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Abstract

Background: Studies that ascertain families containing multiple relatives
affected by disease can be useful for identification of causal, rare variants from
next-generation sequencing data.

Results: We present the R package SimRVPedigree, which allows researchers to
simulate pedigrees ascertained on the basis of multiple, affected relatives. By
incorporating the ascertainment process in the simulation, SimRVPedigree
allows researchers to better understand the within-family patterns of relationship
amongst affected individuals and ages of disease onset.

Conclusions: Through simulation, we show that affected members of a family
segregating a rare disease variant tend to be more numerous and cluster in
relationships more closely than those for sporadic disease. We also show that the
family ascertainment process can lead to apparent anticipation in the age of
onset. Finally, we use simulation to gain insight into the limit on the proportion
of ascertained families segregating a causal variant. SimRVPedigree should be
useful to investigators seeking insight into the family-based study design through
simulation.

Keywords: pedigree simulation; family-based study; rare variant; ascertainment
bias; anticipation

Background
Family-based studies of pedigrees with multiple disease-affected relatives are re-

gaining traction for identification of rare causal variants. These study designs were

popular, for a time, but were eclipsed as genome-wide association studies (GWAS)

gained popularity [1]. GWAS have been effective for identifying population associa-

tions with common variants genome-wide, but have low power to study rare variants

[2]. Family-based studies require smaller sample sizes than their case/control coun-

terparts and enjoy increased power to detect effects of rare variants [2]. Additionally,

family-based studies are able to identify next-generation sequencing (NGS) errors

by utilizing familial relationships to identify unlikely calls [2]. Improvements in the

cost and technology associated with NGS have facilitated a revival in family-based

studies [1]. Family-based analyses coupled with NGS can uncover rare variants that

are undetected by GWAS [2]. For example, analysis of whole exome sequence data

was used to identify rare variants associated with non-syndromic oral clefts in large

pedigrees ascertained to contain at least two affected relatives [3], to prioritize rare

variants in large multi-generational pedigrees ascertained for multiple relatives diag-

nosed with bipolar disorder [4], and to identify rare variants segregating in families

that contained at least two siblings with an autism spectrum disorder [5].
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Unfortunately, family-based studies do not come without complication; for exam-

ple, identifying a suitable number of pedigrees with desired criteria may be time

consuming, sometimes requiring years to amass. In these circumstances, collecting

new data to evaluate methodology or replicate findings is impractical. To address

this challenge we have created an R package, entitled SimRVPedigree, which simu-

lates pedigrees ascertained to contain a minimum number of disease-affected rela-

tives. SimRVPedigree models the affected individuals in an ascertained pedigree as

the result of (1) sporadic disease or (2) a single, rare, disease-variant segregating in

the pedigree. At the individual level, SimRVPedigree models competing age-specific

life events contingent on rare-variant status, disease status, and age through user

supplied age-specific incidence rates of disease, and age-specific hazard rates for

death. In a recursive manner, life events simulated at the individual level build and

shape simulated pedigrees. Upon specification of user-defined study characteristics,

SimRVPedigree will simulate pedigrees ascertained to contain multiple affected rel-

atives according the specified criteria. To our knowledge, this is the only program

to incorporate a competing risk model and account for the ascertainment process.

Methods
Given a sample of pedigrees we allow for the possibility that different families may

segregate different rare variants, but assume that within a family genetic cases are

due to a shared rare variant that increases disease susceptibility. We allow users

to choose between two methods of rare variant introduction to the pedigree. One

option is to assume that all ascertained pedigrees with genetic cases are segregating

a variant that is rare enough to have been introduced by exactly one founder [6].

Alternatively, we allow users to simulate the starting founder’s rare variant status

with probability equal to the carrier probability of all causal variants considered as

a group. When this option is selected some ascertained pedigrees may not segregate

a causal variant. In either scenario, we assume that a causal variant is introduced

by at most one founder and, when it is introduced, it is transmitted from parent to

offspring according to Mendel’s laws.

Starting at birth and ending with death, we simulate life events for the starting

founder, censoring any events that occur after the last year of the study. We repeat

this process, recursively, for all descendants of the founder allowing life events at

the individual level to shape successive generations of the pedigree. To accomplish

this, we condition on an individual’s age, rare-variant status and disease status, and

simulate waiting times to three competing life events: reproduction (i.e. producing

offspring), disease onset, and death. We select the event with the shortest waiting

time, update the individual’s age by this waiting time, record the event type, and

repeat this process from the new age until the individual dies or the end of the

study is reached.

