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Cannabis use is a heritable trait [1] that has been associated with adverse mental health outcomes. 

To identify risk variants and improve our knowledge of the genetic etiology of cannabis use, we 

performed the largest genome-wide association study (GWAS) meta-analysis for lifetime cannabis 

use (N=184,765) to date. We identified 4 independent loci containing genome-wide significant SNP 

associations. Gene-based tests revealed 29 genome-wide significant genes located in these 4 loci 

and 8 additional regions. All SNPs combined explained 10% of the variance in lifetime cannabis use. 

The most significantly associated gene, CADM2, has previously been associated with substance use 

and risk-taking phenotypes [2-4]. We used S-PrediXcan to explore gene expression levels and 

found 11 unique eGenes. LD-score regression uncovered genetic correlations with smoking, alcohol 

use and mental health outcomes, including schizophrenia and bipolar disorder. Mendelian 

randomisation analysis provided evidence for a causal positive influence of schizophrenia risk on 

lifetime cannabis use.  

 

We performed the largest GWAS of lifetime cannabis use (having ever tried cannabis) to date. We 

meta-analysed 3 GWASs (International Cannabis Consortium [ICC,] N=35,297; 23andMe, N=22,683; 

UK-Biobank, N=126,785) with a combined sample size of 184,765 individuals, a five-fold increase 

compared to the previous largest GWAS for lifetime cannabis use [5]. The meta-analysis resulted in 

646 genome-wide significant SNP associations located in 4 independent (linkage disequilibrium [LD] 

R2<0.1, window size 250 kb) regions on chromosomes 3, 8, 11, and 16 (Table 1, Figure 1, and 

Supplementary Table S1). The most strongly associated marker was an intronic variant of CADM2 on 

chromosome 3 (rs2875907, p=2.66e-15). Other hits were located in ZNF704, NCAM1, and 

RABEP2/ATP2A1 (Figure 2). All tested SNPs combined explained 10% (h2
SNP=0.10, SE=0.01) of the 

individual differences in lifetime cannabis use; approximately 25% of twin-based heritability 

estimates [1]. Supplementary Figure S1-3 and Table S2 provide information on results of the 

individual GWASs.  
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Gene-based tests of associations in MAGMA [6] identified 29 genes significantly associated 

with lifetime cannabis use (Figure 3, Table 2, and Supplementary Figure S4-5). These were located in 

the 4 regions identified in the SNP-based analysis and in 8 putatively novel regions. CADM2 and 

NCAM1, both previously identified in the original ICC meta-analysis [5], were among the strongest 

hits. The CADM2 gene (Cell Adhesion Molecule 2) is a synaptic cell adhesion molecule and is part of 

the immunoglobulin superfamily. Interestingly, CADM2 has previously been identified in GWAS of 

other behavioural phenotypes, including alcohol consumption [2], processing speed [7], and number 

of offspring and risk-taking behavior [4]. A large-scale phenome-wide scan showed that CADM2 was 

associated with various personality traits, with the risk variant being associated with e.g. reduced 

anxiety, neuroticism and conscientiousness, and increased risk-taking [3]. Taken together, these 

findings suggest that risk variants in CADM2 are associated with a broad profile of a risk-taking, 

optimistic, and care-free personality [3]. Cannabis use has previously been associated with these 

personality traits, including high levels of impulsivity and novelty seeking [8, 9]. 

NCAM1 (Neural Cell Adhesion Molecule 1) also encodes a cell adhesion protein and is 

member of the immunoglobulin superfamily. The encoded protein is involved in cell-matrix 

interactions and cell differentiation during development [10]. NCAM1 is located in the NCAM1-

TTC12-ANKK1-DRD2 gene cluster, which is related to neurogenesis and dopaminergic 

neurotransmission. This gene cluster has been associated with smoking, alcohol use, and illicit drug 

use [11-14] and has been implicated in psychiatric disorders, such as schizophrenia and mood 

disorders [15, 16].  

