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Summary 

Humans tend to use elapsed time to increase the perceived probability that an impending event – 

e.g., the Go sign at a traffic light - will occur soon. This prompts faster reactions for longer waiting 

times (hazard rate effect). Which neural processes reflect instead the perceived probability of 

uncertain future events? We recorded behavioral and electroencephalographic (EEG) data while 

participants detected a target tone, rarely appearing at one of three successive positions of a 

repeating five-tone sequence with equal probability. Pre-stimulus oscillatory power in the low beta-

band range (Beta 1: 15-19 Hz) predicted the hazard rate of response times to the uncertain target, 

suggesting it encodes abstract estimates of a potential event onset. Informing participants about the 

target’s equiprobable distribution endogenously suppressed the hazard rate of response times. Beta 

1 power still predicted behavior, validating its role in contextually estimating temporal probabilities 

for uncertain future events. 
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Highlights 

• Elapsed time to an uncertain future target increases response speed (Hazard rate).  

• Pre-stimulus low beta-band (Beta 1: 15-19 Hz) power predicts the hazard rate to 

  uncertain targets. 

• Beta 1 power predicts response times even when elapsed time is factored out. 

 
eTOC Blurb 

Tavano et al. show that pre-stimulus low beta band (15-19 Hz) power predicts response times to an 

uncertain future target, even before its occurrence and under different prior knowledge conditions, 

suggesting it reflects contextual, subjective estimates of potential future events.  
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Introduction 

How do humans successfully anticipate when a target event will occur within a given time window? 

One way is to keep track of the elapsed time to a target that must appear within a specific interval 

and to use it to incrementally increase attention, thus gaining in accuracy and response speed 

(Bermudez and Schultz, 2014; Bertelson, 1967; Bolger et al., 2014; Correa et al., 2004, 2006; 

Correa and Nobre, 2008; Coull, 2009; Coull et al., 2011; Coull and Nobre, 2008; Cui et al., 2009; 

Griffin et al., 2001; Janssen and Shadlen, 2005; Jones et al., 2002; Luce, 1986; Meck, 1988; Nobre 

and Coull, 2010; Niemi and Näätänen, 1981; Vangkilde et al., 2012; Woodrow, 1914). The time-

dependent performance gain for such a deterministic target is underlain by an increase in perceived 

event probability, termed the hazard rate of events. The hazard rate is generated by normalizing the 

implicit estimates of target probability at any point within the time window (probability density) by 

the ever-diminishing probability that the target has not yet occurred (survival probability, Elithorn 

and Lawrence, 1955; Luce, 1986).  

Neural circuits are sensitive to the hazard rate of deterministic targets. The groundbreaking work of 

Janssen and Shadlen (2005) showed that neurons in the macaque Lateral Intraparietal Area (LIP) 

maintain a neocortical representation of the hazard rate. Firing rates in LIP neurons increase with 

elapsed time irrespective of whether a motor response is required (Maimon and Assad, 2006; Yang 

and Shadlen, 2007; for a similar result in monkey prefrontal cortex, see Genovesio et al., 2006). In 

humans, hazard rate effects on cortical activity have been found in regions homologous to the LIP 

area (Intraparietal Sulcus, IPS: Cotti et al., 2011; Coull et al., 2014; Davranche et al., 2011; Inferior 

Parietal Cortex, IPC, Bolger et al., 2014), but also in motor, sensory, and prefrontal regions 

(Supplementary Motor Area, SMA, and the right Superior Temporal Gyrus, STG, for auditory 

stimuli, Cui et al., 2009; premotor cortex, Hultin et al., 1996; the right Prefrontal Cortex, PFC, 

Coull, 2009), suggesting the existence of a distributed brain network for the hazard rate (Coull et 

al., 2011).  

However, real-life events are seldom deterministic. We asked which neural processes underlie the 
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anticipation of target events that may or may not occur within a given time window. The uncertainty 

about the onset of a target event should force participants to entertain abstract estimates of event 

probability. We collected human behavioral and electroencephalographic (EEG) data while 

participants reacted to low-pitch target tones (349 Hz) appearing only 20% of the times within a 

continuously repeating set of four standard tones (440 Hz) followed by higher-pitch deviant one 

(494 Hz), indicating the end of a sequence (Sussman et al., 2002; Sussman and Gumenyuk, 2005). 

A target could appear at either standard tone position two, three, or four with equal probability 

(Figure 1A and Experimental procedures). Elapsed time was represented by the isochronous 

unfolding of potential target positions within each repeating tone sequence. We expected 

participants to iteratively build up and update target probability estimates within each sequential 

cycle so that response times would reflect a hazard rate distribution (Figure 1B). We hypothesized 

that perceived temporal probability estimates would change the weights of post-stimulus sensory 

processing, modulating an early, sensory-specific prediction error reflected by a deviant N1 

response between 100 and 150 ms post-stimulus onset (Friston, 2005; Garrido et al., 2009a,b; 

Jaramillo and Zador, 2011; Tavano et al., 2014; Wacongne et al., 2012) as well as a late target-

related prediction error reflected by the N2b and P300 responses peaking at ~ 200 ms and ~ 300 ms 

(Ahveninen et al., 2002; Chennu et al., 2013; Miniussi et al., 2001; Nieuwenhuis and Yeung., 2005; 

Nieuwenhuis et al., 2011; Schröger and Wolff, 1998; Schröger et al., 2015; Sokolov et al., 2002; 

Sussman, 2007).  