Simulating Life Events

To simulate life events SimRVPedigree users are required to specify:

hazardDF, a data frame of age-specific hazard rates, where column one represents

the age-specific hazard rates for the disease in the general population, column
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two represents the age-specific hazard rates for death in the unaffected pop-

ulation, and column three represents the age-specific hazard rates for death

in the affected population, and

partition, a discrete partition of ages over which to apply hazardDF.

Specifically, partition is a vector of ages, starting at age 0, such that hazardDF[k,]

are the age-specific hazard rates for an individual whose age is contained in

[partition[k], partition[k+1]). At the user’s discretion, if the disease of interest

is rare, the age-specific hazard rates for death in the unaffected population may

be approximated by age-specific hazard rates for death in the general population.

In the following subsections, we detail the procedures to simulate waiting times to

onset, death, and reproductive events.

Disease onset

We model disease onset using a non-homogeneous Poisson process (e.g. [7]), condi-

tioned on an individual’s current age, t′, rare-variant status, x, and disease status,

δ. In this context, x = 1 if the individual is a carrier of the rare variant, and 0 oth-

erwise; and δ = 1 if the individual has developed disease by age t′, and 0 otherwise.

Define κ to be the relative-risk of disease for individuals who have inherited the

causal variant and λo(t) to be the baseline age-specific hazard rate of disease for an

individual aged t years. That is, λo(t) is the age-specific hazard rate for individuals

who do not carry a causal variant, i.e. sporadic cases. Let λonset(t|x) denote the

age-specific hazard rate of disease for an individual aged t years conditioned on

rare-variant status such that

λonset(t|x) =

{
λo(t), if x = 0;

κ · λo(t), if x = 1,

for κ ≥ 1.

If pc is the carrier probability of all causal variants considered as a group, then

we can express the population age-specific hazard rate of disease, λonset(t), as

λonset(t) = (1− pc)λo(t) + κ · pc · λo(t).

Users are expected to provide λonset(t); given pc and κ we infer λo(t) as λo(t) =
λonset(t)

1+pc(κ−1) . We note that this method for calculating λo(t) has implications on the

comparability of non-genetic individuals from studies simulated under very different

κ values. For example, when pc is constant, we see that for κ1 << κ2, the age-specific

hazard rate for non-carrier individuals under genetic relative-risk κ1 will be much

greater than that of non-carrier individuals under genetic relative-risk κ2. As pc

increases this effect is visible more quickly for differing κ values.

We note that not all individuals develop the disease; however, those who do are

only permitted develop the disease once in our model. Individuals who have de-

veloped disease (i.e. δ = 1) do not develop disease again, but can reproduce or

die. When δ = 0, we use intensity function λonset(t|x) conditioned on rare-variant

status, x, to simulate the waiting time to disease onset given current age, t′. To
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clarify, if we denote the waiting time to disease onset by Wonset, and condition on

the current age, t′, the cumulative distribution function of Wonset is given by

P (Wonset < w|T = t′, x) = 1− exp

{
−
∫ t′+w

t′
λonset(u|x)du

}
.

Death

We model death using a non-homogeneous Poisson process, conditioned on an indi-

vidual’s current age, t′, and disease status, δ. Define δ as in the previous discussion,

and let λu(t) and λa(t) denote the age-specific hazard rates of death, for indi-

viduals aged t years, in the unaffected population and the affected population,

respectively. We use intensity function λdeath(t|δ) conditioned on disease status δ

to simulate the waiting time to death given the current age, t′. In this context,

λdeath(t|δ) represents the age-specific hazard rate of death for an individual aged t

years conditioned on their disease status, which we model as

λdeath(t|δ) =

{
λu(t), if δ = 0;

λa(t), if δ = 1.

We do not model disease remission; after an individual has developed disease we

use the age-specific hazard rates for death in the affected population to model their

waiting time to death.

Reproduction

To accommodate extra-Poisson variability in the number of human offspring, we use

a negative-binomial model with number of trials n ≈ 2 and success probability p ≈
4/7, as proposed by [8]. We adopt this negative-binomial model of offspring number

in SimRVPedigree. We employ an equivalent Poisson-Gamma mixture model [9] to

obtain the negative-binomial offspring number and to simulate the waiting time to

reproduction.

