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Abstract 

We introduce a new approach to Bayesian pRF model estimation using Markov Chain Monte 

Carlo (MCMC) sampling for simultaneous estimation of pRF and hemodynamic parameters. To obtain 

high performance on commonly accessible hardware we present a novel heuristic consisting of 

interpolation between precomputed responses for predetermined stimuli and a large cross-section of 

receptive field parameters. We investigate the validity of the proposed approach with respect to MCMC 
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convergence, tuning and biases. We compare different combinations of pRF - Compressive Spatial 

Summation (CSS), Dumoulin-Wandell (DW) and hemodynamic (5-parameter and 3-parameter Balloon-

Windkessel) models within our framework with and without the usage of the new heuristic. We evaluate 

estimation consistency and log probability across models. We perform as well a comparison of one model 

with and without lookup table within the RStan framework using its No-U-Turn Sampler. We present 

accelerated computation of whole-ROI parameters for one subject. Finally, we discuss risks and 

limitations associated with the usage of the new heuristic as well as the means of resolving them. We 

found that the new algorithm is a valid sampling approach to joint pRF/hemodynamic parameter 

estimation and that it exhibits very high performance. 

 

Introduction 

Modelling is an important domain of science in general and a recurring topic in population 

receptive field (pRF) research in particular, where functional magnetic resonance imaging (fMRI) serves 

as evidence acquisition method. Classical approaches such as those by (Dumoulin and Wandell, 2008) 

and (Kay et al., 2013) focus on point estimates of parameters in predefined models motivated by 

physiology and empirical evidence. In the recent work of (Zeidman et al., 2016) authors introduce the 

formalism of Bayesian Model Selection in order to root pRF model choices in an objective quantitative 

measure such as Variational Free Energy. Furthermore, the proposed formulation employs a Balloon-

Windkessel model for joint estimation of pRF and hemodynamic parameters. The main limitation of this 

approach lies in the assumption about the form of the posterior distribution of parameters, in this case 

Gaussian. The method is characterized as well by high computational requirements – the reference 

implementation of the algorithm is reported to require about 100 seconds per voxel to converge which 

renders its use problematic on modern PCs with exception of high-end multi-core cluster setups (the 

authors give an example of 192-core cluster used to estimate 14395 voxels) or small regions of interest. A 

Bayesian approach using slice-sampling Monte Carlo method with fixed Hemodynamic Response 
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Function (HRF) was recently described in (Quax et al., 2016). Similarly to the variational method the 

sampling approach quantifies how variable the underlying receptive field is by using the uncertainty of 

the posterior estimate except with the added advantage of not imposing any particular form on the 

posterior probability distribution. The authors underline the importance of their method’s capability to 

estimate variability – rendered particularly relevant by the fact that receptive fields are not rigid over 

time, but can change due to attention effects or task demands (Klein et al., 2014). The main contribution 

of our work is a new approach to Bayesian pRF model estimation combining the best characteristics of 

the above methods – inclusion of the Balloon-Windkessel hemodynamic model, Dumoulin-Wandell and 

compressive spatial summation (CSS) pRF models and using sampling for model inversion therefore not 

imposing any form on the posterior. Furthermore in order to address potential obstacles due to high 

performance requirements we introduce a novel heuristic for solving the Dumoulin-Wandell pRF model 

by using interpolation across a lookup table containing precomputed responses for given stimuli and a 

large number of predefined receptive field parameters. This enables us to massively parallelize the 

algorithm using a graphics processing unit (GPU) implementation of the Markov Chain Monte Carlo 

(MCMC) scheme. Our algorithm offers choice between existing pRF models – Dumoulin-Wandell model 

(Dumoulin and Wandell, 2008) and compressive spatial summation (CSS) model of pRF introduced in 

(Kay et al., 2013) and for BOLD generation between well-established Balloon-Windkessel model 

(Buxton et al., 1998; Friston et al., 2000; Irikura et al., 1994; Mayhew et al., 1998), its 3-parameter 

version (Stephan et al., 2007) used in the recent implementation of Dynamic Causal Modelling (DCM) in 

Statistical Parametric Mapping (SPM) toolbox as well as a fixed user-provided HRF. Our algorithm is 

presented and discussed along with introduction of QPrf – its freely available implementation in the form 

of a standalone toolbox (https://github.com/sadaszewski/qprf) available with source code under the terms 

of GNU GPLv3 license. We demonstrate CSS-pRF/Balloon-Windkessel model inversion using the new 

heuristic and compare it to a classical two-stage method. Furthermore, we compare different 

combinations of pRF (CSS, classical Dumoulin-Wandell) and hemodynamic (5-parameter and 3-

parameter Balloon) models within QPrf and against existing Bayesian inversion software (BayespRF). 
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Finally, we discuss risks and limitations associated with usage of the new heuristic as well as means of 

resolving them. 

 

Visual field mapping consists of measuring responses to rings and wedges stimuli presented at 

varying visual field locations. Within each voxel the experimenter estimates the visual field position that 

produces the largest fMRI response. However, in reality the population of neurons in such voxel responds 

(with varying intensity) to a whole range of visual field locations. The region of visual space that 

stimulates the voxel is called the population receptive field (pRF) (Victor et al., 1994). The pRF method 

can provide estimates for receptive field location, size, orientation, laterality and surround suppression 

((Kay et al., 2013; Zeidman et al., 2016)). To this end a series of stimuli is specifically designed to 

differentiate between the above parameters. Temporal responses are then used to fit model values with 

best support from the observed data (evidence). 

In Dumoulin and Wandell (2008) the authors propose a quantitative approach for estimating 

population receptive field (pRF) parameters using a model-based coarse-to-fine optimization scheme. The 

pRF model is defined as two-dimensional Gaussian with means corresponding to pRF position in the 

visual field and a scalar covariance matrix with diagonal values equal to (pRF size)2. Subsequently, model 

parameters are varied in order to match functional magnetic resonance imaging (fMRI) time series 

obtained using wedges, rings and lines stimuli displayed in a series of animations. In order to do so - 

Frobenius inner product of stimuli and pRF Gaussian is convolved with a space-invariant hemodynamic 

response function (HRF) and the residual sum of squares (RSS) between the simulation and the data is 

iteratively minimized starting from a seed point determined by exhaustive search on predefined parameter 

grid. 

This model is the base for further elaboration in (Kay et al., 2013) leading to the compressive 

spatial summation (CSS) approach. While measuring BOLD responses to a set of contrast patterns, the 
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authors discover systematic deviation from linearity. The data are more accurately explained by a model 

in which a compressive static nonlinearity is applied after linear spatial summation. The authors conclude 

that the nonlinearity is present in early visual areas (e.g., V1, V2) and increases in anterior extrastriate 

areas (e.g., LO-2, VO-2). The effect of compressive spatial summation has been analyzed in terms of 

changes in the position and size of a viewed object. It is stated that compressive spatial summation is 

consistent with tolerance to changes in position and size, an important characteristic of object 

representation. A similar grid-based fitting approach is used for estimating parameters of the CSS-

extended pRF model. 

The CSS-pRF approach is characterized by simplicity and relatively good speed/accuracy of fit in 

most cases. Some of its shortcomings however are that it: i. provides only point estimates of the 

parameters; ii. does not account for spatial HRF variation (which, as acknowledged by the authors, may 

introduce systematic errors in pRF size estimates); iii. uses an explicit HRF model based on two gamma 

functions which do not allow for robust estimation of more informative hemodynamic parameters 

introduced by the Balloon-Windkessel model (Buxton et al., 1998). 

The advancement proposed by this work is a Bayesian approach to joint estimation of pRF and 

hemodynamic parameters full posterior distributions using a forward signal generation model and Markov 

Chain Monte Carlo (MCMC) sampling. Furthermore, due to the computational costs incurred by MCMC, 

an optimized implementation using OpenCL is presented which allows one to take advantage of modern 

Graphics Processing Units (GPUs) in order to keep the processing time within the same order of 

magnitude as previous method while providing richer and more robust results. 
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Materials and Methods 

PRF Model 
 

A population receptive field (pRF) is the region of the visual field within which stimuli evoke 

responses from a local population of neurons. In  (Dumoulin and Wandell, 2008) the authors proposed a 

model [Figure 7] of neuronal population receptive field defined by a two-dimensional Gaussian function: 

 

���, �� � ��������������������  
[1] 

 

where (x0, y0) is the receptive field center and σ is the Gaussian standard deviation. Subsequently, the 

predicted pRF response r(t) is defined as sum of cells in element-wise (Hadamard) product of effective 

stimulus s(x, y, t) and the Gaussian g(x, y): 

 

	�
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����, ��
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 [2] 

 

The BOLD signal time series prediction p(t) is then obtained by convolving r(t) with a model 

hemodynamic response function (HRF) h(t): 

 

�
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This model is further elaborated in (Kay et al., 2013) leading to compressive spatial summation 

(CSS) approach (Figure 1), which defines r(t) as: 
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�,�

�


 

 

[4] 

 

where g is a gain parameter and n is an exponent parameter. This additional compressive static 

nonlinearity has been proven to better explain experimental data. 

