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Abstract 

Next-generation sequencing technologies provide a wealth of sequencing data. To handle 

these data amounts, various tools were developed over the last years for mapping, 

normalisation and functional analyses. To support researchers in the interpretation of 

expression measurements originating from dual RNA-seq studies and from host-microbe 

systems in particular, the computational pipeline host_microbe_mapper can be applied to 

quantify and interpret dual RNA-seq datasets in host-microbe experiments. The pipeline with 

all the required scripts is stored at the Github repository 

(https://github.com/nthomasCUBE/host_microbe_mapper).  
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Background 

Different RNA-seq technologies generate huge amounts of data in a cost-efficient manner. 

To support researchers during this analysis, various computational methods can process the 

data such as methods for quantification and functional interpretation. For the mapping of 

single or paired-end reads, the tools STAR [1], Tophat [2] and ballgawn [3] are commonly 

applied in eukaryotic genomes whereas bowtie [4] and bwa [5] are commonly used for the 

mapping of microbial reads.  

After reads have been assigned to the genome, various ways to interpret the data exist, but it 

needs a normalisation step before. Whereas in the cufflinks’ [6] package, there are options to 

directly obtain FPKM (Fragments per Kilobase Million) counts that consider the gene length 

and the paired-end information, for other tools it needs to include additional programs to 

obtain raw read counts which can be extracted with tools such as featureCounts [7] or HT-

seq [8]. This allows to normalize the data into TMM (Transcripts Per Million Mapped) or 

RPKM (Reads Per Kilobase Million) in order to perform e.g. the detection of differentially 

expressed genes or to obtain clusters of co-expressed genes with WGCNA [9]. Differentially 

expressed genes can be computed with tools such as EdgeR [10], Noiseq [11], and DESeq2 

[12] whereas cufflinks and ballgawn allow to detect differentially expressed genes as part of 

their pipelines. Most of the mentioned tools have been included into the current pipeline. 

An additional aspect of the mapping of expression can be the removal of ribosomal RNA, 

which can contribute a major proportion of reads in a sequencing run. Reads of ribosomal 

origin can be discarded from most experiments with available kits (e.g. RiboZero Gold kit 

[13]) or in silico by tools such as SortMeRNA [14]. Otherwise, it might be of major interest to 

detect putatively unexpected contaminations in the data. To analyse contaminations based 

on 16S rRNA genes, we have also included SortMeRNA [14] to classify reads, that belong to 

eukaryotic or prokaryotic ribosomal genes. To reveal or confirm the availability of certain 

microbes it might be of interest to reconstruct the entire 16S or 18S ribosomal gene from the 

transcriptomic data. For this aim, there are tools such as REAGO [15] that allows to 

assemble these reads. Otherwise, for dual RNA-seq experiments, it can be crucial to verify, 

that the pathogen is the main microbial source in the dataset and host response might not 

active because of other microbes. 

Before the entire read set is used to obtain an insight into the data, it needs preliminary 

access to the data to grasp a first insight into the dataset and to define most appropriate 

parameters that can be applied on the entire dataset. This requires much more time and 

computational resources in the following even so a test set might already give a good 

overview of the data already. This can be ideally done by randomly selecting reads (e.g. 

100,000) from the dataset. To ease the usage of mapping dual RNA-seq data, we provide a 
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simple graphical user interface that allows to define the reference genomes and to define 

whether the full or a subset should be used. Despite a bunch of tools that provide a guideline 

for mapping dual RNA-seq experiments, the pipeline as described in this study has the 

advantage that is can be run directly on the data without need for major changes as we 

demonstrate in this study. Calculations can be also run in parallel by using the SLURM batch 

system. We demonstrate the pipeline by selecting running the experiments on various 

published different datasets. 

 

Material and Methods 

Data access 

RNA-seq datasets and respective genomic sequences from human, mouse and the 

pathogen Neisseria meningitidis were obtained from NCBI server and Gene Bank identifiers 

are summarized in Supplemental Table 1 and were used to obtain artificial read datasets 

with the ArtificialFastqGenerator.jar by using the coding sequences of the respective 

genomes [16]. All datasets represent paired-end sequences with 300 nt inserts. In total, 20 

million reads were generated for each of the hosts as well as two million reads from the 

microbe Neisseria meningitidis. The respective demo files are included on the Github page. 