Let wt′ denote the waiting time to reproduction given an individual’s current age

t′, and assume that simulated subjects are able to reproduce from age a1 to age a2.

To mimic observed data on first-born live births (see SimRVPedigree Supplement,

section 6), we simulate a1 and a2 as follows: sample a1 uniformly from ages 16 to

27, and a2− a1 uniformly from 10 to 18 years. At birth we simulate an individual’s

lifetime birthrate by taking a random draw, γ, from a gamma distribution with

shape 2 and scale 4/3. Individuals who draw large γ will have high birth rates and

many children, whereas individuals who draw small γ will have low birth rates and

few or no children.

For some diseases, users may want to reduce the birth rate after disease onset;

we allow users to achieve this through an additional parameter f , assumed to be

between 0 and 1, which is used to rescale the birth rate after disease onset. By

default, f = 1 so that the birth rate remains unchanged after disease onset. Given

an individual’s birth rate, current age, and disease status, δ, we obtain their waiting

time to reproduction as follows:
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1 Simulate the unconditional waiting time to reproduction by drawing w from

an exponential distribution with rate γfδ+γ(1−δ)
(a2−a1) .

2 Condition on the current age, t′, to obtain the conditional waiting time to

reproduction:

wt′ =


a1 + w − t′, if t′ < a1 and (a1 + w) < a2;

t′ + w, if t′ ∈ [a1, a2) and (t′ + w) < a2;

∞, otherwise.

Pedigree Simulation

To simulate all life events for a subject, starting at birth we generate waiting times

to disease onset, death, and reproduction, as outlined previously and choose the

event with the shortest waiting time to be the next life event. Next, we add the

waiting time associated with the earliest event to the current age and either record

the year of disease onset or death, or add a new offspring to the pedigree. We

repeat this process from the updated age, recursively, until the individual dies or

the study stop year is reached. This algorithm details the full life event procedure

at the individual level. Complete details are available in an additional file [see

SimRVPedigree Supplement, section 1].

To simulate a full pedigree, we recursively apply the algorithm described above,

as follows:

• Step 1: Simulate life events for the first founder given rare-variant status.

• Step 2: Simulate life events for any new offspring given rare-variant status as

outlined above.

• Step 3: Repeat step 2 until life events have been simulated for all offspring.

Ascertainment Features

The primary function of SimRVPedigree, sim RVped(), simulates pedigrees ascer-

tained for multiple disease-affected relatives. We allow users to specify family-based

study features through the following arguments of sim RVped():

num affected: the minimum number of disease-affected relatives required for as-

certainment of the pedigree.

ascertain span: the start and stop year for pedigree ascertainment.

stop year: the last year of follow-up for the pedigree.

recall probs: the proband’s recall probabilities for relatives of varying degree.

In this context, the proband is the affected family member first in contact with

the study, presumably at the time of disease onset.

The ascertainment span represents the time span, in years, over which the family

could be ascertained through the proband. For example, suppose that a particular

study ascertained families, containing at least two affected members, from 2000 to

2010. In this scenario, the user would set ascertain span = c(2000, 2010) and

num affected = 2. The sim RVped() function would then simulate families such

that the proband developed disease between 2000 and 2010 and was at least the

second family member to develop disease by then.

The study stop year represents the last year data are collected for ascertained

families. Consider the previous study, and suppose that data were collected until
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2016. To achieve this in simulation, users would simply specify stop year = 2016,

which would result in sim RVped() simulating life events for ascertained families

until the year 2016.

Often researchers involved in family-based studies are confronted by incomplete

ascertainment of a proband’s relatives, which could occur if the proband cannot

provide a complete family history, or if he or she does not support contact of spe-

cific relatives. SimRVPedigree allows users to mimic this scenario, in simulation,

by trimming relatives from a pedigree based on the proband’s probability of re-

calling them. To specify a proband’s recall probabilities for his or her relatives, i.e.

recall probs, the user provides a list of length q, such as p = (p1, p2, ..., pq). In this

context, pi is used to denote the proband’s recall probability for a relative of degree

i when i = 1, 2, ..., q−1, or the proband’s recall probability for a relative of degree q

or greater when i = q. To simulate fully ascertained families, we set recall probs

= c(1), which corresponds to p = 1. Alternatively, if unspecified, recall probs

is set to four times the kinship coefficient, e.g. [10]. This default value retains the

proband’s first-degree relatives (i.e. parents, siblings, and offspring) with probabil-

ity 1, second-degree relatives (i.e. grandparents, grandchildren, aunts, uncles, nieces,

and nephews) with probability 0.5, third-degree relatives with probability 0.25, etc.

