) 
Resolution 

(km) 
FST Model-fit FST 

 (adjacent 
demes) 

Model-fit FST  

(500km) 

Support 
(log-BF) 

Afro-Eurasia AEA 4697 370 19972 686 500 0.071 0.99% 0.99% 254,472 
Central/Eastern 
Eurasia 

CEA 2578 181 21045 1147 240 0.042 0.22% 0.42% 129,035 

Western Eurasia WEA 2049 122 26438 1437 120 0.010 0.75% 1.08% 46,210 
South-East Asia SEA 1054 58 7553 1388 120 0.037 0.29% 0.56% 13,654 
Africa AFR 749 71 20984 694 240 0.055 0.81% 1.18% 51,771 
Southern Africa 
KhoeSan 

SAKS 109 16 532343 227 120 0.025 0.32% 0.62% 2298 

Southern Africa 
Bantu 

SAB 30 11 65095 227 120 0.014 0.26% 0.56% 126 

 542 
Extended Data Table 2: Analysis Panels. Abb. Panel Abbreviation. Res. Avg. distance between grid 543 
points (in km) ; Support: log Bayes factor in favor of complex vs constant migration model. Implied FST 544 
between adjacent demes based on posterior mean migration rates. Equation 19a from 52 is used to 545 
calculate implied FST using a torus approximation:  For FST (adjacent demes): FST=(1+32m/S(d))-1 where 546 
S(d) is a function of the distance between demes and given by equation A12 in 52. In the first column, we 547 
use S(1), in the second S(4) for highest and S(2) for medium resolution panels to get FST for demes at 548 
the lowest resolution (~500km). 549 
 550 
        551 

 552 
 553 
Extended Data Figure 1: Ascertainment bias. We run EEMS only using the Human Origin data 554 
25, using SNPs ascertained in a French (a/f), Chinese (b/g), Papuan (c/h) and San(d/i) 555 
individual. Migration rate surfaces (a-d) remain robust, whereas the within-deme diversity 556 
surfaces (f-i) show highests diversity at the respective ascertainment location. e/j: scale bars for 557 
migration rates and within-deme diversity rate parameters, respectively. 558 
  559 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/233486doi: bioRxiv preprint 

https://doi.org/10.1101/233486
http://creativecommons.org/licenses/by-nc-nd/4.0/


  18 

 560 

 561 
Extended Data Figure 2: a: Location of troughs (below average migration rate in more than 95% of 562 
MCMC iterations) are given in brown. Sample locations and EEMS grid are displayed. b: Posterior 563 
variance on migration rate parameters. Note that most significant features are in low variance regions, but 564 
that they are often surrounded by high-variance regions, implying the exact boundary of troughs is 565 
estimated with uncertainty. Grid-fitted sample locations are displayed. Annotation in both panels is 566 
identical to Figure 1a.  567 
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 568 
Extended Data Figure 3: Location of troughs (below average migration rate in more than 95% 569 
of MCMC iterations) are given in brown. Sample locations and EEMS grid are displayed for a: 570 
WEA b: CEA c: AFR d: SAHG and e: SEA analysis panels. Annotation in all panels is identical 571 
to Figure 2. 572 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/233486doi: bioRxiv preprint 

https://doi.org/10.1101/233486
http://creativecommons.org/licenses/by-nc-nd/4.0/


  20 

   573 
Extended Data Figure 4: Posterior variances in migration rate parameters. Grid-fitted sample 574 
locations are displayed .a: scale bar  b: WEA c: CEA d: AFR e: SAHG and f: SEA analysis 575 
panels. Note that most significant features are in low variance regions, but that they are often 576 
surrounded by high-variance regions, implying the exact boundary of troughs is estimated with 577 
uncertainty. Annotation of troughs and select features is identical to Figure 2. 578 
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 579 
Extended Data Figure 5: Hex-binned scatterplots of genetic distance versus geographic 580 
distance (in km),  predicted distance via EEMS model fit, and predicted distance via a ten-581 
component PCA, for all panels. Darker areas correspond to bins with more points. The fit of a 582 
simple linear regression (red dashed lines) and r² are given.  583 
 584 

 585 
Extended Data Figure 6: Comparing Fit of PCA and EEMS. We show the relative error of EEMS (red) and PCA(blue, 586 
first 10 PCs) for all pairs, stratified by genetic distance. For each panel, all pairwise genetic distances were distributed 587 
in ten bins of equal size, for which we then computed the median absolute error of the fitted model vs the observed 588 
distances. For W. Eurasia and SE-Asia, EEMS fits uniformly better than PCA. In the Afro-Eurasian, Central/Eastern 589 
Eurasian and African panel, EEMS fitts better for smaller distances, but the fit is worse for larger distances. For the 590 
KhoeSan, EEMS fits worse than PCA for all distance bins. 591 
 592 
  593 
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 594 
Extended Data Figure 7: Genetic vs. geographic distance within and between language 595 
groups. The eems-plots revealed several troughs aligning with differences in linguistic groups. 596 
We show the pairwise relationship of genetic and geographic differences within- and between 597 
adjacent language groups mentioned in the main text for a. Slavic and Germanic speakers 598 
(WEA panel) b. Slavic and Caucasus languages (WEA), c. KhoeSan and Bantu languages 599 
(Southern Africa) d. Indo-Aryan, Dravidian and Austroasiatic (CEA) e. Niger-Congo and Afro 600 
Asiatic (AFR) and f. Nilo-Saharan and Niger-Congo (AFR).  601 
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 602 
Extended Data Figure 8: EEMS-fit residuals. For each population, we show the median 603 
absolute deviation (MAD) of the observed vs EEMS-fitted genetic distances, normalized by the 604 
median distance for this population. yellow: Hunter-Gatherers; Black: Southern African Bantu 605 
speakers; Blue: Populations with a recent admixture or displacement.  606 
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 607 
Extended Data Figure 9: Alternative Africa analysis. To assess the effect of populations that 608 
may not be modelled well by EEMS (admixed or hunter-gatherer populations), we provide 609 
supplemental analyses of Africa with several populations excluded from the model fit. a: EEMS-610 
map and b: location of troughs for Africa. Excluded populations are annotated with H (Hunter-611 
gatherers) and X (admixed). With this filtering (in particular removing the Hadza and Sandawe), 612 
the Eastern African trough between Afro-Asiatic speakers and Nilo-Saharan / Niger-Congo 613 
speakers (seen in Figures 1 and 2g) vanishes.  614 
 615 
 616 
 617 
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