However, if an internal representation of potential target probability determines response speed, we 

should observe rapid probability update processes taking place ahead of a target’s onset. Recent 

work suggests that pre-stimulus activity modulation in the beta band (13-30 Hz) tracks the temporal 

regularity of isochronous tone sequences (Fujioka et al., 2012, 2015; Merchant et al., 2015) and 

correlates behavioral accuracy in detecting temporally irregular stimulus delivery (Arnal and 

Giraud, 2012; Arnal et al., 2015; Patel and Iversen, 2014). In purely perceptual tasks, beta-band 

power decreases after tone onset and then sharply rebounds (event-related synchronization, ERS, 
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Pfurtscheller et al., 2003) when approaching an immediately following tone (Fujioka et al., 2012, 

2015). We hypothesized that the single-trial dynamics of beta-band oscillatory power may extend 

beyond a rhythm tracking function and address the fundamental question of how humans internally 

represent the accrual of probability estimates in time. Engel and Fries (2010) first framed a role for 

beta-band oscillations in endogenously encoding the intended or predicted maintenance of a current 

internal state, may it be cognitive or motor. Cortical feedback connections projecting top-down 

information tune into the beta band (Michalareas et al., 2016; Lee et al., 2013). Spitzer and Haegens 

(2017) recently expanded on the content-specific function of endogenous synchronization in the 

beta band by suggesting that beta oscillations create short-lived neural assemblies, which help to re-

activate task-relevant information. We specifically predicted that hazard rate effects would be 

encoded in the low beta-band range or Beta 1 rhythm (< 20 Hz), following converging evidence 

from three independent lines of work: 1) Simulation work on neural activity across cortical layers 

suggests a role for Beta 1 oscillations in distinguishing between novel and standard events (Kopell 

et al., 2011); 2) Motor output inhibition has been more frequently linked to high beta-band or Beta 2 

activity (> 20 Hz) (Brovelli et al., 2004); 3) Low beta-band (~15 Hz) activity of basal ganglia origin 

appears to encode the evaluation of an event’s task relevance (target vs. non-target) regardless of 

motor output (Leventhal et al., 2012). 

The experiment was organized into two sessions. In a first session, participants were uninformed 

about the target’s distribution: neural (sensory prediction error and Beta 1 oscillations) and 

behavioral measures should display a hazard rate distribution. In a second session, we probed 

whether providing prior information on the target’s uniform distribution would suppress the hazard 

rate and its neural correlates. 

 

Insert Figure 1AB here 

 

Results 
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Behavioral and EEG data were recorded as participants (N = 26) completed the experiment, 

organized as a 2 X 2 design with factors Prior Information and Stimulus Onset Asynchrony (SOA). 

The factor Prior Information tested the effect of providing participants with explicit information 

about the distribution of target deviant tones. The factor SOA tested whether the presentation rate 

matters in extracting stimulus statistics (Tavano et al., 2014; Wacongne et al., 2012). In a first 

session (uninformed), participants were asked to detect the low pitch tone (target) with tones 

delivered first at a slow rate (constant SOA = 750 ms) and then at a fast rate (constant SOA = 250 

ms). In a second session (informed), participants were explicitly informed about the repeating 

sequence structure and target probability density with each sequence and asked to use this 

information to detect targets at slow and fast stimulus rates. In sum, each participant received four 

orderly conditions: 1) slow uninformed; 2) fast uninformed; 3) slow informed; 4) fast informed. 

 

Behavioral results  

Accuracy in target detection was high and did not differ among conditions (all Fs(1,25) ≤ 2.82, all ps 

≥ 0.12; Figure 2A). We indexed the hazard rate distribution by fitting robust, nonparametric Theil-

Sen estimators (Theil, 1950; Sen, 1968) to single-trial response times using successive potential 

target positions that is, elapsed time as a predictor. This resulted in one intercept and one regression 

coefficient (slope) per participant and condition. Intercept estimates reflect condition-wise changes 

in response speed magnitude unrelated to elapsed time. The analysis of intercepts showed that 

participants were quicker at responding to targets appearing within faster rather than slower 

sequences (F(1,25) = 40.25, p < 0.001; Figure 2B) but there was no effect of prior information and no 

interaction (all Fs(1,25) ≤ 1.12, all ps ≥ 0.30). The average response speed for fast sequences was 348 

ms (Standard Error, SE = 22), and 411 ms for slow sequences (SE = 36).  

Theil-Sen slopes convey changes in speed using a signed single value (negative = hazard rate, as 

response latencies decrease with elapsed time). The distribution of Theil-Sen slopes was normal in 

all conditions (all Shapiro-Wilks Statistics ≥ 0.84, all ps > 0.21). We found a significant Prior 

information × SOA interaction (F(1,25) = 4.73, p < 0.05), driven by a significant effect of prior 
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information in fast sequences (t(1,25) = -3.33, p < 0.01). A robust hazard rate effect was present in the 

fast uninformed condition (t(1,25) = 0.05, p = 0.95); however, the hazard rate was cancelled in the fast 

informed condition (t(1,25) = 0.05, p = 0.95). There was no difference in the intercepts for fast 

sequences.  A robust hazard rate was also found in both slow conditions regardless of information 

status (all ts(1,25) ≤ -6.06, all ps < 0.001). Overall, the hazard rate effect resulted in a speed gain of 

10-15 ms per potential target position (Figure 2C and Supplemental information, Figure S1A).  