In the event that a trimmed relative is required to fully specify the relationships

among recalled family members, we include the trimmed relative, mark them as

unavailable, and remove (i.e. mark as missing) any of their relevant information.

That is, disease status, relative-risk of disease, and event years are all missing for

any relatives not recalled by the proband. Since disease-affected relatives may be

trimmed from a pedigree, trimmed pedigrees may contain fewer than num affected

disease-affected relatives. When this occurs, sim RVped() will discard the pedigree

and simulate another until all conditions specified by the user are met.

Results
Settings

In the following applications, we use SimRVPedigree in conjunction with R [11] to

investigate the effect of the relative-risk of disease in genetic cases, κ, on ascertained

pedigrees. We first investigate the effect of κ on the number of affected relatives per

family, and on the degree of familial clustering among affected relatives. Next, we

investigate how ages of onset from more recent generations tend to be younger than

those from older generations in the ascertained pedigrees [12], a phenomenon which

we refer to as apparent anticipation. Lastly, we demonstrate how SimRVPedigree

may be used to estimate the proportion of families that segregate the causal variant

in a sample of ascertained pedigrees.

To study pedigrees ascertained to contain multiple relatives affected by a lymphoid

cancer, we simulated study samples according to the following criteria.

1 Each study sample contained a total of one thousand pedigrees, ascertained

from the year 2000 to the year 2015.

2 Each pedigree contained at least two relatives affected by lymphoid cancer.

3 The birth year of the founder who introduced the rare variant to the pedigree

was distributed uniformly from 1900 to 1980.

4 For each κ considered, the carrier probability, pc, for all causal variants with

genetic-relative risk κ was assumed to be 0.002.
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5 Sporadic cases, i.e. affected individuals who did not inherit the rare variant,

develop lymphoid cancer according to the baseline, age-specific hazard rate of

lymphoid cancer. The population, age-specific hazard rate of lymphoid can-

cer were estimated through the Surveillance, Epidemiology, and End Results

(SEER) Program [13, 14], and are displayed in Figure 1.

6 Genetic cases, i.e. affected individuals who did inherit the rare variant, develop

lymphoid cancer at κ times the baseline, age-specific hazard rate of lymphoid

cancer. We considered κ ∈ (1, 10, 20) and simulated one thousand pedigrees

for each κ considered.

7 Since lymphoid cancer accounts for a relatively small proportion of all deaths,

the age-specific hazard rate for death in the unaffected population was ap-

proximated by that of the general population. Individuals who do not develop

lymphoid cancer die according to the age-specific hazard rate of death in

the general population [15], while individuals who have developed lymphoid

cancer die according to the age-specific hazard rate of death in the affected

population [13, 16, 17]. Figure 1 displays the age-specific hazard rates of death

for these two groups.

8 The proband’s probabilities for recalling relatives were set to recall probs =

(1, 1, 1, 0.5, 0.125), so that all first, second, and third-degree relatives

of the proband were recalled with probability 1, all fourth-degree relatives of

the proband were recalled with probability 0.5, and all other relatives of the

proband were recalled with probability 0.125.

9 The stop year of the study was set to 2017.

Example

We demonstrate how to simulate a single pedigree according to the settings de-

scribed previously.

After installing SimRVPedigree, we load the package in R using the library

function.

R> library(SimRVPedigree)

Suppose that we can obtain age-specific hazard rates in yearly increments starting

at age 0 and ending with age 100. In this case, we define the partition of ages over

which to apply the age-specific hazards rates using the seq function.

R> age part <- seq(0, 100, by = 1)

Next, assume that LC Hazards is a data frame whose columns provide age-specific

hazard rates, in yearly increments, from age 0 to age 100, as indicated below.

LC Hazards[, 1] Age-specific hazard rates of lymphoid cancer in the general pop-

ulation.

LC Hazards[, 2] Age-specific hazard rates of death for individuals in the general

population.

LC Hazards[, 3] Age-specific hazard rates of death for individuals who have lym-

phoid cancer.

We create a new object of class hazard from the partition of ages, age part, and

the data frame of hazard rates, LC Hazards, by executing the following command.