In contrast to previous studies, we use the CSS component for modeling the pRF response but 

instead of using convolution with a spatially invariant canonical HRF to obtain the predicted BOLD time 

series in [Equation 3], we employ the Balloon-Windkessel model described in the following section. We 

do this to account for per-voxel variability of parameters determining hemodynamic response. 

 

Balloon-Windkessel Model 
 

The hemodynamic model (Figure 2) used in this study is a combination of the Balloon model and 

regional cerebral blood flow (rCBF) model as introduced in (Friston et al., 2000) and used for dynamic 

causal modelling (Friston et al., 2003). The remainder of this section contains a brief summary of the 

model [Figure 6]. 

The Balloon component is responsible for coupling rCBF to the BOLD signal (Buxton et al., 

1998). The BOLD signal is modelled as the volume-weighted sum of intrinsic extravascular signal (Se) 

and the intravascular signal (Si): 
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� � �1 � �� � �� � � � ��  [5] 

 

Relative change in this signal can further be expressed as a nonlinear function of normalized 

venous volume (v), normalized total deoxyhemoglobin content (q) and oxygen extraction fraction (E0): 

 

� � Δ�� � � � ��� � �1 � �� � �� � �1 � ��� � �� � �1 � ��� [6] 

 

where the first term describes the intrinsic extravascular signal, the second term describes the 

intravascular signal, and the third term describes the effect of changing the balance of the sum in Eq. 5. V0 

indicates resting blood volume fraction and the k factors are modeled as follows: 

 

�� � 7 � �  

�� � 2 

�� � 2 � � � 0.2 

[7] 

 

The rate of volume change v� is expressed as: 
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The constant τ0 represents the average time it takes to traverse the venous compartment or for that 

compartment to be replenished (mean transit time) and is equal to V0/F0 where F0 is the resting flow. The 

outflow (fout) is modelled with single parameter α: 

 

$������ � ��/�  [9] 

 

Steady-state values of α have been estimated by (Grubb et al., 1974) α ≈ 0.38 and (Mandeville et 

al., 1999) α ≈ 0.36.  

Deoxyhemoglobin content change q� is modelled as the difference: 

 

"�# � $�
 ��$�
 , ���

� $������ �� [10] 

 

where the first term expresses the delivery of deoxyhemoglobin into the venous compartment, the second 

term its expulsion and E(fin, E0) is the fraction of oxygen extracted from the inflowing blood. 

 

��$�
 , �� � 1 � �1 � ���/���  [11] 

 

Therefore, the Balloon component contains three parameters – E0, τ0 and α specifying 

respectively resting oxygen extraction fraction, mean transit time and stiffness exponent. Together they 

determine the flow-volume relationship of the venous balloon. 
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The rCBF component serves to specify the missing inflow state. To this end, following results 

from (Miller, K. L., Luh, W. M., Liu, T. T., Martinez, A., Obata, T., Wong, E. C., ... & Buxton, 2000) and  

(Friston et al., 2000) linear relationship between blood flow and synaptic activity is assumed resulting in a 

parsimonious model of inflow: 

 

$#
�
 � �, [12] 

 

where s is a flow inducing signal generated by neuronal activity u(t) subject to: 

�# � εu�t� � �"� � �$�
 � 1�"� . 
 

[13] 

 

ε, τs and τf are the three unknown parameters of this component and represent respectively: the efficacy 

with which the neural activity causes increase in signal, the time constant for signal decay and time 

constant for autoregulatory feedback from blood flow (Irikura et al., 1994; Mayhew et al., 1998). 

For the remainder of this work, values of ε=1 and V0=0.02 are assumed in line with the way this 

model is applied in Dynamic Causal Modelling (Friston et al., 2003) software package. 

 

Metropolis-Hastings Sampling 
 

The Metropolis-Hastings (MH) scheme consists of an evolving state variable Θ = {μx, μy, σ, κ, γ, 

τ, α, ρ, a, g} and a list of all previously accepted values of Θ. Initial value of Θ(t=0) is provided by using 

existing point-estimate method for pRF parameters (Kay et al., 2013) and prior means for hemodynamic 

parameters (Empirical Bayes approach). Subsequently a proposal Θ(t+1) is picked in the neighborhood of 
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Θ(t) using normal random distributions with small variances configurable separately for each parameter. 

The new value of Θ replaces the current one (and is added to the list) with probability p=min(1, p(y | 

Θ(t+1)/p(y | Θ(t))) which depends only on the last value of Θ(t) therefore satisfying the Markov criterion. 

As t → ∞ distribution of accepted samples approaches the desired posterior distribution p(Θ | y) 

(Hastings, 1970). The initial amount of samples m is skipped (this process is called burn-in period) to 

account for the convergence of Θ to the desired distribution. Furthermore, only every k-th remaining 

accepted sample is taken into account in the final posterior sample (this process is called thinning) to 

compensate for the correlation between successive random samples and ensure unbiased sampling. 

The model inversion procedure relies on a stationary noise estimate obtained by a procedure 

loosely inspired by (Dumoulin and Wandell, 2008) and can be summarized in the following steps: 1) 

Principal Components Analysis (PCA) of the stimuli; 2) General Linear Model (GLM) using a subset of 

n=128 first principal components as independent variables and acquired Blood Oxygenation Level 

Dependent (BOLD) response as dependent variable; 3) 1st order autoregressive (AR) model for the 

residuals of the GLM model; 4) noise statistic estimation based on AR residuals; 5) response whitening 

by removing AR predictions; 6) a Metropolis-Hastings (MH) scheme with 3 parameters for pRF model: 

horizontal position (μx), vertical position (μy) and size (σ), 5 for Balloon-Windkessel model: rate of signal 

decay (κ), rate of flow-dependent elimination (γ), hemodynamic transit time (τ), Grubb's exponent (α), 

resting oxygen extraction fraction (ρ) and 2 for compressive spatial summation which has to be applied 

after the Balloon-Windkessel model evaluation: exponent (a) and gain (g). 

Priors (see [Table 1]) were established using an Empirical Bayes approach where applicable. The 

prior for the σ parameter was obtained by fitting a Gaussian distribution to single subject results from an 

existing point-estimation method (Kay et al., 2013). Non-informative priors with means at (0, 0) and large 

variances have been established for μx and μy. For hemodynamic parameters κ, γ, τ, α, ρ priors reported in 

(Friston et al., 2003) were used. Gaussian priors with large variances and means calculated from 

maximum likelihood fit to the whitened detrended BOLD data were used for a and g respectively. 
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Table 1. MCMC prior and proposal distributions. Note 1: the parameter space is bounded so that  μx, μy 

and σ are in the range [0, 100], a and g are positive. It is achieved by rejecting samples where any of the 

parameters is outside of the allowed range. Note 2: Receptive field size depends on eccentricity and visual 

area (Amano et al., 2009; Kay et al., 2008; Larsson and Heeger, 2006; Smith et al., 2001; Winawer et al., 

2010) therefore usage of an informative prior is disputable; our method readily supports using a non-

informative prior instead. 

Parameter Name Prior (Gaussian) Proposal 

(Gaussian with 

mean at current 

point estimate) 

Mean Standard 

Deviation 

Standard 

Deviation 

μx Receptive field horizontal 

center (in pixels of 

stimulus mask) 

0 Infinity 10 

μy Receptive field vertical 

center (in pixels of 

stimulus mask) 

0 Infinity 10 

σ Receptive field size (in 

pixels of stimulus mask) 

33.3 Infinity 1 

a CSS Exponent 0.5 0.5 0.05 

g CSS Gain 10 10 1 

κ Vasodilatory signal decay 0.65 0.015 0.0015 

γ  Rate constant for 

autoregulatory feedback 

0.41 0.002 0.0002 
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by blood flow 

τ  Transit time 0.98 0.0568 0.00568 

α Grubb’s stiffness 

exponent 

0.32 0.0015 0.00015 

ρ Deoxyhemoglobin 

content 

0.34 0.0024 0.00024 

 

The summary of MCMC evaluation is contained in [Table 2]. 