To verify whether prior information in fast sequences reflected individually consistent cognitive 

changes rather than the cancelling out of random behavioral patterns at the group level, we 

subtracted informed from uninformed slope estimates at either SOA level and tested the observed 

data against the null hypothesis that prior information is equally likely to suppress or enhance the 

hazard rate. A binomial test indicated that in slow sequences under prior information the proportion 

of suppression of .46 was similar to the expected .50 (p = 0.84, 2-sided). In fast sequences, 

however, prior information suppressed the hazard rate in 20 out 26 participants, that is, in 77% of 

our sample (p < 0.01, Figure 2C for individual goodness of fit models; Supplemental information, 

Figure S1B). 

 

Insert Figure 2ABC here 

 

EEG results 

Hazard rate of sensory processing 

Participants’ attentive searchlight was effectively deployed on individual five-tone sequences as the 

prediction error generated by the fifth, non-target tone reliably indexed sequence boundaries in all 

conditions (all ps < 0.05, Supplemental Information, Figure S2A).  

We then analyzed the components of event-related potentials reflecting prediction error. A single-

trial Theil-Sen regression was run for each time sample at electrode level (epoch duration: 750 ms, 

including prestimulus time from -250 to 0) and repeated for each participant and condition. Two 
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components arose: event-related regressions coefficients (ERRCs), encoding the effects of elapsed 

time on event-related potentials and event-related intercepts (ERIs), encoding brain activity 

unrelated to the passing of time (Hauk et al., 2006). 

We ran a hypothesis-free, cluster permutation analysis (Maris and Oostenveld, 2007) to determine 

significant activity condition-wise (relative to noise floor) and then analyzed the effect of prior 

information by contrasting informed and uninformed ERRC epochs within each SOA level. ERIs 

showed significant characteristic peaks of activity labelled as CNV (Contingent Negative Variation; 

Hultin et al., 1996), N1, N2b, and P3 in all conditions (all ps < 0.001). Stimulus rate did not 

substantially affect background target-related neural activity. Prior information modulated only the 

late, attentive components of prediction error (N2b and P3, Supplemental Information, Figure S2B; 

Chennu et al., 2013).  

As for ERRCs in fast sequences, we found a significant increase in brain activity in the N1 and P3 

ranges, with a characteristic topography (Näätänen and Picton, 1987; Nieuwenhuis et al., 2011) in 

the uninformed condition (p < 0.001; Figure 3A, upper panel), while only a significant late 

negativity cluster was found in the informed condition (> 410 ms post onset, p = 0.05). When 

testing the effects of prior information, two significant clusters emerged again at N1 and P3 

latencies (Figure 3A, lower panel). A negative cluster (larger N1 in the uninformed condition) began 

very early after target tone onset (cluster latency 58-156 ms, p = 0.018). A positive cluster (larger 

P3 in the uninformed condition) was found at 257-322 ms latencies (p = 0.016). Notably, deviant 

N1 amplitudes significantly predicted response time slopes regardless of information status 

(uninformed, rho = 0.51, p < 0.01; informed, rho = 0.61, p = 0.001, Steiger’s Z = -0.52, p > 0.60, 

Figure 3B, upper panel), while P3 amplitudes predicted behavior only in the informed condition 

(uninformed, rho = 0.01, p = 0.99; informed, rho = 0.43, p < 0.05, Figure 3B, lower panel). This 

suggests that although prior information suppressed the amplitude of both early and late prediction 

errors, it did not reduce but, rather, enhanced the precision of perceptual encoding relevant for 

behavior, suggesting it brought about consistent suppression effects at an individual level. Indeed, 
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we verified this conclusion by calculating the correlation between N1 and at P3 activity at each 

scalp electrode for either information condition. A resampling analysis showed that only in the 

informed condition did deviant N1 activity significantly predict P3 activity, both being suppressed 

(p < 0.001; Supplemental Information, Figure S2C). The suppression effects were different at early 

sensory and late attentive stages. A topographical analysis (TANOVA; Murray et al., 2008) showed 

that prior information at P3 latency attenuated activity in the same generators or generators with a 

similar configuration, while it changed the generator configuration in the N1 range, between 55 and 

100 ms post-onset (Supplemental Information, Figure S2D). We conclude that in fast sequences, the 

effects of elapsed time are such that enhancing neural afferent activity (N1 wave, Budd et al., 1998) 

increases response speed, and, correlatively, suppressing it cancels any speed gain.  

ERRCs in slow sequences showed significant brain activity in the P3 range regardless of 

information status (all ps < 0.001; see Figure 3C). The N1 deflection was significant only in the 

uninformed condition (p < 0.01, informed: p = 0.28). Interestingly, in either information condition 

N1 amplitudes better predicted response times (uninformed, rho = 0.57, p < 0.01; informed, rho = 

0.52, p < 0.01) than P3 amplitudes (uninformed/informed, rho < 0.2, p > 0.10). This confirms the 

link between early sensory processing and response times at an individual level regardless of prior 

information. We found no significant effect of prior information in slow sequences. A fast 

stimulation may be better suited at automatically extracting and maintaining the statistical 

regularities of stimulus sequences on which prior information operates (Bendixen et al., 2008).  