R> haz mat <- hazard(partition = age part,

hazardDF = LC Hazards)
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To simulate a single pedigree with family identification number 1 and a genetic

relative-risk of 10, assuming that the eldest founder introduces the variant, and

according to the settings described previously in Results: Settings we use the fol-

lowing command.

R> ex ped <- sim RVped(hazard rates = haz mat,

GRR = 10, FamID = 1,

num affected = 2,

RVfounder = TRUE,

ascertain span = c(2000, 2015),

founder byears = c(1900, 1980),

recall probs = (1, 1, 1, 0.5, 0.125),

stop year = 2017)

To view a description of the contents of ex ped we use the summary command.

R> summary(ex ped)
length Class Mode

full ped 15 ped list

ascertained ped 15 ped list

Upon executing the command above, we see that ex ped is a list containing two ob-

jects of class ped. The first is named full ped and represents the original pedigree,

prior to proband selection and trimming. The second is named ascertained ped

and represents the ascertained pedigree; this data frame includes an additional vari-

able to identify the proband. In this application, we are interested in families that

were ascertained for study; hence, we focus attention on ascertained ped.

To simplify the following examples, we store the ascertained pedigree as

study ped.

R> study ped <- ex ped$ascertained ped

To plot the ascertained pedigree we simply supply the pedigree to the plot func-

tion.

R> plot(study ped)

The plotted pedigree is displayed in Figure 2.

To obtain summary information for study ped we supply it to summary.

R> summary(study ped)

$family info

FamID total rels num affected ave onset age ave IBD asc year seg RV

1 18 4 52.5 0.333 2002 TRUE

$affected info
FamID ID birthYr onsetYr deathYr RR proband RVstatus

1 1 1911 1965 1968 10 FALSE 1

1 3 1933 2014 NA 1 FALSE 0

1 9 1966 2002 NA 10 TRUE 1

1 10 1972 2011 NA 10 FALSE 1

As displayed above, when the argument of summary is an object of class ped,

summary returns two data frames named family info and affected info. The

family info data frame catalogues the information for the entire family. For each

family supplied it provides (from left to right): family identification number, the to-

tal number of relatives in the pedigree, the total number of disease-affected relatives

in the pedigree, the average onset age of the disease-affected relatives, the average of

the pairwise probabilities of identity by descent (IBD) among the disease-affected
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relatives in the pedigree, the ascertainment year of the pedigree, and a logical

variable indicating whether or not the pedigree segregates a casual variant. The

affected info data frame catalogues information for the disease-affected relatives.

For each disease-affected relative it details (from left to right): family identification

number, individual identification number, year of birth, year of disease-onset, year

of death, relative risk of disease, proband status, and rare variant status.

Applications

Number of Disease-Affected Relatives

To illustrate how the number of disease-affected relatives in each pedigree varies

with κ, we refer to the data described in Results: Settings. This data contains

simulated study samples, containing 1000 pedigrees, for κ = 1, κ = 10, and κ = 20.

Figure 3 summarizes the distribution of the number of disease-affected relatives

per pedigree for these three groups. From the figure we see that for κ = 1 this dis-

tribution is more highly concentrated at two affected members than for the other

two groups considered. Not surprisingly, as κ increases we see relatively fewer fam-

ilies containing only two affected members, and more families containing three or

greater affected members.

Familial Clustering

To investigate the relationship between familial clustering among affected relatives

and κ, we restrict attention to pedigrees that contained two or three affected rel-

atives. We did not consider pedigrees with four or more disease-affected relatives

because these pedigrees are rarely observed when κ = 1. This resulted in a total of

999 simulated pedigrees in the κ = 1 group, 982 simulated pedigrees in the κ = 10

group, and 950 simulated pedigrees in the κ = 20 group. To assess the level of famil-

ial clustering among affected relatives, we computed the average of the pairwise IBD

probabilities among affected members in a pedigree, which we will denote by AIBD.

AIBD is proportional to the genealogical index of familiality statistic [18], which

has been used to summarize familial clustering of aggressive prostate cancer in the

Utah population. In general, the IBD probability between two relatives decreases as

they become more distantly related. For example, for an affected parent-child pair,

or two affected siblings AIBD = 0.5; whereas for an affected avuncular pair, or an

affected grandparent-grandchild pair AIBD = 0.25.