Table 2. MCMC scheme summary 

Name Expression 

CSS Gaussian g(x, y) ~ exp(-((x - μx)
2 + (y - μy)

2) / 2σ2) 

CSS Summation 	�
� � � ���, �, 
����, ��
�,�

 

Activity-Dependent 

Signal 

ds=r - κs- γ(f-1) 

Flow Induction df=s 

Changes in Volume τdv =f-v(1- α)  

Changes in 

deoxyhemoglobin 

content 

τdq =f*E(f, ρ)/ ρ – v(1- α)q/v 

BOLD Signal y=k1*(1-q)+k2*(1-q/v)+k3*(1-v) 

CSS 

Exponentatiation 

y1=ya 

CSS Gain y2=g*y1 
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Residuals res=yfMRI-y2 

Likelihood �� | *� � �+��,+�-�.� 

�/���� 

�0��1��"��2��3� 

1.√25 6 exp ��	���
�.
����� �
�

 

 

 

 

 

Algorithm Listing Conventions 
 

The following two sections describe the main CPU and GPU algorithms employed by our 

implementation of the estimation procedure. We assume the following conventions in the listings below. 

Variables are written in italics, constants are CAPITALIZED, pseudo-code keywords are written in bold. 

Two distinct notations are used for describing ranges of values. The bracket notation [start, end) 

signifies a set of values {start, start + 1, … , end – 2, end – 1}. The colon notation [start:step:end) 

signifies the following set of values: {start, start + step, start + 2 * step, … , start + (k - 1) * step, start + 

k * step} where k is the biggest integer such that start + k * step < end. Sets are treated as row vectors 

where relevant. 

The pseudecode refers to a number of built-in functions. bsxfun(fun, A, B) is inspired by a 

MATLAB routine with the same name. It takes a lambda expression fun and applies it to corresponding 

pairs of elements from A and B. Implicit expansion is used in case the shapes of A and B don’t match 
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exactly. The term “implicit expansion” signifies that the smaller array is repeated across singleton 

dimensions in order to match the shape of the bigger one. 

Routine pinv(A) computes a Moore-Penrose pseudoinverse of matrix A. The computation is based 

on singular value decomposition (SVD) algorithm with automatically adjusted tolerance tol = max(ncols, 

nrows) * abs(sv[0]) where ncols and nrows signify respectively number of columns and rows in the 

matrix and sv is an array of singular values in descending order of absolute magnitude. 

Function repmat(A, {m, n}) repeats matrix A m times vertically and n times horizontally. 

Furthermore, for reason of brevity some of the convenient MATLAB syntax is employed in 

listing of Algorithm 2. Expression “@power” signifies lambda function raising its first argument to the 

power expressed by the second argument. Expression A’ signifies transpose of a matrix. 

Standard trigonometric functions sin(a) and cos(a) compute respectively sine and cosine of an 

angle a expressed in radians. The function min(a, b) returns the smaller of two scalar values a and b. 

Notation N(A) is a highly abbreviated notation used to signify calculation of element-wise log-

probabilities using Gaussian distribution with mean and standard deviation corresponding to prior 

distribution characteristic for quantity in array A. 

Notation randn(…) is used to signify generating random values according to normal distribution 

with zero mean and standard deviance corresponding to step size selected for respective components of 

MH state variable. 

Function uniform_random(a, b) returns a random real number from range [a, b]. 

CPU Algorithms 
 

The Metropolis-Hastings sampling (Algorithm 1) constitutes core of the implementation. It is 

divided into Initialization, Data Preprocessing and Sampling phases. The Sampling phase is further 
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divided into GPU part and CPU part depending on the device performing bulk of the computation 

involved and Stepping part responsible for performing the random walk. 

Initialization phase loads acceleration lookup table (stage2) and initial pRF parameter estimates 

(xs, ys, rfsizes, expts, gains), prepares polynomial detrending matrix (pmatrix) and bootstraps remaining 

working variables. 

In Data Preprocessing phase, MRI data are divided into batches and processed using 

preprocess_data() GPU routine (Kernel 5). 

Subsequent Sampling phase runs a predefined number of iterations (NumberOfSteps) of a loop 

consisting of GPU and CPU computation. The GPU  part is responsible for executing the signal 

generation model in three steps: reset() routine (Kernel 2) restores initial states of the Balloon-Windkessel 

model variables, fwd_model() kernel (Kernel 3) performs a forward run of combined pRF and Balloon-

Windkessel MRI signal generation model, whereas eval_proposal() function (Kernel 6) computes the 

logprobability of resulting signal given registered MRI data (evidence). The CPU part adds 

logprobabilities resulting from priors and for each voxel decides whether to accept state variable values or 

revert to old ones. The latter is done in stochastic manner by taking ratio of current state probability to 

previous state  probability and comparing against a realization of uniformly random variable from range 

[0, 1]. If the random value is less, new sample is accepted, otherwise it is rejected. If new state has higher 

probability than the old state, it will always be accepted because ratio is larger than one. Accepted 

samples are added to respective per-voxel sets of samples for individual state variables. Finally, the next 

proposal state is generated by adding normal random variable with zero mean and predefined standard 

deviation to current values of each state variable. 

Algorithm  1. Metropolis-Hastings sampling – Perform posterior sampling on joint pRF / Balloon-

Windkessel model 

Input: data – recorded fMRI signal data; starting_ang, starting_ecc, starting_rfsize, starting_expt, 

starting_gain – initial estimates for respectively: angle, eccentricity, RF size, exponent, gain; stage2 – 
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stimulus premultiplied with different Gaussians and summed; x_range, y_range, rfsize_range – ranges 

of pRF parameters used for premultiplying stimulus; W, H – stimulus width/height; TOT_DUR – 

duration of the stimulus, polydeg – degree of polynomial used for detrending; nvoxels – number of 

voxels. 

 

Output: x_samples, y_samples, rfsize_samples, expt_samples, gain_samples, kappa_samples, 

gamma_samples, tau_samples, grubb_samples, rho_samples – Values of respectively pRF center’s x 

and y coordinates, RF size, exponent, gain and voxel hemodynamic parameters: kappa, gamma, tau, 

grubb, rho – sampled from the posterior distribution. 

 

Note: Variables prefixed with g_ indicate GPU-side counterparts of variables designated by part of the 

name following the prefix. Assignment to such variables entails a CPU-to-GPU buffer transfer and vice 

versa if their values are assigned to CPU variables. 

 

Initialization 

 

g_stage2 ← stage2 

pmatrix ← compute_pmatrix(polydeg, TOT_DUR) 

g_pmatrix ← pmatrix 

xs ← starting_ecc * cos(starting_ang) + W/2 

ys ← -starting_ecc * sin(starting_ang) + H/2 

(rfsizes, expts, gains) ← (starting_rfsizes, starting_expts, starting_gains) 

(kappas[:], gammas[:], taus[:]) ← (0.65, 0.41, 0.98) 

(grubbs[:], rhos[:]) ← (0.32, 0.34) 

noise_stdevs[:] ← ∞ 

(old_xs, old_ys, old_rfsizes) ← (xs, ys, rfsizes) 

(old_expts, old_gains) ← (expts, gains) 

(old_kappas, old_gammas, old_taus) ← (kappas, gammas, taus) 

(old_grubbs, old_rhos) ← (grubbs, rhos) 

old_logprobs[:] ← -∞ 

 

Data Preprocessing 

 

for t ∈ [0:ntasks:TOT_DUR) do 
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    n ← min(ntasks, nvoxels - i) 

    g_data ← data[i * TOT_DUR:(i + n) * TOT_DUR] 

    prepare_data(g_data, TOT_DUR, nvoxels) 

    data[i * TOT_DUR:(i + n) * TOT_DUR] ← g_data 

end for 

Sampling 

 

for i ∈ [0, NumberOfSteps) do 

 

    GPU Part    

 

    for k ∈ 0:ntasks:nvoxels do 

        n ← min(ntasks, nvoxels - i) 

        g_data ← data[k * TOT_DUR:(k+n)*TOT_DUR] 

        g_xs ← xs[k:(k+n)] 

        g_ys ← ys[k:(k+n)] 

        g_rfsizes ← rfsizes[k:(k+n)] 

        g_expts ← expts[k:(k+n)] 

        g_gains ← gains[k:(k+n)] 

        g_kappas ← kappas[k:(k+n)] 

        g_gammas ← gammas[k:(k+n)] 

        g_taus ← taus[k:(k+n)] 

        g_grubbs ← grubbs[k:(k+n)] 

        g_rhos ← rhos[k:(k+n)] 

        g_noise_stdevs ← noise_stdevs[k:(k+n)] 

        reset() 

        fwd_model() 

        eval_proposal() 