 

Insert Figure 3ABC here 

 

Hazard rate of pre-stimulus oscillations 

The time domain analysis allowed detecting only post-stimulus effects. However, our main 

hypothesis was that brain activity should reflect endogenous probability estimates based on 

potential target onsets and thus predict the response time to a target before its eventual onset. In 
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particular, for participants who were uninformed about target statistics we expected pre-stimulus 

single-trial power in the Beta 1 range (< 20 Hz) to increase with elapsed time, encoding the task 

relevance of a potential target onset. To test this we imaged the rapid update of perceived target 

probability by measuring the power spectrum of each trial epoch, from 5 to 28 Hz. The Theil-Sen 

estimator was applied to each time-frequency bin, obtaining a distribution of signed time-frequency 

regression coefficients (TFRCs), measured as µV2 unit change per potential target position with 

negative/positive sign equaling time-dependent decrease/increase. Unlike ERRCs, which are akin to 

event-related potentials, TFRCs lack clear morphological markers of neural activity. Therefore, to 

map out which part of the time-frequency spectrum was predictive of behavior, we ran a rank 

correlation analysis between each TFRC bin and the corresponding slope of response times. Such 

an analysis allows isolating the components of spectral power change that are task relevant. Notice 

that, although our hypothesis concentrated on the pre-stimulus period, the correlation analysis was 

run on the entire epoch, to provide a fair chance of detecting post-stimulus modulations in 

alignment with time domain results (Supplemental Information, Figure S3A).  

Our main hypothesis was confirmed in fast sequences. In the uninformed condition, Beta 1 power 

(15-19 Hz) averaged across all scalp electrodes inversely correlated with response behavior ~ 150-

125 ms before a potential target onset (p < 0.05, Figure 4A, left panel; Figure S3A). Notice that 

participants could not foresee whether a target would appear or not at any potential position within 

the current sequence. This suggests that an increase in Beta 1 oscillations encodes a portion of the 

variance in the neural signal representing the update of time-dependent probability estimates for 

potential future events, which, in turn, drives the time-dependent reduction in response times when 

eventually the target does appear. The increase in Beta 1 was significant at left centroparietal 

electrodes (p < 0.05, Figure 4A, right panel). Importantly, it also predicted post-stimulus ERRC N1 

amplitudes (p = 0.01), suggesting that pre-stimulus Beta 1 power determined the distribution of 

response times by changing the weights of early, post-stimulus auditory processing.  

Importantly, when participants were provided with prior information, the correlation with behavior 
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was invariant in terms of strength, latency, direction, and frequency specificity (p < 0.05, average 

across all scalp electrodes, Figure 4A, left panel; Figure S3A). Similarly, Beta 1 power for informed 

participants maintained a significant correlation with post-stimulus N1 amplitudes (p < 0.05), 

confirming the inference of a causal link between pre-stimulus Beta 1 power and early auditory 

processing. However, prior information silenced time-dependent probability update processes in the 

Beta 1 band at central electrodes and determined a significant decrease in spectral power at parietal 

electrodes (p < 0.05, Figure 4A, right panel). The resulting “inverse hazard rate” at parietal 

generators may reflect how the brain progressively silences the hazard rate at more sensory-specific 

central electrodes. There was no significant correlation with behavior for either Alpha (8-12 Hz, all 

ps > 0.2) or Beta 2 (21-25 Hz, all ps > 0.08, Figure S3B) bands. 

 

Insert Figure 4ABC here 

 

We again resorted to a cluster permutation approach to verify the effect of prior information on 

single-trial power estimates, this time jointly analyzing Beta 1 and Beta 2 (14-28 Hz) and separately 

the alpha band (8-12 Hz). There was no effect in the alpha band (all ps > 0.32). In the beta band, a 

significant cluster with a center of gravity at parietal electrodes in the low frequency range (cluster 

latency ~ -200 to -50 ms, p < 0.05, cluster frequency 15-19 Hz, Figure 4C) emerged, confirming the 

suggestion that prior information may rely on a parietal network to exerts its silencing effects on 

elapsed time computation at central electrodes. Slow sequences presented with predominantly post-

stimulus effects (Figures S3C and S3D). 

 

Discussion  

 

The hazard rate reflects how the brain uses elapsed time to dynamically update the expectations for 

a future deterministic target to occur (Janssen and Shadlen, 2005; Leon and Shadlen, 2003). In 
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principle, participants could simply estimate the probability density function of a target onset over 

trials, and use this information to respond (Luft et al., 2015). However, “that is not the natural way 

one thinks about it as the [waiting] process unfolds in time. Rather, if the event has not yet occurred, 

one senses there is some tendency for it to occur the next instant in time” (Luce, 1986, p. 13). We 

tested whether such a “feeling” or mounting temporal expectations (Coull, 2009; Luce, 1986; Nobre 

et al., 2007) would hold also for a target event that may or may not onset within a fixed time 

window. We found clear behavioral evidence that this is the case: A robust hazard rate was found 

for stimuli delivered at both slow (1.33 Hz) and fast (4 Hz) rates. Participants naïve to the target 

distribution became progressively faster at responding to the eventual onset of a target across 

potential target positions. However, when they were informed about the equiprobable target 

distribution, the hazard rate was largely suppressed in fast sequences as prior information factored 

out elapsed time from probability estimation processes. This did not happen in slow sequences, 

possibly because a fast stimulus rate allowed participants to more easily represent five-tone 

sequences in working memory (Schulze and Tillmann, 2013). Notice that the attenuation of the 

hazard rate in fast sequences was not due to increased variance at the group level but rather to 

suppressive processes acting at the individual level (~ 77% of our sample).  