Putatively novel findings in both the SNP- and gene-based test were the ZNF704 region at 

chromosome 8, about which little is known, and RABEP2/ATP2A1, located in an interesting region on 

chromosome 16 (see below). Several of the 29 top genes have previously shown an association with 

schizophrenia (e.g., TUFM, NCAM1), BMI or obesity, alcohol use (e.g. ALDH2), intelligence and 

cognitive performance, and externalizing and impulsive phenotypes (Supplementary Table S3). At the 
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phenotypic level, associations between cannabis use and psychiatric disorders [17], use of other 

substances [8], personality [18], and educational attainment [19] are well-established.  

S-PrediXcan analysis, aimed at identifying genes with differential expression levels in 

cannabis users versus non-users [eGenes, 20], largely confirmed SNP- and gene-based findings. S-

PrediXcan revealed 51 Bonferroni-corrected significant associations across tissues (Supplementary 

Tables S3 and S4) targeting 11 unique eGenes.  Five eGenes were also significant in the gene-based 

tests, whereas 6 were novel. For eGenes identified in multiple tissues, directions of effects were 

consistent across tissues (Supplementary Table S4). Again, the top finding was CADM2; genetic 

variants associated with increased liability to use cannabis are predicted to upregulate expression 

levels of CADM2 in 5 (non-brain) tissues, including whole blood. Of note, although CADM2 is 

expressed more widely in brain compared with other tissues (Supplementary Figure S6), rs2875907 

regulates the expression of CADM2 only in non-brain tissues (Supplementary Figure S7). Exploration 

of S-PrediXcan results in UK-Biobank data (https://imlab.shinyapps.io/gene2pheno_ukb_neale/) 

showed that CADM2 expression is significantly associated with multiple traits, including increased 

risk-taking and BMI, and reduced feelings of anxiety.   

As did the SNP- and gene-based tests, the S-PrediXcan analysis detected a strong signal in a 

single high-LD region at 16p11.2. Deletions and duplications in this region were previously reported 

to be associated with autism and schizophrenia [21, 22], while a common 16p11.2 inversion 

underlies susceptibility to asthma and obesity [23]. The inversion explains a substantial proportion of 

variability in expression of the eGenes, including TUFM and SH2B1 [23]. Due to high LD in this region 

and high levels of co-expression of the eGenes, follow-up studies will be needed to determine which 

gene(s) are functionally driving the association with cannabis use.  

Using our GWAS results and those of other studies, we estimated the genetic correlation of 

lifetime cannabis use with 25 other traits of interest with LD score regression. Fourteen traits were 

significantly genetically correlated with lifetime cannabis use, after correction for multiple testing 

(Figure 4 and Supplementary Table S5). Positive genetic correlations were found with substance use 
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phenotypes, including smoking and alcohol use and dependence, as well as with mental health 

phenotypes, including ADHD and schizophrenia. Furthermore, positive genetic correlations were 

found with risk-taking behaviour, openness to experience, and educational attainment, as well as a 

negative correlation with conscientiousness. The broad range of correlations suggests that genetic 

liability to cannabis use should be viewed in a larger context of personality and mental health traits. 

Specifically, the substantial genetic correlations with risk-taking behaviour and openness to 

experience may indicate liability to start using cannabis is an indication of one’s personality.  

The relationship between cannabis use and schizophrenia has been subject of intensive 

research and debate. It has long been established that cannabis use is higher in schizophrenia 

patients [24, 25]. A substantial body of evidence supports the hypothesis that cannabis use increases 

the risk for developing schizophrenia [26], but other hypotheses (i.e. schizophrenia increases use of 

cannabis, or the association is due to (genetic) pleiotropy) have also been posed. Our results confirm 

previous findings [27, 28] that genetic risk factors for cannabis use and schizophrenia are positively 

correlated (rg=0.24, SE=0.03, p<0.01). However, since a genetic correlation does not provide insight 

in the direction of causation, we performed bi-directional two-sample Mendelian randomisation 

(MR) analysis [29] to examine whether there is evidence for a causal relationship from cannabis use 

to schizophrenia and vice versa.  