Figure 4 shows the conditional distribution of AIBD given the total number of

affected relatives in a pedigree and κ. Tabulated results for Figure 4 are available

in an additional file [see SimRVPedigree Supplement, section 2]. The left panel of

Figure 4 summarizes the conditional distribution of AIBD for families with two

affected members. The conditional distribution of AIBD shifts probability mass

toward 0.5 as κ increases and suggests that disease-affected individuals tend to be

more closely related in families with larger values of κ. The right panel of Figure 4

summarizes the conditional distribution of AIBD among families with three affected

members, and shows the same trend as the left panel, ofAIBD values shifted towards

0.5 for larger values of κ.
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Anticipation

Anticipation is a decreasing trend in the age of disease onset, and possibly an in-

creasing trend in severity, in successive generations of a family [19]. Some genetic

diseases with unstable repeat expansions show anticipation, and include: Hunting-

ton’s Disease, fragile X syndrome, and myotonic dystrophy [20].

However, studies of genetic anticipation based solely on the ages of onset of af-

fected members have the potential for ascertainment bias [21]. Possible sources

of ascertainment bias include: early detection in offspring due to parental diagno-

sis or improved diagnostic techniques and right-censoring of family members who

have developed the disease by the end of the study, especially in studies of large

multi-generational pedigrees that have been ascertained to contain multiple affected

members. [12, 21].

Referring to the data described in section Results: Settings, we illustrate how ap-

parent anticipation can arise as an artefact of studies ascertaining families with

multiple disease-affected relatives. Within each of the families considered, genera-

tion number was assigned among affected relatives so that generation number one

represents the most recent common ancestor with whom all affected members could

share a variant identical by descent. In this assignment scheme, we allow an affected

individual to be his or her own most recent common ancestor. To demonstrate this

convention, consider a family with two affected relatives: if the affected members

are a parent-child pair, then the parent would be assigned generation number one,

and the child assigned generation number two. However, if the affected members

are a sibling pair, each sibling would be assigned generation number two, since a

parent is the closest relative from whom the affected siblings could have inherited

a disease variant.

Figure 5 displays the ages of onset, by assigned generation, grouped by κ, the

relative-risk of disease for genetic cases. We emphasize that SimRVPedigree does not

include a mechanism to simulate anticipation. However, we note that even though

anticipation is not present in the simulated data, within each genetic-relative-risk

group considered, the box plots exhibit a decreasing trend in the ages of onset for

successive generations. The false anticipation signal is likely due to many of the

ascertained pedigrees being large, and multi-generational, and therefore prone to

right-censoring of younger family members who will develop disease later in life,

after the study stop year.

If there is right-censoring of younger family members then this censoring should

be apparent in their ages of death as well. Therefore it is useful to consider using

the ages of death in unaffected relatives as a negative control to gain insight into

ascertainment bias [19]. Box plots of the ages of death in unaffected relatives by

generation for the relative-risk groups are similar to those in Figure 5 for the age

of onset in disease-affected relatives. This similarity strongly suggests the presence

of ascertainment bias. Further details of this investigation may be found in an

additional file [see SimRVPedigree Supplement, section 2].

Proportion of Ascertained Pedigrees Segregating a Causal Variant

Familial lymphoid cancer, i.e. a family that contains multiple relatives affected by

lymphoid cancer, is relatively rare; however, lymphoid cancer is not a rare disease
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as it affects roughly 1 in 25 [13, 14]. With such diseases, there is a greater risk

of ascertaining pedigrees that contain multiple disease-affected relatives by chance

alone. Since we do not expect these pedigrees to segregate a causal variant it is ad-

vantageous to choose ascertainment criteria that reduces the likelihood of sampling

such pedigrees.

To determine what proportion of ascertained families we expect to segregate a

causal variant we conducted a simulation study in which the rare variant status of

the starting founder was allowed to vary so that fully sporadic pedigrees were given

an opportunity for ascertainment.

The procedure to simulate a study containing both genetic and sporadic families

may be described as follows.

Step 1: Allow the starting founder to introduce a causal variant with genetic

relative-risk κ with probability 0.002.

Step 2: Simulate the rest of the pedigree, according to the settings described in

Results: Settings, and add it to our sample of ascertained pedigrees if it meets

the ascertainment criteria.

Step 3: Repeat steps one and two until the requisite number of pedigrees have

been ascertained.