When we highlighted the component of the neural activity time-courses sensitive to within-

sequence elapsed time (Event-Related Regression Coefficients, ERRCs), we found an increase in 

early post-stimulus sensory activity in the N1 range in the uninformed condition. This increase in 

brain activity explains a significant proportion of individual level variance in response speed, 

suggesting that modulations of N1 coefficients encode time-dependent information (Bertelson, 

1967). This correlative finding was verified when prior information suppressed the N1 deflection in 

fast sequences, while remarkably maintaining a consistent predictive relationship to response 

behavior. We conclude that the subjective nature of probability encoding changes the weights of 

early sensory processing.  

A second, most relevant piece of evidence comes from the analysis of power spectrum in the pre-
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stimulus period. Low beta-band oscillatory power (Beta 1 = 15-19 Hz), ~150-125 ms before the 

potential onset of the target event, consistently predicted response speed and sensory regression 

coefficients in both uninformed and informed fast sequence conditions. For uninformed 

participants, with elapsed time factored in, Beta 1 increased at central electrodes. When elapsed 

time was factored out by prior information, Beta 1 did not change at central electrodes and was 

significant suppressed (“inverse hazard rate”) at parietal electrodes. The latter result could reflect 

how a distributed neural system dynamically estimating event probability silences the sensory 

effects of elapsed time that are behaviorally relevant. An increase in Beta 1 coefficients is in line 

with the original proposal of Engel and Fries (2010) as well as the findings of Arnal et al. (2015) 

and Fujioka et al. (2012, 2015), expanding on this work by demonstrating that power modulation in 

the beta band is not simply relevant for temporal tracking or active sensing of event onset, but 

reflects internal estimates of event probability in time, which change depending on contextual 

information. In line with this, these results also contribute to the proposal put forward by Spitzer 

and Haegens (2017) who suggest a primary role of Beta 1 rhythm in the endogenous re-activation 

of task-relevant information (see also Bressler and Richter, 2015; Donner et al., 2009; Haegens et 

al., 2011; Lee et al., 2013, Michelareas et al., 2016; Stanley et al., 2016). A potentially fruitful 

endeavor for future research would be to bridge human and animal research by testing the 

relationship between cortical Beta 1 power and the encoding of the hazard rate at the neuronal level 

(Janssen and Shadlen, 2005; Leon and Shadlen, 2003; Yang and Shadlen, 2007). 

Interestingly, the neural mechanisms underlying the hazard rate constitute a peculiar case of 

perceptual bias. Participants gain a substantial behavioral advantage from constructing subjective 

temporal expectations rather than relying on the evidence from objective probability density 

estimates. Indeed, providing truthful prior information on the target’s uniform probability density 

cancelled any behavioral advantage in fast sequences. Therefore, the hazard rate of events 

represents an interesting conceptual challenge for approaches to perception that construe the fit 

between brain and behavior as solely based on precise internal models of actual event statistics 
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(Alink et al., 2010; Friston, 2005; Spratling, 2016). 

Contrary to previous work with deterministic targets (Rohenkohl and Nobre, 2011; Wilsch et al., 

2014), we did not find significant regression coefficient effects in the alpha band. This may be due 

to the sequential cycling of attention, which may have entrained the alpha band to regular slower 

rhythms or to the fact that we used a probabilistic target. It is also possible that the use of target 

deviant sounds may have accentuated low beta relative to alpha activity (see Chang et al., 2016 for 

beta activity following unpredictable deviants). 

It has been postulated that changes in neural rhythms may underlie different cognitive operations 

(Kopell et al., 2010). Notably, simulations studies of cortical rhythm formation postulate that the 

Beta 1 rhythm reflects memory of stimulation history, such that its modulation can distinguish 

between standard and deviant events (Kopell et al., 2011). The importance of cortical Beta 1 in 

defining the task-relevance of sensory stimuli might rely on contributions from basal ganglia 

generator circuits (Leventhal et al., 2012). Interestingly, recent clinical work purports that beta 

desynchronization in Parkinson’s disease (PD), predominantly of basal ganglia origin, specifically 

impairs pre-stimulus beta-band activity in rhythmic auditory perception, suggesting a causal 

relationship with timing deficits that are typically present in PD (Gulberti et al., 2015). This could 

also provide a test case to better analyze the functional specificity of synchronization and 

desynchronization in the low vs. high beta band, contrasting movement initiation and task relevance 

(Joundi, et al., 2013; Pfurtscheller et al., 2003: Pogosyan et al., 2009; Swann et al., 2009).  