We found no clear evidence for a causal influence of lifetime cannabis use on schizophrenia 

risk; the Inverse Variance Weighted [IVW] regression odds ratios were 1.01 (95% CIs 0.70-1.45, 

p=0.97) and 1.03 (95% CIs 0.89-1.19, p=0.70) for the 5e-08 and 1e-05 p-value thresholds for SNP 

inclusions, respectively. We did find evidence for a causal positive influence of schizophrenia risk on 

lifetime cannabis use (IVW regression OR=1.16, 95% CIs 1.06-1.27, p<0.01) (Table 3; Supplementary 

Tables S6-S9 and Supplementary Figures S8-S9 for details). We performed 4 sensitivity analyses to 

determine the robustness of this finding; these analyses provided a consistent pattern of effect sizes 

(with the exception of the MR-Egger analysis) supporting the causal effect from schizophrenia to 

cannabis use, albeit with weaker statistical evidence (Table 3). Moreover, the MR-Egger intercept 
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was not significant (Supplementary Table S9), indicating no evidence for pleiotropy [30]. Note that 

while these methods allow us to infer causality, they do not provide interpretable estimates of the 

magnitude of the causal effect, as the phenotypes were measured on a logistic scale. 

Two previous two-sample MR studies investigated the link between lifetime cannabis use 

and schizophrenia. The first only tested causal effects from cannabis use to schizophrenia and found 

evidence for causality [31], in contrast to our findings. The second study tested bi-directional effects 

with genetic instruments more similar to ours and found weak evidence for a causal effect of 

cannabis use to schizophrenia and much stronger evidence for a causal effect in the other direction 

[32]. Our results reinforce this latter finding, suggesting that genetic risk for schizophrenia causally 

contributes to an increased liability to use cannabis. A possibility is that individuals at risk for 

developing schizophrenia experience prodromal symptoms or negative affect that make them more 

likely to start using cannabis to cope or self-medicate [33]. The lack of evidence of a causal influence 

of cannabis use on schizophrenia may be due to the lower power of the instrumental variables. The 

instrumental variable based on schizophrenia SNPs explained 3.38% of variance in liability to 

schizophrenia. For cannabis use, the genetic instruments explained 0.63% and 0.12% of the variance 

in cannabis use for SNPs included with p<1e-05 and p<5e-08, respectively. 

Our GWAS of lifetime cannabis use, which is the largest to date, revealed significant 

associations in 12 putatively novel regions. Among these, the most promising candidates for future 

functional studies are CADM2, NCAM1, the ZNF704 region, and multiple genes located at 16p11.2. 

Our findings further indicated a causal influence of schizophrenia on cannabis use and substantial 

genetic overlap between cannabis use and use of other substances, mental health, and personality 

traits, such as risk-taking and extraversion.  
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Online Methods 

 

Samples 

Data from 3 sources were obtained: ICC, 23andMe and UK-Biobank (total N=184,765). We used 

existing GWAS summary statistics from the ICC, based on data from 35,297 individuals of European 

ancestry from 16 cohorts from Northern America, Europe, and Australia [5]. The overall sample 

included 55.5% females and the age ranged between 16 and 87 years with a mean of 35.7 years. An 

average of 42.8% of the individuals had used cannabis during their lifetime. The second set of results 

is derived from the personal genetics company 23andMe Inc. . Data were available for 22,683 

individuals of European Ancestry who provided informed consent and answered surveys online 

according to a human subjects protocol approved by Ethical & Independent Review Services, a 

private institutional review board. The sample included 55.3% females and the age ranged between 

18 and 94 years with a mean of 54.0 years. Within the sample, 43.2% had used cannabis during their 

lifetime. The third sample is obtained from UK-Biobank. Data were available for 126,785 individuals 

of European ancestry. The sample included 56.3% females and the age ranged between 39 and 72 

years with a mean of 55.0 years.  Within the sample, 22.3% had used cannabis during their lifetime. 