For this procedure we considered κ = 1 and all multiples of 5 between 5 and 100,

i.e. κ ∈ c(1, 5, 10, 15, . . . , 95, 100). For each κ considered we simulated family studies

each containing one thousand ascertained pedigrees. Next, we determined what pro-

portion of the ascertained pedigrees were segregating a causal variant that increased

disease susceptibility. The results of this investigation are displayed in Figure 6. The

leftmost panel in Figure 6 indicates that most of the ascertained pedigrees are not

segregating a causal variant. For example, when the genetic relative-risk is 20, we see

that less than 20% of the ascertained pedigrees with two or more disease-affected

relatives are segregating a causal variant. Focusing attention on the ascertained

pedigrees that contain three or more affected relatives (the middle panel of Figure

6) we see that these pedigrees tend to segregate a causal variant more often than

the pedigrees that only contained two or more affected relatives. When we restrict

our focus to the ascertained pedigrees that contain four or more affected relatives

(the rightmost panel of Figure 6), we see more of these pedigrees tend to segregate

a causal variant. These estimates tend to be more erratic because we don’t often ob-

serve fully sporadic families with four or more affected relatives. We did not observe

fully sporadic pedigrees with five or more affected relatives in any of the original

samples of one thousand pedigrees.

These results indicate that when a disease is not rare, and when the carrier prob-

ability of the causal variant is very low (i.e. pc = 0.002), focusing on families with at

least three affected relatives is more effective for sampling pedigrees that segregate

a causal variant. Focusing on pedigrees with at least four affected relatives provides

even greater improvement.

Computation Time

We would like to note that simulation of ascertained pedigrees can be computation-

ally expensive. Therefore, we urge users to take advantage of parallel processing, in

R, or cluster computing when simulating a large number of ascertained pedigrees.
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There are several factors that effect the amount of time required to simulate a

pedigree. For example, the genetic relative-risk, the probability that a causal rare

variant is segregating in the family, and the ascertainment span, to name a few.

To illustrate the effect of the genetic relative-risk on timing we consider the family-

study described in Results: Settings. The following table provides summary statistics

for the average computation time, in seconds, required to simulate a single pedigree

on a Windows OS with an i7-4790 @ 3.60 GHz, 12 GB of RAM, and a C220 SATA

AHCI.

Standard Deviation
Genetic Average Simulation of Simulation Time Number

Relative-Risk Time (in seconds) (in seconds) of Trials
1 30.752 32.539 50

10 1.461 1.339 50
20 0.650 0.564 50

Table 1 Comparison of Computation Time for Various Genetic Relative-Risk Values. Tabulated
average computation time and standard deviation of computation time, in seconds. These results
were obtained over 50 repeated simulations of a single pedigree.

When probability that a causal rare variant is segregating in the family is small,

the simulation time will tend towards the time required to simulate an ascertained

pedigree with a genetic relative-risk of 1. This is the case for all pedigrees simulated

in Results: Proportion of Ascertained Pedigrees Segregating a Causal Variant since

the probability that the eldest founder introduces the rare variant is 0.002.

Discussion
We provide several applications for SimRVPedigree to illustrate the effect of the

genetic relative-risk, κ, on features of the ascertained pedigrees. First, we inves-

tigate the relationship between κ and the number of affected individuals in each

ascertained family. In this application, as κ increases we observe pedigrees that

contain three or more affected relatives more frequently than pedigrees with only

two affected relatives.

Second, we examine the relationship between κ and the average, pairwise IBD

probability among affected relatives in a pedigree. We observe that pedigrees simu-

lated with larger values of κ tend to contain affected relatives that are more closely-

related than pedigrees simulated with smaller values of κ.

Third, we illustrate that the family-based study design can contribute to appar-

ent anticipation signals. In part, this is due to large, multi-generational pedigrees,

which are prone to right-censoring of younger family members likely to experience

disease onset later in life. This type of right-censoring can confound true genetic

anticipation. We observe that it is possible to reduce this bias by following family

members available at the time of ascertainment for a sufficient length of time. How-

ever, the necessary time frame (roughly 100 years) is impractical for real studies

[see SimRVPedigree Supplement, section 5].