 

Conclusions 

Pre-stimulus low beta, or Beta 1 rhythm, reflects how participants think ahead of time the likelihood 

of a future uncertain target. The contextual modulation of Beta 1 via the absence/presence of prior 

information does not impair its predictive value relative to response times, suggesting it flexibly 

encodes internal probability estimates. 
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Figure Titles 

Figure 1. Experimental Design 

Figure 2. Behavioral results 

Figure 3. Sensory processing of uncertain events in time 

Figure 4. Pre-stimulus Beta 1 determines behavior to uncertain future events 

 

Figure Legends 

Figure 1. A: Frequently repeating five-tone sequences (left panel, four A4 tones followed by a B4 

tone) were rarely (20%) interspersed with sequences containing a target deviant tone (F4) at either of 

three equally probable positions (position 2, 3, and 4, right panel). B: Left, the discrete probability 

density (all potential target onset positions have the same probability within each condition) 

representing the actual target probabilities. Right, the resulting hazard rate model. The first standard 

tone and the last non-target deviant tone never host a target. 

 

Figure 2. Behavioral results. A: Target detection sensitivity measures (collapsed across potential 

target position). Error bars represent the Standard Error of the Mean (SEM). B: Means ± SEM of 

estimated response time intercepts across potential target positions, showing no statistically 

significant difference among conditions. C:  Boxplot with median (middle of each box), 

interquartile range and whiskers (1.5 time the interquartile range) of estimated response time slopes 

suggesting the presence of the hazard rate driving response speed in slow stimulus trains, regardless 

of prior knowledge (participants being uninformed or informed about actual target probabilities), 

and in fast stimulus trains with no prior knowledge (participants being uninformed). Prior 

knowledge in fast stimulus trains effectively cancels time-dependent (position-wise) changes in 

response time, that is, the hazard rate.  

 

Figure 3. A. The hazard rate of sensory processing was imaged using Event-related Regression 

Coefficients (ERRCs) in fast sequences. In the uninformed condition, significant deflections in 
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ERRC activity were found at N1 and P3 latencies. There was no significant activity in the informed 

condition for the first ~400 ms after target onset. ERRC cluster statistic values averaged across the 

electrode space show a significant effect of Prior information at N1 and P3 latencies, with a central 

distribution for the negative cluster and a left-sided centroparietal distribution for the positive 

cluster, consistent with the N1 and P3 interpretations. B. ERRCs at N1 latency in fast sequences 

significantly predict behavior regardless of prior information; this link is preserved for later, 

attentive processing (P3) in the informed condition. C. ERRCs in slow sequences show no 

statistically significant effect of Prior information: however, significant ERRC activity at N1 in the 

uninformed condition, and at P3 latencies in either information condition, highlights a hazard rate 

effect of sensory/attentive processing. 

 

Figure 4. A. Left panel, prestimulus Beta 1 (14-19 Hz) oscillatory power (median across all scalp 

electrodes) significantly predicts response speed to eventual target onset in fast sequences, similarly 

for uninformed and informed conditions. Right panel, topography of Time-Frequency Regression 

Coefficients (TFRCs, measured in µV2 per potential target position, median across Beta 1 

frequencies) at the behaviorally significant prestimulus interval. In the uninformed condition, the 

hazard rate is reflected at central electrodes; in the informed condition, prior information about 

actual target onset cancels the hazard rate at central electrodes and leads to significant decrease with 

elapsed time at parietal electrodes.  B. Grand median time-frequency representation of oscillatory 

power regression coefficient distribution at both Beta 1 and Beta 2 in uninformed (right panel) and 

informed (left panel) fast sequences. White squares indicate the time-frequency bins averaged to 

obtain the B1/behavior fit in 4A. C. Left panel, cluster-based significance distribution of Prior 

information across beta-band frequencies at Pz electrode. The center of gravity lies in the Beta 1 

frequency range, between 150 and 50 ms before the eventual onset of the uncertain target: These 

bins are fully included in the independently identified behaviorally significant prestimulus interval. 

Right panel, topography of the effect of prior information. 
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STAR methods 

Participants 

The experiment was conducted at the Max Planck Institute for Human and Cognitive Brain 

Sciences, Leipzig (Germany). Thirty healthy young adult individuals (15 female; age range = 19-31, 

mean = 25, SD = 3.5) were recruited from the institute’s database of participants. All individuals 

had university-level education and were paid for their participation. Four participants were excluded 

from further analysis: two for below-average behavioral performance (less than 50% target 

detection), one for misinterpreting task instructions, one for excessive target rejection rate after 

Independent Component Analysis (pass cutoff: 80%, i.e. at least 16 target trials per position and 

condition). The final pool of 26 participants (13 females) reported no neurological or psychiatric 

disorders or therapies involving the central nervous system. Individually measured, bilateral 

audiometric thresholds of at least 30 dB Hearing Level at 0.25 - 8 KHz octave frequencies (ANSI, 

1996).  All participants signed a written informed consent complying with the Declaration of 

Helsinki on human experimentation, and approved by the Ethics Committee of the University of 

Leipzig. 