 

Phenotype and covariates 

For all participants, self-report data were available on whether the participant had ever used 

cannabis during their lifetime: yes (1) versus no (0). Measurement instruments and phrasing of the 

questions about lifetime cannabis use differed across the samples. For the ICC study this has been 

described for each cohort in the original paper [5]. As part of their online questionnaire, 23andMe 

used the following phrase to examine lifetime cannabis use: ‘Have you ever in your life used the 

following: Marijuana?’. The UK-Biobank – as part of an online follow-up questionnaire - asked: ‘Have 

you taken CANNABIS (marijuana, grass, hash, ganja, blow, draw, skunk, weed, spliff, dope), even if it 

was a long time ago?’.  
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Genotyping and imputation 

Genotyping was performed on various genotyping platforms and standard quality control checks 

were performed prior to imputation. Genotype data were imputed using the 1000 Genomes phase 1 

release reference set [34] for ICC and 23andMe, and the Haplotype Reference Consortium reference 

set [35] for the UK-Biobank sample. Information about samples, genotyping, and imputation is 

summarized in Supplementary Table S10. After quality control, the ICC sample comprised 35,297 

individuals and 6,643,927SNPs, 23andMe 22,683 individuals and 7,837,888 SNPs, and the UK-Biobank 

sample 126,785 individuals and 10,827,718 SNPs. 

 

Genome-wide association analyses 

We conducted the GWAS in 23andMe and UK-Biobank samples separately. Associations between the 

binary phenotype and SNPs were tested using a logistic regression model accounting for the effects 

of sex, age, ancestry, and genotype batch (and age2 in the UK-Biobank sample). The GWAS for UK-

Biobank were performed in PLINK 1.9 [36] and for 23andMe in an internally developed pipeline. We 

then meta-analysed the GWAS results from ICC, 23andMe, and UK-Biobank. Prior to conducting the 

meta-analysis, additional quality control of the summary statistics of each study was conducted in 

EasyQC [37]. Because of varying GWAS methods and sample characteristics (see Supplementary 

Table S10), slightly different quality control criteria were used for the 3 samples (see Supplementary 

Table S11). All 3 samples were aligned with the Haplotype Reference Consortium panel using the 

EasyQC R-package [37], in order to ensure that RS-numbers and chromosome-basepair positions 

referred to the exact same variants and to correct for strand effects. Variants were deleted if they 

had a minor allele frequency diverging more than 0.15 from that in the reference panel. 

We applied genomic control to the 3 GWAS files prior to meta-analysis to ensure none of 

the samples contributed disproportionately to the meta-analysis results [38]. Inflation due to 

stratification was estimated using LD-score regression; the intercept was used to correct the test 
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statistics (b0= 1.003, SE=0.007 for ICC, b0=1.004, SE=0.006) for 23andMe, b0=1.022, SE=0.007 for UK-

Biobank). We then performed a fixed effects meta-analysis based on effect sizes (log odds ratios 

(OR)) and standard errors in METAL [39]. We applied the conventional p-value threshold of 5e-08 as 

an indication of genome-wide significance. The meta-analysis was performed on 11,696,151 SNPs 

that passed quality control. The combined sample size of the meta-analysis was 184,764 individuals, 

but note that the sample size varies per SNP due to differential missingness across samples.  

Regional plots were created using LocusZoom [40], with varying window size for optimal 

visualization (see Supplementary Figure S5). 

 

Gene-based test of association 

Testing associations on the level of protein-coding genes is more biologically meaningful and more 

powerful (lower multiple testing burden) than testing solely on the level of SNPs. Gene-based 

analysis was used to test associations for aggregates of variants in protein-coding genes. The analysis 

was conducted in MAGMA (v 1.6) [6], which uses the 1000 Genomes reference-panel (phase 3, 2012) 

to control for LD. SNPs were mapped to genes if they were located in or within 5 kb from the gene, 

such that 4,760,663 SNPs (41%) could be mapped to at least one of 18,269 protein-coding genes in 

the reference panel. The significance threshold was set at a Bonferroni corrected p<0.05 

(0.05/18,269=2.74e-06). 