        Ys[k * TOT_DUR:(k+n)*TOT_DUR] ← g_Ys 

        logprobs[k:(k+n)] ← g_logprobs 

        noise_stdevs[k:(k+n)] ← g_noise_stdevs 

    end for 

 

    CPU Part 
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    logprobs ← logprobs + N(xs) + N(ys) + N(rfsizes) + 

        N(expts) + N(gains) + N(kappas) + N(gammas) + 

        N(taus) + N(grubbs) + N(rhos) 

    ratio ← min(1, exp(logprobs – old_logprobs)) 

    for k ∈ [0, nvoxels) do 

        rnd ← uniform_random(0, 1) 

        if rnd < ratio then 

            x_samples[k] ← x_samples[k] ∪ {xs[k]} 

            y_samples[k] ← y_samples[k] ∪ {ys[k]} 

            rfsize_samples[k] ← rfsize_samples[k] ∪ {rfsizes[k]} 

            expt_samples[k] ← expt_samples[k] ∪ {expts[k]} 

            gain_samples[k] ← gain_samples[k] ∪ {gains[k]} 

            kappa_samples[k] ← kappa_samples[k] ∪ {kappas[k]} 

            gamma_samples[k] ← gamma_samples[k] ∪ {gammas[k]} 

            tau_samples[k] ← tau_samples[k] ∪ {taus[k]} 

            grubb_samples[k] ← grubb_samples[k] ∪ {grubbs[k]} 

            rho_samples[k] ← rho_samples[k] ∪ {rhos[k]} 

        else 

            xs[k] ← old_xs[k] 

            ys[k] ← old_ys[k] 

            rfsizes[k] ← old_rfsizes[k] 

            expts[k] ← old_expts[k] 

            gains[k] ← old_gains[k] 

            kappas[k] ← old_kappas[k] 

            gammas[k] ← old_gammas[k] 

            taus[k] ← old_taus[k] 

            grubbs[k] ← old_grubbs[k] 

            rhos[k] ← old_rhos[k] 

        end if     

    end for 

 

    Prepare for next iteration 
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    (old_xs, old_ys, old_rfsizes) ← (xs, ys, rfsizes) 

    (old_expts, old_gains) ← (expts, gains) 

    (old_kappas, old_gammas, old_taus) ← (kappas, gammas, taus) 

    (old_grubbs, old_rhos) ← (grubbs, rhos) 

    old_logprobs ← logprobs 

 

    Make a step 

 

    (xs, ys, rfsizes, expts, gains) ← (xs, ys, rfsizes, expts, gains) + randn(…) 

    (kappas, gammas, taus, grubbs, rhos) ← 

        (kappas, gammas, taus, grubbs, rhos) + randn(…) 

end for 

 

The compute_pmatrix() routine (Algorithm 2) computes polynomial detrending matrix. To this end, a 

matrix of the form: 

: � ;1 1� … 1�2 2� … 2�… … … …= =� … =�

> [14] 

 

is created where n is the duration of the MRI stimuli/signal and p is the chosen polynomial degree. Then, 

the expression: 

? � ::� [15] 

 

is the polynomial detrending matrix where A+ signifies Moore-Penrose pseudoinverse of matrix A. 

Algorithm  2. compute_pmatrix() – Compute polynomial detrending matrix 

Input: polydeg – polynomial degree, TOT_DUR – stimulus duration 
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Output: pmatrix – polynomial detrending matrix 

 

Note: Assignment to polymat uses MATLAB syntax but the implementation is native C++ 

 

polymat ← bsxfun(@power, repmat([1, TOT_DUR + 1), {polydeg+1, 1}), [0, polydeg]’)’ 

polyinv ← pinv(polymat) 

pmatrix ← polymat * polyinv 

 

GPU Algorithms 
  

The key observation that allowed acceleration of the sampling procedure was that the 2D visual 

stimuli is uniform across all voxels and can be premultiplied and summed over a wide range of Gaussians 

to create a lookup structure (Figure 3) which can then be used to approximate results of such operation for 

any Gaussian we encounter during the random walk by taking eight closest precomputed signals and 

performing a trilinear interpolation. This function is performed by the interp_gaussian() GPU routine 

(Kernel 1). 

Kernel 1. interp_gaussian() - Interpolate premultiplied stimuli according to specified pRF parameters 

Input: x – specifies μx of the Gaussian, y – specifies μx of the Gaussian, rfsize – specifies σ of the 

Gaussian, gaussians – array of premultiplied stimuli for certain range of x, y and rfsize parameters, 

RFSIZE_RANGE={RFSIZE_MIN, RFSIZE_MAX, RFSIZE_STEP}, X_RANGE={X_MIN, X_MAX, 

X_STEP}, Y_RANGE={Y_MIN, Y_MAX, Y_STEP} – specification of ranges used for premultiplied 

signal generation, TOT_DUR – stimuli duration 

 

Output: interp – Interpolated signal 

 

x ← (x – X_MIN) / X_STEP 

y ← (y – Y_MIN) / Y_STEP 

rfsize ← (rfsize – RFSIZE_MIN) / RFSIZE_STEP 

x1 ← floor(x) 

x2 ← ceil(x) 
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y1 ← floor(x) 

y2 ← ceil(y) 

rfsize1 ← floor(rfsize) 

rfsize2 ← ceil(rfsize) 

x_frac ←fract(x) 

y_frac ←fract(y) 

rfsize_frac ← fract(rfsize) 

for t ∈ [0, TOT_DUR) do 

    interp[t] ← interp3(gaussians[{x1, x2} x {y1, y2} x {rfsize1, rfsize2}], x_frac, y_frac, rfsize_frac) 

end for 

 

The joint pRF / Balloon-Windkessel model is handled by the following three GPU procedures. The reset() 

call (Kernel 2) restores initial values of Balloon-Windkessel state variables. 

 

Kernel 2. reset() – Reset simulation data to baseline values 

Input: id – global kernel instance identifier 

 

Input/Output: signals – vector of signal values, flows  - vector of flows, volumes – vector of cerebral 

blood volume values, deoxys – vector of deoxyhemoglobin content values 

 

signals[id] ← 0 

flows[id] ← 1 

volumes[id] ← 1 

deoxys[id] ← 1 

The fwd_model() function (Kernel 3) initializes variables pertaining to the joint model and uses 

interp_gaussian() to obtain stimuli multipled with Gaussian with parameters for current random walk 

state. Such signal is used as the neural activity input for the Balloon-Windkessel model. Subsequently 

evaluation of the latter is performed over the time corresponding to one stimulus frame. The output of 

Balloon-Windkessel model is then subjected to remaining part of the compressive spatial summation 

model, namely exponentiation and multiplication by the gain factor to account for unknown MRI signal 

units. Results are detrended using polynomial detrending matrix (pmatrix). Finally, Balloon-Windkessel 
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model state is updated for current voxel and output copied from local array to global buffer accessible 

from CPU. 

  

Kernel 3. fwd_model() – Perform joint pRF / Balloon-Windkessel model simulation 

Input: id – global kernel instance identifier, stage2 – precomputed product of Gaussian by stimulus 

multiplication, used by interp_gaussian() call, pmatrix – polynomial detrending matrix, xs – array of 

horizontal positions of 2D Gaussian centers, ys – array of vertical positions of 2D Gaussian centers, 

rfsizes – array of standard deviations of 2D gaussians, exponents – array of exponent parameter values 

in pRF model, gains – array of gain values in pRF model, kappas – array of kappa parameter values in 

B-W model, gammas – array of gamma parameter values in B-W model, taus – array of tau parameter 

values in B-W model, grubbs – array of Grubb’s coefficient values in B-W model, rhos – array of rho 

parameter values in B-W model, signals – vector of signal values, flows  - vector of flows, volumes – 

vector of cerebral blood volume values, deoxys – vector of deoxyhemoglobin content values 

 

 

Input/Output: Ys – vector of signal values simulated by joint pRF / B-W model 

 

Helper variables initialization 

u_x ← xs[id] 

u_y ← ys[id] 

rfsize ← rfsizes[id] 

 

kappa ← kappas[id] 

gamma ← gammas[id] 

tau ← taus[id] 

grubb ← grubbs[id] 

rho ← rhos[id] 

 

exponent ← exponents[id] 

gain ← gains[id] 

 

s ← signals[id] 
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f ← flows[id] 

v ← volumes[id] 

q ← deoxys[id] 

 

k1 ← 7 * rho[id] 

k2 ← 2 

k3 ← 2 * rho[id] – 0.2 

V0 ← 0.02 

 