 

Stimuli 

Stimuli were three 50-ms pure tones (5 ms rise/fall), binaurally presented via loudspeakers at ~80 

dB SPL and generated using Matlab (version 7, Mathworks, Natick, MA). A 440 Hz tone (A4 on the 

equal tempered scale), termed standard, was presented 900 times per condition (75% global 

probability). A 494 Hz tone (B4, two semitones higher than the standard), termed non-target 

deviant, was presented 240 times per condition (20% global probability). A 349 Hz tone (F4, four 

semitones lower than the standard), termed target deviant, was presented 60 times per condition 

(5% global probability). Stimuli were delivered using Presentation© software (version 12.0, 

www.neurobs.com) running on a Windows PC.  
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Experimental Design 

Participants sat in an electrically shielded, sound-attenuated chamber, and fixated a white cross on 

black computer screen at a distance of ~1 meter while listening to the auditory stimuli. They 

responded to target tone onset by pressing a button on an external response box. Figure 1 illustrates 

the experimental design. Standard (440 Hz, A4) and non-target deviant tones (496 Hz, B4, two-

semitone difference relative to standard) were organized as continuously repeating sequences of 

four standards followed by a non-target deviant in fifth position, without interruptions. Target 

deviant tones (349 Hz, F4, four-semitone difference relative to standard) appeared rarely (20% of 

sequences) and unpredictably at either standard position two, three or four, with a uniform 

distribution (20 targets per position). The distribution of target-containing sequences was 

individually randomized for each condition and participant, with two constraints: 1) a maximum of 

one target per sequence, 2) a minimum of two sequences without targets between two target-

containing sequences.  

Targets were equiprobably distributed across standard position two, three and four, yielding a 

discrete uniform distribution function: f(t) = 1/3, for each of standard positions two, three, and four. 

Denoting the survival probability (“the event has not yet occurred”) as 1 – F(t), where F(t) is the 

cumulative distribution function, the hazard function is then: h(t) = f(t)/(1-F(t)). See Figure B.  

The experiment was organized into two parts, with a fixed order. In the first part, participants were 

instructed to respond to the onset of target tones as accurately and fast as possible by pressing a 

button on a response box. They trained in a short block of 60 experimental randomly distributed 

tone sequences containing three targets. If errors were made (Missing, False Alarm), the training 

block was repeated until no errors were detected. Experimental tone sequences were first delivered 

with a constant 750-ms stimulus onset asynchrony (SOA), corresponding to 1.6 Hz stimulus rate 

(three 5-min blocks; first condition), and then – after a short break – with a constant 250-ms SOA, 

corresponding to 4 Hz stimulus rate (one 5-min block; second condition). The first two conditions 
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were tagged as slow uninformed and fast uninformed, respectively.  

In the second part, after a 15-min break, participants were informed, both verbally and using visual 

aids, about the structure of the repeating tone sequence and target probability distribution statistics 

within a sequence. The instruction therefore changed: they were asked to respond to target deviant 

tones whose onset would break the sequence at either standard position two, three, or four, with 

equal probability. They again trained with a short block of 60 tones and 3 targets. If errors were 

made (Missing, False Alarm), the training block was repeated until no errors were detected. The 

experimental tone trains were again first delivered with a 750-ms constant SOA (three 5-min 

blocks; third condition), and then – after a short break – with a 250-ms constant SOA (one 5-min 

block; fourth condition). These conditions were tagged slow informed and fast informed, 

respectively. All participants completed the experiment in about one hour.  

 

Behavioral Data Analysis 

Hits were all button presses whose response time ranged between 150 and 1250 ms from the onset 

of a target deviant tone. Button presses recorded after 1250 ms were considered as false alarms 

(FA). Accuracy was measured by z-transforming hit and false alarm counts (5% adjustment for 

ceiling effects) to obtain a d’ index of task sensitivity (zFA – zHit: Macmillan and Creelman, 1991). 

As for the hazard rate of response times, we assumed that over three time points the true trend is 

effectively linear. A linear fit allowed estimating at the same time the presence of the hazard rate 

(negative slope = shorter response times for longer waited for events) and its strength (slope 

magnitude). Single-trial Theil-Sen estimates of individual linear fits across the three target positions 

were obtained. The Theil-Sen estimator represents an unbiased, robust, non-parametric simple 

linear regression method, which extracts the median slope among all possible pairwise 

combinations of points (Theil, 1950; Sen, 1968). Accuracy and reaction time data entered a two-

way, repeated-measures ANOVA, with the factors SOA (slow, fast) and prior information 

(uninformed, informed). Results with p ≤ 0.05 were declared significant. Greenhaus-Geisser 
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correction was applied whenever Mauchly’s test signaled violation of the sphericity assumption.  

 

EEG Data Acquisition and Preprocessing 

Electroencephalographic (EEG) data were collected using a 26 scalp Ag/AgCl electrode set 

(BrainAmp), mounted in an elastic cap according to the 10–20 International system. The electrode 

space was composed by: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FC4, FT8, T7, C3, Cz, C4, 

T8, CP5, CP6, P7, P3, Pz, P4, P8, O1, O2. Two external electrodes were placed at right and left 

mastoid sites. For electrooculographic (EOG) data recording, four additional electrodes were placed 

at both eye canthi, and above and below the right eye. For participants 19 to 26 (21-30 in the 

original dataset), the cap contained 38 more electrodes (10-10 system), not used in the current 

analysis for comparability across participants (Fpz was excluded from participants 1-18 as it was 

conversely not present in participants 19-26). An online reference was placed on the tip of the nose 

and the sternum served as ground. Electrode impedance was kept below 5 kΩ. EEG/EOG sampling 

rate was set to 500 Hz, with online highpass filtering at 0.01 Hz. The resulting continuous 

recordings were visually inspected and pruned from non-stereotypical artifacts or extreme voltage 

changes values. An Independent Component Analysis (ICA, extended Infomax, Delorme and 

Makeig, 2004) was performed on the pruned continuous data, offline bandpass filtered 1-100 Hz 