 

SNP-based heritability analysis 

The proportion of variance in liability to cannabis use that could be explained by the aggregated 

effect of all SNPs (h2
SNPs) was estimated using LD-Score Regression analysis [41]. The method is based 

on the premise that an estimated SNP effect-size includes effects of all SNPs in linkage disequilibrium 

(LD) with that SNP. A SNP that tags many other SNPs will have a higher probability of tagging a causal 

genetic variant compared to a SNP that tags few other SNPs. The LD score measures the amount of 

genetic variation tagged by a SNP within a specific population. Accordingly, assuming a trait with a 
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polygenic architecture, SNPs with a higher LD-score have on average stronger effect sizes than SNPs 

with lower LD-scores. When regressing the effect size from the association analysis against the LD 

score for each SNP, the slope of the regression line provides an estimate of the proportion of 

variance accounted for by all analysed SNPs [41]. For this analysis, we included 1,179,898 SNPs that 

were present in all cohorts and the HapMap 3 reference panel. Standard LD scores were used as 

provided by Bulik-Sullivan et al. [41] based on the Hapmap 3 reference panel, restricted to European 

populations. 

 

Identification of genes with differential expression levels between cannabis users and non-users  

We used summary S-PrediXcan to integrate eQTL information with summary statistics from the 

lifetime cannabis use GWAS meta-analysis to identify eGenes (i.e., genes of which genetically 

predicted expression levels are associated with cannabis use [20]). Briefly, S-PrediXcan estimates 

gene expression weights by training a linear prediction model in samples with both gene expression 

and SNP genotype data. The weights are then used to predict gene expression from GWAS summary 

statistics, while incorporating the variance and co-variance of SNPs from an LD reference panel. We 

used expression weights for 44 tissues from the GTEx Project (V6p) and the DGN whole blood cohort, 

generated by Gamazon et al. [42] and LD information from the 1000 Genome Project Phase 3 [43]. 

These data were processed with beta values and standard errors from the lifetime cannabis use 

GWAS meta-analysis to estimate the expression-GWAS association statistic. We used a 

transcriptome-wide significant threshold of p<2.53e-07, which is the Bonferroni corrected threshold 

when adjusting for all tissues and genes (i.e., 197,680 gene-based tests in the GTEx and DGN 

reference sets). 
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We used the GTEXPortal [https://www.gtexportal.org/home/; GTEx Analysis Release V7; 

44] to obtain gene expression levels of CADM2 across tissues. We used the same portal to plot a 

multi-tissue eQTL comparison of the top SNP rs2875907. The multi-tissue eQTL plot shows both the 

single-tissue eQTL p-value and the multi-tissue posterior probability from METASOFT  [45].  

 

Genetic correlation with use of other substances and mental health phenotypes 

We used cross-trait LD-Score regression [46] to estimate the genetic correlation between lifetime 

cannabis use and 25 other traits using GWAS summary statistics. The genetic covariance is estimated 

using the slope from the regression of the product of z-scores from 2 GWASs on the LD score. The 

estimate represents the genetic covariation between the 2 traits based on all polygenic effects 

captured by SNPs. Summary statistics from well-powered GWASs were available for 25 relevant 

substance use and mental health traits, including nicotine, alcohol and caffeine use, schizophrenia, 

depression, bipolar disorder, and loneliness (Supplementary Table S5). To correct for multiple testing 

we adopted a Bonferroni corrected p-value threshold of significance of 0.002. LD scores were based 

on the HapMap 3 reference panel, restricted to European populations [47]. 

 

Causal association between cannabis use and schizophrenia: Two-sample Mendelian randomisation 

We performed two-sample Mendelian randomisation analyses (MR) [29] to examine whether there 

is evidence for a causal relationship from cannabis use to schizophrenia or vice versa. All analyses 

were performed with the R package of database and analytical platform MR-Base [48]. 