Finally, we show how users can estimate the proportion of ascertained pedigrees

that are segregating a variant that increases disease susceptibility. In this application

we find that when the carrier probability of all causal variants considered as a

group is 0.002, many of the pedigrees ascertained with two or more disease-affected

relatives do not segregate a genetic variant. In this scenario, it may be advantageous
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for researchers to focus on pedigrees with three or more disease-affected relatives. We

note that when the carrier probability increases results will vary [see SimRVPedigree

Supplement, section 6]. SimRVPedigree is intended for simulating diseases that are

influenced by rare variants (e.g. allele frequency ≤ 0.005); however, when the carrier

probability is increased to reflect variants that are less rare (e.g. allele frequency

∈ [0.005, 0.01]), SimRVPedigree may underestimate the proportion of ascertained

pedigrees that contain genetic cases.

We emphasize that ascertained families can differ substantially depending on the

simulation settings chosen. For example, variations in the ascertainment span can

affect the distribution of the number of affected relatives in each pedigree, when all

other study settings remain constant.

Conclusions
The SimRVPedigree package provides methods to simulate pedigrees that contain

multiple disease-affected relatives by a family-based study. To simulate life events at

the individual level, SimRVPedigree models disease onset, death, and reproduction

as competing life events; thus, pedigrees are shaped by the events simulated at

the individual level. SimRVPedigree allows for flexible modelling of disease onset

through user-supplied age-specific hazard rates for disease onset and death, and also

permits flexibility in family-based ascertainment.

Among their benefits, family-based studies of large pedigrees with multiple

disease-affected relatives enjoy increased power to detect effects of rare variants

[2]. However, to conduct a family-based study of a rare disease it may take years

to collect enough data. For planning and inference, we present the SimRVPedigree

package to readily simulate pedigrees ascertained for multiple relatives affected by

a rare disease. To our knowledge, this is the first package to dynamically simulate

pedigrees to account for competing life events.
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Figures

Figure 1 Hazard Rates. (Left) Baseline, age-specific hazard rates of lymphoid cancer estimated
by SEER [13, 14]. SEER provides age-specific incidence and morality data, in yearly increments,
up to age 84 years, and then aggregates data for ages of 85 years or greater. We considered the
SEER reported incidence rate for individuals of age 85 or greater to be the constant hazard rate of
disease for individuals between the ages of 85 to 100. (Right) Age-specific hazard rates of death
for the general population [15] and for the disease-affected population [13, 16, 17]. To promote
continuity in the age-specific hazard rate of death for the affected population, we assume that it is
twice that of the unaffected population after age 84 years. After age 84 years, the SEER data do
not allow for the age-specific hazard rates of death in the affected population to be estimated in
yearly increments.

Additional Files
Additional file 1 — SimRVPedigree Supplement

This is a pdf file that provides detailed information about the simulation procedure, as well as additional information

for the applications discussed in the main text.
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Figure 2 Simulated Pedigree. In this pedigree squares are used to symbolize males and circles are
used to symbolize females. Mates are connected by a horizontal line, and their offspring branch
out below. Individuals who have died have a slash through their symbol. As indicated by the
legend, if the upper left third of an individual’s symbol is shaded black, then that individual is
disease-affected. If the upper right third of an individual’s symbol is shaded, then that individual is
a carrier of the causal variant. If the bottom third of an individual’s symbol is shaded, then that
individual is the proband.
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Figure 3 Bar charts of Number of Disease-Affected Relatives per Pedigree. Barcharts of
number of disease-affected relative per pedigree grouped by genetic relative-risk of disease, κ.

Figure 4 Bar charts of AIBD Distributions. Barcharts of AIBD distributions for pedigrees with
two (left) or three (right) disease-affected relatives, grouped by genetic relative-risk of disease.
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Figure 5 Box plots of Age of Disease Onset by Assigned Generation Number. Boxplots of age
of onset by assigned generation number, as defined in text, grouped by genetic relative-risk of
disease, κ. The numbers of observations, n, used to create each box plot are displayed above their
respective plots.

Figure 6 Genetic Contribution Estimate. Scatter plots of the probability that a randomly selected
pedigree from a sample of ascertained pedigrees is segregating a genetic variant with relative-risk
of disease κ against the relative-risk of disease κ. Here we consider the effect of restricting
attention to the ascertained pedigrees with nA or more disease-affected relatives. In the leftmost
panel, we consider all one thousand pedigrees ascertained with two or more disease-affected
relatives; in the middle panel, we consider the subset with three or more disease-affected relatives,
and in the right most panel the subset with four or more disease-affected relatives.
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