(Kaiser window, Beta 5.6533, filter order 1812 points, transition bandwidth 1 Hz, see Widmann et 

al., 2014). The maps of exemplar Independent Components (ICs) reflecting blinks or vertical eye 

movements and horizontal eye movements from one participant were selected as spatial templates 

in a semi-automatic artifact search across all ICs of the remaining datasets (correlation threshold, r 

= 0.94, Viola et al., 2009). Eye-movement-related ICs, both vertical/blink-related and horizontal, 

ranged between 1 and 3 per participant. Selected ICs were verified in their spectral power 

distribution before being subtracted (Onton and Makeig, 2006). The resulting continuous datasets 

were finally low-pass filtered at 35 Hz (filter order 184, transition bandwidth 10 Hz).  
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Event-related potential and coefficient analysis 

Epochs were separately extracted for the onset of standard, non-target deviant and target deviant 

stimuli, beginning 1000 ms before and ending 1000 ms after stimulus onset. Epochs were selected 

based on their effective contribution to increasing the signal-to-noise ratio (Rahne et al., 2009). On 

average, 12.3% of epochs were rejected. Epochs of interest for regression analysis began 250 ms 

before the onset of target deviant tone, and ended 500 ms thereafter. Prediction error responses for 

the non-target deviant trials were calculated in sequences that did not contain a target trial by 

subtracting the average response of the fourth standard tone. As for target trials, a minimum of 16 

trails (80%) per Target position and conditions was retained. For each time point of each trial, a 

Theil-Sen estimate of the linear relationship between target position – a proxy for elapse time – as 

predictor and event-related electrical activity was calculated. There resulted event-related regression 

coefficients (ERRCs, slopes) and event-related intercepts (ERIs). As stimulation was isochronous, 

target position directly reflects elapsed time. Therefore, ERRCs encode neural estimates of elapsed 

time (Dien et al., 2003; Hauk et al., 2006). We took a data-driven approach to analyze the 

distribution and polarity of neural effects within a post-stimulus window of interest (0-600 ms). The 

presence of differences in the effects of Target position (elapsed time) as determined by Prior 

Information was tested for all channels/time points separately at each SOA level: slow uninformed 

vs. slow informed; fast uninformed vs. fast informed. ERRCs entered a non-parametric, cluster-

based permutation test of significance, which allows controlling for type I error rate in the presence 

of multiple comparisons (Maris and Oostenfeld, 2007). Clusters were minimally composed of two 

electrodes. Cluster-level statistics was determined by summating significant paired T-test values 

(cluster alpha = 0.05) across adjacent points within each cluster, and evaluated under the 

distribution obtained by drawing 1000 within-subject, random permutations of the observed data. 

Noise floor was estimated by randomizing individual data points along the time axis. Results show 

the probability (alpha = 0.05) of obtaining a cluster-level statistic that is larger (positive polarity) or 

smaller (negative polarity) than the observed one. Topographical differences in the distribution of 
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current density were investigated using the Global Dissimilarity Index, which measures the 

configuration of electric fields (and their linear transformations), normalized by their individual 

strength Global Field Power (Murray et al., 2008). 

 

Time-frequency analysis 

To increase signal-to noise ratio, data were subject to a Principal Component Analysis, and the first 

four components, accounting on average for 93% of variance, were retained for further processing. 

Zero-padded (5 s), individual target epochs were submitted to a time-frequency analysis at each 

electrode using a Morlet wavelet (7 cycles, estimated for the central ± 4 SD of the Gaussian 

envelope, Oostenveld et al., 2011), for frequencies comprised between 5 and 28 Hz, in steps of 0.25 

Hz. Event-related power estimates of target position effects at each frequency/time point were 

extracted from 500 ms pre-stimulus to 500 ms post-stimulus (sliding window = 25 ms). Each time-

frequency bin entered a Theil-Sen, non-parametric regression analysis with Target position as 

predictor, obtaining time-frequency regression coefficients (TFRCs), and time-frequency intercepts 

(TFIs). We obtained median TFRC power estimates across all electrodes at Alpha (8-12 Hz), low 

beta (Beta 1, 14-19 Hz) and Beta 2 (20-25 Hz) rhythms, and calculated a Kendall-type (Kendall, 

1938) rank correlation between each TFRC and response time slope, in order to determine the time-

frequency band relevant for behavior. A permutation resampling approach (1000 repetitions) was 

used to test the significance of rank correlations.  

To analyze the effect of Prior information within each SOA level, we resorted to a cluster-based 

permutation approach of power estimates between 250 ms pre-stimulus and 500 ms post-stimulus, 

using 2-tailed T-tests (significance set at 0.05), which controls for the multiple comparisons 

problem (all scalp electrodes, minimal N electrodes per cluster = 1, T-test cluster parameter = 

maxsize, 1000 permutations, cluster alpha set at 0.1; Maris and Oostenveld, 2007). All analyses 

were run using EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld et al., 2011), and 

custom Matlab scripts. 
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Supplemental Information 

Supplemental information includes three figures, illustrating raw response times and goodness-of-fit 

results, a proof of attention deployment on five-tone sequences (attention reset role of non-target 

deviant), the predictive relationship between N1 and P3 activity in fast sequences, and the time-

frequency analysis of Target responses in fast and slow sequences, across the whole epoch. 
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