Approximation of 2D Gaussian PDF times stimuli product (1st step of pRF model) 

z ← interp_gaussian(u_x, u_y, rfsize, stage2) 

 

Balloon-Windkessel model 

 

Y ← array(NSTEPS) 

for n ∈ [0, NSTEPS) do 

    t ← n / SUBDIV 

    Y[n] ← V0 * (k1 * (1 - q) + k2 * (1 - q / v) + k3 * (1 - v)) 

    ds ← z[t] - kappa * s - gamma * (f - 1) 

    df ← s 

    dv ← (f - pow(v, (1 / grubb))) / tau 

    dq ← (f * (1 - pow((1 - rho), (1 / f))) / rho - pow(v, (1 / grubb)) * q / v) / tau 

    s ← s + ds * TSTEP 

    f ← f + df * TSTEP 

    v ← v + dv * TSTEP 

    q ← q + dq * TSTEP 

end for 

 

Second step of pRF model (exponent and gain) 

Y_1 ← array(TOT_DUR) 

for t ∈ [0, TOT_DUR) do 

     Y_1[t] ← copysign(pow(fabs(Y[t * SUBDIV]), exponent) * gain, Y[t * SUBDIV]) 

end for 
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Polynomial detrending (3rd step of pRF model) 

Y_2 ← pmatrix * Y_1 

for t ∈ [0, TOT_DUR) do 

     Y_1[t] ← Y_1[t] - Y_2[t] 

end for 

 

Update Balloon-Windkessel state 

signals[id] ← s 

flows[id] ← f  

volumes[id] ← v 

deoxys[id] ← q 

 

Output 

for t ∈ [0, TOT_DUR) do 

     Ys[id * TOT_DUR + t] ← Y_1[t] 

end for 

 

Kernel 4. mean_squared_error () – Compute mean squared error of the model 

Input: id – global kernel instance identifier, Ys – vector of signal values simulated by joint pRF / B-W 

model, data – vector of acquired experimental data 

 

Input/Output: mse – mean squared error of the model 

 

accum ← 0 

ofs ← id * TOT_DUR 

for t ∈ [0, TOT_DUR) do 

    accum ← accum + pow(data[ofs] - Ys[ofs], 2.0) 

    ofs ← ofs + 1 

end for 

mse[id] ← accum / TOT_DUR 
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Kernel 5. prepare_data () – Perform polynomial detrending on evidence data 

Input: id – global kernel instance identifier, pmatrix – polynomial detrending matrix 

 

Input/Output: data – vector of acquired experimental data 

 

ofs ← id * TOT_DUR 

poly_fit ← matmul(pmatrix, data) 

for t ∈ [0, TOT_DUR) do 

    data[ofs + t] ← data[ofs + t] – poly_fit[t] 

end for 

 

Kernel 6. eval_proposal () – Compute logprobability of simulated signal given evidence 

Input: id – global kernel instance identifier, Ys – vector of signal values simulated by joint pRF / B-W 

model, data – vector of acquired experimental data, noise_stdevs – estimated noise amplitude 

 

Output: logprobs – logprobability of simulated signal being equal to real MRI signal minus noise, 

given evidence (data) 

 

mean ← 0 

stdev ← 0 

ofs ← id * TOT_DUR 

for t ∈ [0, TOT_DUR) do 

    diff ← Ys[ofs + t] – data[ofs + t] 

    mean ← mean + diff 

    stdev ← stdev + diff2 

end for 

mean ← mean / TOT_DUR 

stdev ← sqrt(stdev / TOT_DUR – mean2) 

noise_stdevs[id] ← min(noise_stdevs[id], stdev) 

stdev ← noise_stdevs[id] 

logp ← 0 

for t ∈ [0, TOT_DUR) do 

    diff ← Ys[ofs + t] – data[ofs + t] 
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    logp ← logp + normal_logpdf(0, stdev, diff) 

end for 

logprobs[id] ← logp 

 

Stimulus 
 

Visual stimuli were created using extensions from the PsychToolbox (Brainard, 1997; Pelli, 1997) 

within the Matlab programming environment. An LCD projector was used to image the stimuli onto a 

back projection screen within the bore of the magnet. Subjects viewed the display through an angled 

mirror. The maximal stimulus radius was 9.15° of visual angle. Each stimulus image was at a resolution 

of 768 x 768 pixels. Binary stimuli masks were defined at time points which coincided with the slice-time 

corrected fMRI data and down sampled to a resolution of 100x100 pixels to improve efficiency of the 

MCMC sampling routines. For all experiments a small dot at the centre of the image served as a fixation 

point (4 pixel diameter) which changed color at randomized intervals between 1 and 5 seconds. Subjects 

were asked to fixate on the dot and indicate each time the dot changed color using an MRI compatible 

button box. The stimuli consisted of achromatic contrast patterns (spatially pink noise) overlaid with 

randomly positioned and scaled visual object stimuli from Kriegeskorte et al. (2008). The full stimuli 

patterns can be found at http://cvnlab.net/analyzePRF/. 

In the first set of experiments the stimulus consisted of a combination of rotating wedge, contracting 

ring and sweeping bar stimuli. The stimuli can be broken down into the following temporal structure: 

• Wedge stimuli covering a 90° angle swept 8 full counter-clockwise rotations. The wedge 

took 32 seconds to complete one full 360° rotation. 

• Bars with a width equal to 12% of the stimulus diameter were swept across 8 unique 

(cardinal and oblique) directions. Each bar sweep took 32-seconds to complete (28-second 

sweep followed by a 4-second rest). 
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• Contracting ring stimuli were swept across the visual field over the course of 32-seconds 

(28-second sweep followed by a 4-second rest). This was repeated 5 times. The widths of the 

rings were scaled linearly with eccentricity to compensate for cortical magnification in 

visual cortex (Cowey and Rolls, 1974; Rovamo and Virsu, 1979). 

• 16 second rest periods with mean luminance (zero contrast) images were placed at the start, 

between stimuli types and at the end of the stimulus (taking into account the additional 4 

second rest periods at the end of bar and ring sweeps). 

The stimulus took a total of 12 minutes 20 seconds to complete (16 + 8*32 + 16 + 4*32 + 12 + 4*32 + 12 

+ 5*32 + 12 s). 

In-Vivo Datasets 
 

All MRI data was acquired with a 3T Siemens Prisma MR system using a 64-channel head coil. 

One male subject with no history of eye disease (aged 28 ) underwent all of the fMRI acquisition 

protocols. Foam padding and audio headphones minimized head motion. The functional MRI data were 

acquired using a 2D-EPI sequence (TR/TE = 1518/30 ms, 23 slices, 3x3x2.5 mm 3 resolution, 20% 

distance factor, FOV = 192x192 mm 2 , 12% phase oversampling). The slices were oriented parallel to 

the calcarine sulcus, covering the majority of occipital cortex. A whole brain 2D-EPI sequence with 49 

slices and 5 volumes was acquired to aid with structural registration. All other parameters of the whole 

brain sequence were the same as in the fMRI acquisition. A T1-weighted anatomical image (TR/TE = 

2000/2.93 ms, 1x1x1 mm 3 resolution) was acquired and used to reconstruct the cortical surfaces. In order 

to estimate local field distortions we acquired a B0 field map (TR/TE = 1020/10 ms, 3x3x3 mm 3 

resolution). Functional scans for our dataset used the combined rotating wedge, contracting ring and 

sweeping bar stimuli and were acquired over 488 volumes. A total of 3 fMRI scans were performed in the 

session and later used to investigate scan-rescan reproducibility of the estimated pRF parameters. 
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Image Preprocessing 
 

The first 5 volumes of each fMRI run were discarded to allow magnetization to reach a steady 

state. Preprocessing of the fMRI data was performed within SPM12 using the following procedure. Slice-

time correction was applied to adjust for differences in slice acquisition times. The fMRI data was aligned 

to correct for movement artifacts and co-registered with the whole brain reference data. The fMRI and 

reference data were spatially unwarped (Andersson et al., 2001; Jezzard and Balaban, 1995) to improve 

coregistration between the EPI and structural data (Hutton et al., 2002). The reference data was then 

coregistered with the T1-weighted structural image and the same rigid-body transformation applied to the 

fMRI data. Binary stimuli masks were defined at time points which coincided with the slice-time 

corrected fMRI data and down sampled to a resolution of 100x100 pixels to improve efficiency of the 

nonlinear optimization routines. 