Pipeline construction 

The whole pipeline is summarized in a single batch script, labelled as host_microbe_mapper, 

that contains all the relevant commands starting from the pre-processing of the data, the 

mapping of host and microbial reads and finally the data normalisation. All scripts are stored 

in the Github repository (https://github.com/nthomasCUBE/host_pathogen_mapping). 

Additional prepared scripts can be used to obtain the differentially expressed genes. 

Therefore, we integrated scripts to perform differential expression analyses by comprising 

methods such as EdgeR, NOISeq and DESeq2, however these scripts might need additional 

information and mapping files between samples and conditions. The whole functionality and 

mapping was performed on the Leibnitz Rechenzentrum Cluster. 

 

Results and Discussion 

General description of the pipeline 

The entire workflow of the program is given in Figure 1. A user can provide reads either in 

the raw FASTQ format or in the compressed format (in the GZ format) by defining the path to 

the directory that contains them by running the graphical user interface. Each sample within 
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that directory is serially processed. Before reads are mapped to the respective genomes, we 

perform a quality assessment by checking the FASTQ sequences with FastQC [17], followed 

by adapter removal with cutadapt [18]. Next, reads are cleaned from ribosomal reads by 

considering the SortMeRNA pipeline [14] that reports reads matching to  ribosomal genes 

from both, eukaryotes and prokaryotes and are assembled with REAGO [15]. Next, reads are 

mapped first to the microbe and remaining reads are then mapped to one or two hosts. This 

is case, when e.g. human DNA material is grafted into a mouse model, thereby three 

different organisms can be simultaneously mapped. Supplemental Table 2 lists the amount 

of reads in total that were mapped for the individual datasets and the reads that remain after 

adapter removal, pre-processing and mapping. These information are collected inside a 

project-specific Excel file to provide an intuitive overview of the mapping results and 

furthermore visualisations are made to depict how many of the reads are uniquely mapped, 

multiple mapped or remain unmapped (Figure 2A). For the mapping of eukaryotic reads, 

STAR [1] or Tophat [2] are used and can be selected by the user. Before, reads are mapped 

to the microbe by using either BWA or bowtie. Finally, remaining reads are used and are 

normalised and then differentially expressed gene are applied (EdgeR and/or DESeq2). For 

each individual step in listed in separate script files. 

Analyses of the dual RNA-seq datasets from published studies 

Artificial datasets were generated (see Material and Methods) including dual RNA-seq 

datasets, that contain a low, median and a high number of microbial reads being present at 

1%, 5% or 20%. We used human and mouse expression transcriptomic datasets to simulate 

these reads from the respective human, mouse genes and pathogen. Then, we applied the 

host_microbe_mapper pipeline and compared known expression counts to the expression, 

that was from measured from the various mapping tools. 

Possibility to assign the 16S genes from the transcriptome dataset directly 

As an additional feature, host_microbe_mapper can extract reads from the transcriptome 

dataset itself to assess which microbes appear in the original raw data, e.g. to reveal putative 

contamination or to detect e.g. endophytes, that co-exist with the host. We extracted the 

classified reads from SortMeRNA to extract and then to assemble the entire 16S rRNA 

genes which can be then compared to reveal existing microbial taxa from the data. To test 

the pipeline, we have used again reads from the host but now added and simulated the 

reads from the different microbes. To simulate this, we included microbial datasets from 

other studies and checked then whether we were able to find them again. Typically use 

cases for this method would be experiments, that were run in the same batch and thereby 

might, given misleading barcoding, contain a mixture of reads from different experiments. 
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Figure 1. Illustration of the next-generation sequencing (NGS) pipeline covering the steps from the integration of 
the data to the mapping to the microbe and furthermore the mapping to the reference genomes from both hosts. 
 

Figure 2. Graphical User Interface for mapping RNA-seq data for the eukaryotic and prokaryotic genomes 
preparing the mapping files that can be run then on the server. 
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