MR utilizes genetic variants strongly associated with an exposure variable as an ‘instrument’ 

to test for causal effects of the exposure on an outcome variable. This approach minimizes the risk of 

spurious findings due to confounding or reverse causation present in observational studies, provided 

that the following assumptions are met: 1) the genetic instrument is predictive of the exposure 

variable, 2) the genetic instrument is independent of confounders, and 3) the genetic instrument is 

not directly associated with the outcome variable, other than by its potential causal effect through 
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the exposure (i.e. there is no directional pleiotropy) [49]. Two-sample Mendelian randomisation 

refers to the application of Mendelian randomisation methods to well-powered summary association 

results estimated in non-overlapping sets of individuals [29] in order to reduce instrument bias 

towards the exposure-outcome estimate. 

Bi-directional causal effects were tested between lifetime cannabis use and schizophrenia. 

We used genetic variants from the cannabis GWAS as well as those from the largest schizophrenia 

GWAS [50] to serve as instruments (gene-exposure association). For lifetime cannabis use we used 2 

genetic instruments; 1) an instrument including all independent genetic variants that were genome-

wide significantly associated with lifetime cannabis use (p<5e-08; 4 SNPs), and 2) an instrument 

including independent variants with a more lenient significance threshold (p<1e-05; 37 SNPs). For 

schizophrenia we used one genetic instrument,  including independent genetic variants that were 

genome-wide significantly associated with schizophrenia  (instrument p<5e-08; 109 SNPs). 

Information on the included SNPs in the genetic instruments is provided in Supplementary Table S6.  

Genetic variants were pruned (r2<0.01) and the remaining genetic variants (or proxies 

(r2≥0.8) when an instrumental SNP was not available in the other GWAS) were then identified in 

GWAS summary-level data of the outcome variable (gene-outcome association). Note that because 

not all exposure SNPs or their proxies are necessarily available also in the outcome dataset and 

because some SNPs were palindromic not all independent SNPs identified in the exposure dataset 

have been included in the analyses (see Supplementary Table S6). 

Evidence for both a gene-exposure and a gene-outcome association suggests a causal effect, 

provided that the MR assumptions are met. To combine estimates from individual genetic variants 

we applied inverse-variance weighted (IVW) linear regression [51]. In addition, 4 sensitivity analyses 

more robust to horizontal pleiotropy were applied, each relying on distinct assumptions regarding 

instrument validity: Weighted Median [52], MR-Egger [30], Simple Mode, and Weighted Mode [53]. 

The weighted median approach provides a consistent estimate of the causal effect even when up to 

50% of the weight comes from invalid instruments [52]. MR-Egger regression applies Egger’s test to 
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MR instruments that consist of multiple genetic variants [30, 54]. MR-Egger provides a consistent 

estimate of the causal effect, provided that the strength of the genetic instrument (the association 

between SNPs and exposure) does not correlate with the effect the instrument has on the outcome 

(i.e. the InSIDE assumption (Instrument Strength Independent of Direct Effect)). This is a weaker 

assumption than the assumption of no pleiotropy. Finally, the Simple and Weighted Mode methods 

can produce an unbiased result, as long as the most common causal effect estimate is a consistent 

estimate of the true causal effect [the Zero Modal Pleiotropy Assumption (ZEMPA), 53]. 

To calculate variance explained (R2) by the instrument, first we selected a single SNP to 

obtain an estimate of the phenotypic variance, var(y). Assuming effect sizes are normally distributed, 

we used the quantile function of the student t-distribution to transform the p-value of the SNP 

association into an estimate of t, t .̂ The number of degrees of freedom and N were based on the 

effective sample size (4/(1/cases+1/controls)). The effective sample sizes were estimated at 

N=130,072 for schizophrenia and N=180,934 for cannabis use. The corresponding value of r was 

calculated using the formula  t =̂r / (sqrt[(1- R2)/(N-2)] and obtained the R2 that corresponds to  t  ̂

with the online tool http://vassarstats.net/rsig.html. Subsequently, we approximated the variance of 

the phenotype y using var (y)=(2*MAF*(1-MAF)*β2)/ R2 in which MAF denotes the Minor Allele 

Frequency and  β the effect size of the specific SNP. Finally, we used the estimated value of var (y) to 

calculate the R2 for the remaining SNPs of interest using R2=(2*MAF*(1-MAF)*β2)/var(y); and 

summed the R2 of all SNPs of interest included in the instrumental variable to obtain an estimate of 

the total R2 explained by the instrument. 
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Tables 

Chromosomal region (Chr), Gene refers to the gene the SNP is located in or the nearest gene. eQTL target gene (eGene) obtained from the S-PrediXcan 

analysis, base pairs location SNP on Hg19 (BP), allele 1 (A1), allele 2 (A2), Frequency of allele 1 (Freq A1), number of individuals for which variant was 

included (N), beta of the effect allele A1 (β), standard error (SE).  