 

The T1-weighted anatomical images were processed with FreeSurfer (Dale et al., 1999) for white and 

grey matter segmentation and cortical surface reconstruction. FreeSurfer’s Desikan-Killiany atlas 

(Desikan et al., 2006) was used to select cortical regions within the occipital lobe and to reduce to the 

amount of cortex over which we fit the pRF models. The preprocessed fMRI data were sampled at 

distance corresponding to 20% of cortical thickness along normals of FreeSurfer’s fsaverage surface. All 

CSS-pRF model estimations were performed on the surface projected fMRI responses. Visual field 

delineation was performed manually using the polar angle maps projected onto inflated cortical surfaces 

(Wandell et al., 2007). 

 

Experiments 
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To fully evaluate the impact of introducing the lookup table heuristic we have performed an 

exhaustive range of tests on simulated data and concluded with a demonstration of the new algorithm as 

applied to a whole-ROI in-vivo dataset. 

We performed a test of the lookup table signal reconstruction accuracy compared to full pRF 

model evaluation. To this end we computed the root mean squared error (RMSE) of the sum of the 

product of the stimulus and the Gaussians with different positions and sizes. We generated 1000 

Gaussians with randomized parameters and computed two signals – i. by using the full pRF model 

evaluation (the reference signal) and ii. by using the lookup table. We compared the RMSE between the 

two relative to the reference signal amplitude. 

We performed a series of MCMC runs on the simulated data in order to reliably compare 

estimated means with the known ground truth. To this end, we generated 90 time series with pRF 

parameters spread uniformly across the available space and hemodynamic parameters picked randomly 

according to their empirical prior distributions. We added noise to the resulting signals using contrast-to-

noise ratio (CNR) typical for fMRI studies – 5:1. We used randomized starting points in the MCMC 

scheme and used a time limit of 3 hours of sampling. We didn’t apply any burn-in or thinning, instead we 

report mESS measures along with the parameter estimates. 

In order to add weight to our findings we have executed the above MCMC scheme for different 

combinations of hemodynamic (5-parameter Balloon and 3-parameter Balloon) and pRF models (CSS 

and classical Dumoulin-Wandell). Furthermore, we have performed the above using implementations 

with and without the usage of the lookup table. Therefore in total we have evaluated 8 variants of the 

above MCMC scheme – QPrf with LUT using CSS-pRF and 5-parameter Balloon model HRF (Q_CSS_5 

and Q_CSS_5_bis, two runs to assess convergence), QPrf with LUT using Dumoulin-Wandell pRF and 

5-parameter Balloon model HRF (Q_DW_5), QPrf with LUT using CSS-pRF and 3-parameter Balloon 

model HRF (Q_CSS_3), QPrf with LUT using Dumoulin-Wandell pRF and 3-parameter Balloon model 

HRF (Q_DW_3), QPrf without LUT using CSS-pRF and 5-parameter Balloon model HRF 
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(noLUT_CSS_5 and Q_CSS_5_bis, two runs to assess convergence), QPrf without LUT using Dumoulin-

Wandell pRF and 5-parameter Balloon model HRF (noLUT_DW_5), QPrf without LUT using CSS-pRF 

and 3-parameter Balloon model HRF (noLUT_CSS_3), QPrf without LUT using Dumoulin-Wandell pRF 

and 3-parameter Balloon model HRF (noLUT_DW_3). 

In order to put the LUT approach to test within another sampling framework we decided to use 

RStan (Carpenter et al., 2017). Due to excessive run time we performed a test on a single voxel of 

simulated data using RStan’s NUTS sampler without using the LUT and using the LUT. NUTS settings 

included 1000 leapfrog iterations of warmup and 2000 leapfrog iterations of sampling. We used the same 

Bayesian model and the same priors as in QPrf and compared the estimation results to one another and the 

ground truth. We report as well differences in run time. 

Finally, we applied accelerated QPrf model with CSS-pRF component and 5-parameter Balloon 

model to estimate all 50000 voxels in the visual ROI of the brain of one subject. We present parameter 

maps for pRF parameters and report our findings with respect to covariance between parameters. 

 

Results and Discussion 
 

Simulated Data Results 
 

Figure 4 illustrates the relative RMSE error between the signal obtained from the lookup table 

and the signal generated using full evaluation of the model for 1000 Gaussians with randomly picked 

parameters. Mean RMSE relative to amplitude was equal to 2%. There were 22 points (2%) exceeding 

relative error of 3% with the maximum error below 5%. 

 Across the parameter estimates for simulated data we observed differing degree of correlation 

between RF Size, Exponent and Gain. The max(p-value) (Friston et al., 1999) approach revealed 

significant correlation between gain and exponent. While this is not in line with the “ground truth” of the 
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generation method were both values were picked independently - it is not a surprising result. Both 

exponent and gain affect the scaling of the signal. In the original compressive pRF model which included 

bringing simulated signal to unit length they were intended to influence the “speed” of signal edges. In 

our simulation and MCMC method we rely on model of physical fMRI signal in which the influence of 

gain and exponent seems to be largely interchangeable. The role of RF-Size might be the following: as the 

standard deviation of correctly centered Gaussian increases, a growing portion of the probability mass is 

placed outside of the considered stimulus area (100x100 in scaled stimulus space). This results in the need 

to increase estimates of gain and/or exponent to maintain the observed signal amplitude. This highlights 

the intrinsic imperfections of the model. We found no other correlations in the estimates. 

 

Model Comparison Results 

We report the most strict (choice of batch size giving the smallest result) multivariate ESS (Vats 

et al., 2015) measures for all runs (Table 3). In a single plot (Figure 5) we present estimated mean 

comparisons between noLUT_CSS_5, noLUT_CSS_3, noLUT_DW_5, noLUT_DW_3, Q_CSS_5, 

Q_CSS_3, Q_DW_5 and Q_DW_3 and the ground truth. In (Figure 6) we show estimated means and 

ground truth for the exponent which is present only in noLUT_CSS_5, noLUT_CSS_3, Q_CSS_5 and 

Q_CSS_3 models. Furthermore we report log probability estimates for all methods (Table 4) and present 

a per-voxel plot (Figure 7).  

 

Table 3. Multivariate Effective Sample Size (mESS) measures for runs of different pRF/HRF models 

HRF Model pRF Model 
With Lookup Table Without Lookup Table 

Mean Stdev Mean Stdev 

3-param 

Balloon 
CSS 2703 556 2239 355 

3-param 

Balloon 
DW 2196 391 2570 418 

5-param CSS 1847 482 2756 354 
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Balloon 

5-param 

Balloon 
DW 2265 210 2942 216 

 

Table 4. Log probability comparison between different pRF/HRF models within QPrf  with and without 

the usage of the lookup table. 

HRF Model pRF Model 
With Lookup 

Table 

Without 

Lookup Table 

3-param Balloon CSS 665 360 

3-param Balloon DW 370 242 

5-param Balloon CSS 1122 1207 

5-param Balloon DW 1140 1152 

 

The mESS measures obtained (Table 3) were satisfactorily large. Convergence between two runs 

of Q_CSS_5 was almost perfect. PRF parameter estimates common to all models (Figure 5) were largely 

consistent across models. We observed bigger discrepancies in pRF size and gain estimates. Position 

estimates were identical up to a few pixels (in rescaled – 100x100 stimulus coordinate system). Exponent 

estimates were also largely consistent (Figure 6) with no evidence of systematic over-/underestimation in 

any particular model. Hemodynamic estimates were not deviating significantly from their prior means and 

no systematic bias was observed. Log probabilities (Table 4, Figure 7) were higher for 5-parameter 

Balloon model both with and without the lookup table which is unsurprising since this was the model 

used to generate the data. Log probability was of similar magnitude with and without the lookup table. 

fMRI Results 
 

We have estimated means, variances and confidence intervals for each parameter i. directly from 

parameter samples and ii. by fitting multivariate Gaussian distribution as the posterior density model p(Θ | 
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y) for whole-state samples. Fitted Gaussian means were within 1SD (computed directly from samples) of 

the sample-based mean for 90% of the voxels, supporting Gaussian character of the distributions. 

Furthermore we computed pairwise correlation coefficients using direct samples approach for 

each pair of model parameters. Patterns of correlation covering the whole [-1, 1] range have been 

observed with most points presenting close to zero correlation for all pairs of parameters. Spatial 

distribution of correlation coefficients didn’t exhibit any meaningful pattern suggesting that higher 

absolute values of correlation coefficient should be attributed to estimation uncertainty (within our model 

the shape of time series matching observed time series might be achieved by varying either pRF or 

hemodynamic parameters) rather than any systematic change of pRF / hemodynamic configuration 

depending on region. This stays in line with (Dumoulin and Wandell, 2008) who quote hemodynamic 

parameters as sources of additional uncertainty in pRF parameter estimation. 