* Direction per sample: allele A1 increases (+) or decreases (-) liability for cannabis use, or sample did not contribute to this SNP (?). Order of samples: ICC, 

23andMe, UK-Biobank. Independent SNPs were selected as SNPs with linkage disequilibrium R2<0.1 using a window size of 250 kB. 

  

Table 1. Association results of 4 independent SNPs that are significantly associated with lifetime cannabis use. 

SNP rs Chr Gene eGene BP A1 A2 Freq A1 N β SE p-value Direction* 

rs2875907 3p12.1 CADM2 CADM2 85518580 A G 0.352 181,675 0.070 0.009 1.59e-16 +++ 

rs9773390 8q21.13 ZNF704 None 81565692 T C 0.933 47,524 -0.171 0.029 5.99e-9 --? 

rs9919557 11q23.2 NCAM1 None 112877408 T C 0.614 180,428 -0.054 0.008 1.37e-10 --- 

rs10499 16p11.2 RABEP2, 

ATP2A1 

ATP2A1, SH2B1, TUFM, 

EIF3C, SBK1, EIF3CL, 

SULT1A2, NFATC2IP, NPIPB7 

28915527 A G 0.651 179,767 0.052 0.009 1.52e-9 +++ 
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Table 2. Genes identified in the MAGMA and/ or S-PrediXcan analyses. Gene-based test parameters 

are provided for genes with a p-value below 2.74e-06 in the MAGMA test (p<0.05 with Bonferroni 

correction for the 18,269 tested genes). If genes were significant in the S-PrediXcan analysis only 

the corresponding S-PrediXcan parameters were included and the row was hightlighted (gray). 

Locus Top genes BP start BP stop #SNPs Z p-value 

2p12 LRRTM4 76969849 77754502 3561 4.72 1.15e-06 

3p12.1 CADM2 85003133 86128579 4262 8.47 1.28e-17 

6p12.1 

 

 

 

BEND6 56814773 56897450 220 5.86 1.83e-07 

KIAA1586 56906343 56925023 30 4.80 7.89e-07 

BAG2 57032104 57055013 36 4.64 1.71e-06 

RAB23 57046790 57092112 73 5.60 1.06e-08 

6q25.3 ARID1B 157093980 157536913 1324 4.75 1.01e-06 

8q21.13 ZNF704 81535686 81792016 526 4.75 1.01e-06 

10q24.32 

 

 

AS3MT 104624183 104666656 151 5.29 6.23e-08 

CNNM2 104673075 104843344 516 5.04 2.31e-07 

NT5C2 104842774 104958063 347 4.62 1.92e-06 

11q23.2 NCAM1 112826969 113154158 1234 6.19 2.94e-10 

12q24.12 

 

 

 

ACAD10 112118857 112199911 130 4.90 4.91e-07 

ALDH2 112199691 112252789 88 4.78 8.97e-07 

MAPKAPK5 112275032 112336228 168 4.63 1.87e-06 

TMEM116 112364086 112456023 207 4.66 1.61e-06 

16q12.1 

 

 

 