In (Figure 8) we present a whole-ROI map of pRF parameters for a single subject. The spatial 

distribution of angle and eccentricity is in line with literature (Dumoulin and Wandell, 2008). PRF size 

exhibits significant local variations superposing the expected pattern of pRF size increase with increased 

eccentricity. Gain and exponent estimates appear largely homogenous with local variations without any 

systematic pattern. Hemodynamic parameter estimates were largely homogenous close to the prior means. 

 

 

Performance 
 

As opposed to (Adaszewski et al., 2016) where we obtained samples from the posterior 

distribution for a limited number of points (~1000), in the present study using a new sampling software 

implementation all ~50000 points in the fMRI dataset were sampled. The runtime of the MH scheme was 

48 hours when executed on an NVidia Quadro K2000 GPU (384 computation cores) card which allowed 

us to perform MH schemes for 384 observation points in parallel. It is a marked improvement over the 
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previously estimated time of ~16 days required to perform MH sampling on all 50000 voxels . The 

computational efficiency improvements can be fully attributed to the Gaussian premultiplication and 

interpolation approach. Usage of a lookup table (LUT) eliminates the overhead of computing the exact 

product of the 2D Gaussian and the visual stimulus mask. This overhead is significant and would 

dominate the total run time of the GPU code. The main advantage of a LUT is the reduction of 

dimensionality of data involved in computing the “pRF Gaussian”-related component of the generative 

model from 3 (stimulus/Gaussian in 2D+time) to 1 dimension (time). In the case of this study - due to 

usage of the LUT - computing the Gaussian-related component of the model involves just T=734 tri-

linear interpolations (where T = duration of the stimulus) for each voxel in each MCMC iteration. 

Without a LUT this computation would involve 734 evaluations of 2D Gaussian density and 

multiplications with corresponding stimulus value per each pixel of the stimulus mask. Therefore, with a 

stimulus size of 100x100 the estimated performance drop without the LUT would be on the order of 

10000. It is therefore evident that the LUT brings tremendous performance advantages and could 

considerably accelerate not only GPU- but also CPU-based samplers. The runtime of RStan’s NUTS 

sampling scheme for one voxel was 5 hours using the LUT method and 20 days using full Gaussian 

evaluation, while giving approximately the same results (Table 5). 

Table 5. Comparison of ground truth, RStan with LUT and RStan without LUT parameter values for one 

voxel. 

 X Y RFSize Expt Gain Kappa Gamma Tau Grubb Rho 
Ground 
Truth 

19.55 13.63 35.59 0.18 23.05 0.65 0.41 0.98 0.32 0.34 

With 
LUT 

19.79 13.77 23.53 0.45 21.7 0.65 0.41 1.02 0.32 0.34 

Without 
LUT 

19.25 13.77 21.01 0.38 20.08 0.66 0.41 1.01 0.32 0.34 
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Tradeoffs of Using a Lookup Table 

 

Regarding the tradeoffs associated with the usage of a LUT heuristic we recognize two types: i. 

impact on specific behaviors of the MCMC sampler; ii. impact on aggregated metrics such as model log-

evidence. General limitations of the method are the following: i. parameter space is bounded by the 

lookup table; ii. resolution of the lookup table influences accuracy of approximation of the pRF signal; iii. 

doubling the LUT resolution causes 8-fold increase in lookup table size (frequently seen 

computation/memory tradeoff – the burden of cubic increase in computational complexity is replaced by 

cubic increase of LUT size); iv. the assumption about local linearity of the pRF signal form as function of 

Gaussian parameters is problematic if we want to sample large parameter space because the LUT has to 

be coarse (due to memory limitations). We believe that the impact of these limitations on specific sampler 

functions has been observed within this study as abnormalities such as slightly inaccurate estimates of 

exponent, gain and RF size. Impact of change in both polar angle, radius and RF size parameters is 

smaller when RF size is big. However it has increasing impact when RF size is small (Figure 4). This is 

particularly visible when polar angle and radius of the pRF are not perfectly aligned with the ground truth, 

i.e. with big RF size the signal change is slighter than with small RF size where the peaks will be visibly 

shifted. Smaller RF size requires the polar angle and radius to match the ground truth much more 

accurately in order to have good log-evidence and accept a sample. We therefore hypothesize that due to 

inherent inaccuracy of LUT interpolation RF sizes are positively biased which entails (as compensation) 

positive bias for gain and exponent as well - since enlarging the Gaussian usually decreases signal 

amplitude – this is compensated by increased exponent and gain. A few potential solutions come to mind 

with regards to the above limitations: i. the sampler could be allowed to wander away from parameter 

bounds covered by the LUT and perform full pRF model computation as long as it stays outside of the 

LUT; presumably the sampler would spend most of the time within the most probable region (covered by 

the LUT) therefore this extension would not be significantly detrimental to the performance; ii. quality of 

interpolation could be improved by using a signal “warping” scheme rather than tri-linear approach; this 
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would imply determining how the signal is “warped” between neighboring cells of the LUT and applying 

such transformation proportionately to the position of desired parameter point between the LUT cells; to 

this end we could adapt existing schemes such as Dynamic Time Warping (DWT) (Gupta et al., 1996) or 

develop new approaches; one potential novelty we considered was usage of a “1.5D” diffeomorphic 

transform which could be computed from signal change as we follow sub-steps between two LUT cells. 

 

Tuning the MCMC Sampler 
 

As commonly observed in Monte-Carlo approaches - we believe that recalibration might be 

necessary depending on the scanning protocol, visual stimulus, as well as chosen hemodynamic (3-/5-

parameter Balloon or fixed HRF) and pRF (Dumoulin-Wandell or CSS) components of the model. In the 

present study we have relied on multivariate effective sample size (mESS) measure (Vats et al., 2015) in 

order to establish the thinning factor. For the fMRI data, knowing the ESS (ranging from 8 to 50) of a run 

without thinning we kept increasing the thinning factor as long as the ESS of any thinned series remained 

within +/- 1 sample. This resulted in the choice of 4 as the thinning factor. We have used the Heidelberg-

Welch measure (Heidelberger and Welch, 1983) in a mass-univariate scheme to assess stationarity of the 

posterior distribution. As burn-in we have arbitrarily chosen to discard half of the samples. We have since 

reflected upon our thinning approach and our method of choice in the future would be not to use thinning 

at all (Link et al. 2012; MacEachern et al., 1994; Geyer, 1992) and report ESS measures instead like we 

do for the simulated data. 

Ambiguities Between pRF and HRF Parameter Estimation 

 

Joint estimation of pRF-HRF parameters is susceptible to ambiguity due to interdependencies 

between the former and the latter. Bayesian model inversion (either by means of free energy optimization 

or MCMC sampling) allows to quantify the degree of uncertainty implicated in simultaneous estimation 
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of pRF and HRF parameters by means of the covariance matrix which is absent in point-estimate methods 

(such as analyzePRF - (Kay et al., 2013)). Given the stochastic nature of MCMC sampling a systematic 

bias in mean estimates shouldn’t be present unless stemming from or substantiated by further causes. We 

discuss examples of lookup-table related biases in the “Tradeoffs of Using a Lookup Table” subsection in 

the Discussion. On the other hand any covariance between pRF and HRF parameters should be reflected 

in the estimated covariance matrix. Bias in the mean value of gathered samples will be present if a 

predetermined HRF response is used as the hemodynamic model as opposed to one where HRF 

parameters are simultaneously sampled and response expressed as a mathematical function. Other sources 

of estimation uncertainty may include observation noise, subjects’ movement or signal changes not 

accounted for by used neuronal and hemodynamic models. (Zeidman et al., 2016) include a short 

discussion of estimation uncertainty and underline that it is important to take into account when making 

inferences. Using a specifically designed stimulus (e.g. alternating sweep directions - (Harvey and 

Dumoulin, 2011)) can help to disambiguate between pRF and HRF parameters by reducing the possibility 

of compensating wrong pRF position with parameters influencing HRF lag. Noteworthy the stimulus used 

in the present study uses such counterbalanced bar sweeps. The width of pRF remains the most 

troublesome parameter to disambiguate against HRF width. At this point we believe that this issue 

remains open and model inversion methods allowing to estimate full covariance matrix allow us to make 

the most informed inferences by taking into account the estimated covariance between pRF and HRF 

parameters. 

 

Future Development: Performance 
 

Current implementation of the MH scheme exhibited satisfactory robustness in testing scenarios. 

As expected with MCMC approaches, computational load necessary to perform a full sampling run 

remains the biggest limitation to gathering very large numbers of samples for multiple subjects. Thanks to 
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the advancements presented in this article however, the extension to large datasets becomes more of an 

inconvenience rather than an impossibility. 