SBK1 28303840 28335170 16 5.57 2.51e-08 

NPIPB7 28467693 28481868 15 5.28 1.30e-07 

CLN3 28483600 28510897 53 5.41 3.19e-08 

APOBR 28500970 28515291 37 5.37 4.02e-08 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/234294doi: bioRxiv preprint 

https://doi.org/10.1101/234294


23 
 

 IL27 28505683 28523155 37 5.40 3.42e-08 

CCDC101 28560249 28608111 143 4.68 1.41e-06 

SULT1A2 28603264 28608391 9 5.38 7.56e-08 

EIF3C 28722782 28747053 6 5.65 1.59e-08 

EIF3CL 28722785 28747053 16 5.51 3.66e-08 

ATXN2L 28829369 28853558 63 5.63 8.79e-09 

TUFM 28848732 28862729 34 5.60 1.05e-08 

SH2B1 28867939 28890534 52 5.50 1.91e-08 

ATP2A1 28884192 28920830 65 5.63 9.28e-09 

NFATC2IP  28962318 28977767 14 5.32 1.03e-07 

RABEP2 28910742 28942339 58 5.13 1.54e-07 

17p13.3 SRR 2202244 2233553 85 5.39 3.44e-08 

TSR1 2220972 2245678 68 5.20 9.84e-08 

18q11.2 C18orf8 21078434 21118311 98 4.98 3.13e-07 

NPC1 21081148 21171581 220 5.01 2.78e-07 

Gene number corresponding to regional plots (ID), gene name (Symbol), Chromosome (Chr), location 

in base pairs (hg19) at beginning and end of gene (BP start/stop), number of SNPs included in the 

gene (#SNPs), test-statistic for the test of association (Z). 
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Table 3. Bidirectional two-sample Mendelian randomisation analyses between lifetime cannabis use and schizophrenia. 

 Cannabis-Schizophrenia  

(p<5e-08, 4 SNPs) 

Cannabis-Schizophrenia  

(p<1e-05, 37 SNPs) 

Schizophrenia-Cannabis  

(p<5e-08, 110 SNPs) 

 B SE (B) OR p B SE (B) OR p B SE (B) OR p 

IVW 0.007 0.187 1.01 0.971 0.029 0.075 1.03 0.695 0.150 0.046 1.16 0.001 

Weighted median -0.085 0.100 0.92 0.398 -0.004 0.061 1.00 0.942 0.164 0.051 1.18 0.001 

MR-Egger -0.098 0.544 0.91 0.873 0.013 0.183 1.01 0.943 0.059 0.212 1.06 0.817 

Simple Mode -0.208 0.123 0.81 0.190 -0.109 0.119 0.90 0.366 0.321 0.173 1.38 0.066 

Weighted  Mode -0.101 0.107 0.90 0.414 -0.050 0.084 0.95 0.559 0.315 0.185 1.37 0.091 

Inverse Variance Weighted regression analysis (IVW); risk coefficient representing the change in outcome for a one-unit increase in the exposure variable 

(B); standard error of the B (SE (B)); odds ratios represent the odds of schizophrenia for lifetime cannabis users versus non-users (when cannabis is the 

exposure) or the odds of lifetime cannabis use for those with a schizophrenia diagnosis versus those without (when schizophrenia is the exposure) (OR); p-

value (p).  
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Figures 

 

Figure 1. A) QQ-plot of the distribution of the -log 10(p-values) observed for the SNP associations with 

lifetime cannabis use against those expected under the null hypothesis. There was no evidence for 

stratification effects (LD score regression b0=0.90, SE=0.007). B) Manhattan plot for the SNP-based 

GWAS meta-analysis. The SNP with the smallest p-value per genome-wide significant locus is 

annotated. The red line represents the genome-wide significance threshold of p<5e-08.  
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Figure 2. Regional plots for the genome-wide significant hits, with A) lead SNP rs2875907 on 

chromosome 3, B) rs9773390 on chromosome 8, C) rs9919557 on chromosome 11, and D) rs10499 

on chromosome 16. Underlined in yellow genes that were identified in the gene-based test; in blue 

genes that were identified in the S-PrediXcan analysis only (in light blue pseudo genes). 
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Figure 3. Manhattan plot for the gene-based test of association. The red line represents the genome-

wide significance threshold of p<2.74e-06. 
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Figure 4. Genetic overlap between lifetime cannabis use and other phenotypes. Error bars represent 

95% confidence intervals and asterisks indicate significant associations after correction for multiple 

testing. 
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