To further shorten the execution time, a number of optimizations remain to be tested. Evaluation 

of hemodynamic state equations is currently performed using full numerical integration and the time step 

used is that of the scan repetition time (TR) divided by 20; simple improvement in this part of the code 

involves decreasing the subdivision factor as long as equations remain stable; reduction to 10 would offer 

2-fold speed improvement, whereas reduction to 5 would accelerate the process 4-fold. We haven’t 

thoroughly optimized this parameter and assumed 20 as an arbitrary value. 

A more elaborate improvement would be to re-parametrize state equations using Volterra kernels 

as suggested in (Friston et al., 2003). This approach would allow to eliminate costly integration 

altogether, however as before a balance between precision and number of Volterra coefficients would 

have to be carefully evaluated to maintain performance improvement without degrading simulation 

fidelity. 

As the two-step optimization method described by (Dumoulin and Wandell, 2008) with 

compressive spatial summation extension by (Kay et al., 2013) takes on average 24 hours using CPU 

implementation we were aiming to stay within the same order of magnitude and with the ensemble of 

aforementioned techniques we have achieved this goal. We haven’t compared the performance against 

pure Dumoulin-Wandell classical model. 

Furthermore, addressing the shortcomings of the sampler itself could make the algorithm orders 

of magnitude faster. A comprehensive overview of gradient-free and gradient-based MCMC samplers 

applied to Dynamic Causal Modelling (DCM) is presented in (Sengupta et al., 2016, 2015). The authors 

conclude that gradient-based Hamiltonian Monte-Carlo and Langevin Monte-Carlo both offer superior 

computational performance than Metropolis-Hastings algorithm. Among the gradient-free samplers, 

single chain adaptive MCMC is highlighted as possessing better efficiency and requiring no tuning. All of 
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the above schemes are good candidates for replacing our current Metropolis-Hastings approach which 

was chosen primarily due to its simplicity and in order to avoid unexpected interactions with the new 

heuristic. 

Finally, once the validity of chosen pRF model and its relationships with hemodynamic 

parameters is established using sampling methods, GPU implementation of Variational Bayes approaches 

such as (Zeidman et al., 2016) should offer much better estimation performance than an MCMC scheme. 

 

Future Development: Population Receptive Fields 
 

In the study under consideration, visual stimuli comprised wedges, rings and bar patterns similar 

to (Dumoulin and Wandell, 2008), however the algorithm permits the use of any sequence of images 

allowing for completely arbitrary stimuli. 

A circular pRF model without inhibitory surround was used, however with a Gaussian 

premultiplication lookup table approach an attempt could be made to model elliptical pRF with inhibitory 

surround. This would require to perform n-linear interpolation depending on the sophistication of target 

pRF model and would significantly increase the size of lookup table which might prove to be the limiting 

factor to this solution. Decomposing different “parts” (e.g. horizontal, vertical, surround, center, etc.) of 

the pRF Gaussian into separate lookup tables could prove to be sufficient remedy to this instance of the 

“curse of dimensionality”. 

 Sampling approaches offer a powerful tool to investigate the ensemble of pRF, hemodynamic as 

well as other parameters such as anatomical T1-weighted images, Diffusion-Weighted Images (DWI), 

Voxel Based Quantification (VBQ) results (Draganski et al., 2011), etc. as long as they’re coupled by a 

common signal generation model. Longitudinal changes as well as function-behavior relationships 

(Rigoux and Daunizeau, 2015) could also be investigated along the same lines. 
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Conclusion 
 

The method presented in this work combines a population receptive field (pRF) model with 

neuronal hemodynamic state equations and a Markov Chain Monte Carlo (MCMC) sampling approach in 

order to estimate full Bayesian posterior distributions of visual and hemodynamic parameters based on a 

sequence of visual stimuli. Thanks to the novel lookup table heuristic we were able to perform large 

sampling runs on whole-ROI data within a short allotted time. We showed that the proposed heuristic 

doesn’t introduce significant error to the signal generated in the forward model. We further showed that 

estimates obtained with and without using the lookup table are consistent. We inspected the log 

probability with and without the heuristic across many different models and demonstrated that they are 

consistent. Using in-vivo dataset we verified the correlation of pRF and hemodynamic parameters and 

concluded that no spatial pattern can be observed which suggests that using a canonical hemodynamic 

response function for the entire set of observation points as employed by other methods might be 

justified. 

We discussed a number of future directions for the development of our methodology including 

adaptive equation integration, application of Volterra kernels, elliptical Gaussian field with inhibitory 

surround using lookup table decomposition, integration of other modalities (anatomical, functional and 

behavioral) as well as longitudinal component and group studies. 

We also proposed that the pRF/hemodynamic sampling approach could be adapted to serve as 

validation method for Variational Bayes approaches. 

Finally, hoping that members of the neuroimaging and vision communities will find our approach 

useful we provide a stand-alone toolbox for MCMC sampling of pRF/hemodynamic parameter 
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distributions called QPrf. The software is provided along with its source code under the terms of GNU 

General Public License version 3 (GNU GPLv3) and is available in the following GitHub repository: 

https://github.com/sadaszewski/qprf.  
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Figures 

 

Figure 1. Dumoulin-Wandell pRF Model (1-column figure). Neuronal population receptive field is 

modelled as a two-dimensional Gaussian function (1st row) where (µx, µy) is the receptive field center and 

σ is the Gaussian standard deviation. Two-dimensional visual stimulus (2nd row, left) is multiplied 
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element-wise with the Gaussian (3rd row, left). Sum of all cells of the resulting matrix gives the pRF

response. Convolution of pRF response with canonical HRF response (2nd row, right) gives the final

output of the model (3rd row, right).  

 

Figure 2. Balloon-Windkessel model (1-column figure). Relative change in BOLD signal (5th row) can be

expressed as a nonlinear function of normalized venous volume (v), normalized total deoxyhemoglobin
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content (q) and oxygen extraction fraction (E0). Changes in volume and deoxyhemoglobin content are

described with coupled differential equations (4th row) driven by cerebral blood flow (f). Flow induction

is described by regional cerebral blood flow (rCBF) model (2nd and 3rd rows) triggered by neuronal

activity (1st row). 

 

Figure 3. Premultiplied signal illustration (1-column figure). 2D visual stimuli is the same for all voxels

so it can be premultiplied and summed over a wide range of Gaussians to create a lookup structure valid

across the entire dataset. For arbitrary values of µx, µy, σ eight surrounding cells from the lookup table are

picked and the resulting signal is approximated using trilinear interpolation. This scheme implicitly

bounds the pRF model parameter space as the Gaussian parameters cannot exceed the bounds of the

lookup structure.  
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Figure 4 (1-column). Root mean squared error (RMSE) of the sum of the product of the stimulus and the 

Gaussians with different positions and sizes relative to maximum signal amplitude. The figure illustrates 

the relative RMSE error between the signal obtained from the lookup table and the signal generated using 

full evaluation of the model for 1000 Gaussians with randomly picked parameters. Mean RMSE relative 

to amplitude was equal to 2%. There were 22 points (2%) exceeding relative error of 3% with the 

maximum error below 5%. 
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Figure 5 (2-column). Ground truth and parameter estimates using different models for simulated data. 

Black diamond – ground truth. Blue X – noLUT_CSS_5, red X – noLUT_CSS_3, green X – 

noLUT_DW_5, magenta X – noLUT_DW_3, blue circle – Q_CSS_5, red circle Q_CSS_3, green circle – 

Q_DW_5, magenta circle – Q_DW_3. 
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Figure 6 (1-column). Ground truth and exponent estimates using different models for simulated data. 

Black diamond – ground truth. Blue X – noLUT_CSS_5, red X – noLUT_CSS_3, blue circle – 

Q_CSS_5, red circle Q_CSS_3. 
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Figure 7 (1-column). Log probability comparison between models. Blue X – noLUT_CSS_5, red X – 

noLUT_CSS_3, green X – noLUT_DW_5, magenta X – noLUT_DW_3, blue circle – Q_CSS_5, red 

circle Q_CSS_3, green circle – Q_DW_5, magenta circle – Q_DW_3. 

 

 

Figure 8 (2-column). MCMC Parameter estimates (two-column figure). The CSS-pRF parameters Θ, r, σ, 

expt and gain estimated using MCMC are reported on the inflated left/right hemispheres of a single 

subject – Subject #1. Two leftmost columns show the parameter means whereas the two rightmost 

columns show the standard deviations of respective parameters. 
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