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Abstract 27	

The microRNA-34a is a well-studied tumor suppressor microRNA (miRNA) 28	

and a direct downstream target of TP53 with roles in several pathways 29	

associated with oncogenesis, such as proliferation, cellular growth, and 30	

differentiation. Due to its broad tumor suppressive activity, it is not surprising 31	

that miR34a expression is altered in a wide variety of solid tumors and 32	

hematological malignancies. However, the mechanisms by which miR34a is 33	

regulated in these cancers is largely unknown.  In this study, we find that a 34	

long non-coding RNA transcribed antisense to the miR34a host gene, is 35	

critical for miR34a expression and mediation of its cellular functions in multiple 36	

types of human cancer. We name this long non-coding RNA lncTAM34a, and 37	

characterize its ability to facilitate miR34a expression under different types of 38	

cellular stress in both TP53 deficient and wild type settings. 39	
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Introduction 40	

In recent years advances in functional genomics have revolutionized our 41	

understanding of the human genome. Evidence now points to the fact that 42	

approximately 75% of the genome is transcribed but only ~1.2% of this is 43	

responsible for encoding proteins (International Human Genome Sequencing 44	

Consortium 2004, Djebali et al. 2012). Of these recently identified elements, 45	

long non-coding (lnc) RNAs are defined as transcripts exceeding 200 base 46	

pairs (bp) in length with a lack of a functional open reading frame. Some 47	

lncRNAs are dually classified as antisense (as) RNAs that are expressed from 48	

the same locus as a sense transcript in the opposite orientation. Current 49	

estimates using high-throughput transcriptome sequencing, indicate that up to 50	

20-40% of the approximately 20,000 protein-coding genes exhibit antisense 51	

transcription (Chen et al. 2004, Katayama et al. 2005, Ozsolak et al. 2010).  52	

Systematic large-scale studies have shown aberrant expression of asRNAs to 53	

be associated with tumorigenesis (Balbin et al. 2015) and, although 54	

characterization of several of these has identified asRNA-mediated regulation 55	

of multiple well known tumorigenic factors (Yap et al. 2010, Johnsson et al. 56	

2013), the vast majority of potential tumor-associated lncRNAs have not yet 57	

been characterized. The known mechanisms by which asRNAs accomplish 58	

their regulatory functions are diverse, and include recruitment of chromatin 59	

modifying factors (Rinn et al. 2007, Johnsson et al. 2013), acting as 60	

microRNA (miRNA) sponges (Memczak et al. 2013), and causing 61	

transcriptional interference (Conley et al. 2012). 62	

 63	

Responses to cellular stress, e.g. DNA damage, sustained oncogene 64	
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expression, and nutrient deprivation, are all tightly controlled cellular pathways 65	

that are almost universally dysregulated in cancer. Cellular signaling, in 66	

response to these types of stresses, often converges on the transcription 67	

factor TP53 that regulates transcription of coding and non-coding downstream 68	

targets. One important non-coding target of TP53 is the tumor suppressor 69	

miRNA known as miR34a (Raver-Shapira et al. 2007). 70	

Upon TP53 activation miR34a expression is increased allowing it to down-71	

regulate target genes involved in cellular pathways such as growth factor 72	

signaling, apoptosis, differentiation, and cellular senescence (Lal et al. 2011, 73	

Slabakova et al. 2017). Thus, miR34a is a crucial factor in mediating activated 74	

TP53 response and, the fact that it is often deleted or down-regulated in 75	

human cancers indicates, its tumor suppressive effect and makes it a valuable 76	

prognostic marker (Cole et al. 2008, Gallardo et al. 2009, Zenz et al. 2009, 77	

Cheng et al. 2010, Liu et al. 2011). Reduced miR34a transcription is mediated 78	

via epigenetic regulation in many solid tumors, including colorectal-, 79	

pancreatic-, and ovarian cancer (Vogt et al. 2011), as well as numerous types 80	

of hematological malignancies (Chim et al. 2010). In addition, miR34a has 81	

been shown to be transcriptionally regulated via TP53 homologs, TP63 and 82	

TP73, other transcription factors, e.g. STAT3 and MYC, and, in addition, post-83	

transcriptionally through miRNA sponging by the NEAT1 lncRNA (Chang et al. 84	

2008, Su et al. 2010, Agostini et al. 2011, Rokavec et al. 2015, Ding et al. 85	

2017). Despite these findings, the mechanisms underlying miR34a regulation 86	

in the context of oncogenesis have not yet been fully elucidated.  87	

 88	
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Studies across multiple cancer types have reported a decrease in oncogenic 89	

phenotypes when miR34a expression is induced in a TP53-null background, 90	

although endogenous mechanisms for achieving this have not yet been 91	

discovered (Liu et al. 2011, Ahn et al. 2012, Yang et al. 2012, Stahlhut et al. 92	

2015, Wang et al. 2015). In addition, previous reports from large-scale studies 93	

interrogating global TP53-mediated regulation of lncRNAs have identified a 94	

lncRNA (known as RP3-510D11.2 and LINC01759) originating in the 95	

antisense orientation from the miR34a locus that is induced upon numerous 96	

forms of cellular stress (Rashi-Elkeles et al. 2014, Hunten et al. 2015, Leveille 97	

et al. 2015, Ashouri et al. 2016, Kim et al. 2017).  Despite this, none of these 98	

studies have functionally characterized this transcript, which we name Long-99	

Non-Coding Transcriptional Activator of MiR34a (lncTAM34a). In this study 100	

we functionally characterize the lncTAM34a transcript, and find that it 101	

positively regulates miR34a expression resulting in a decrease of several 102	

tumorigenic phenotypes. Furthermore, we find that lncTAM34a-mediated up-103	

regulation of miR34a is sufficient to induce endogenous cellular mechanisms 104	

counteracting several types of stress stimuli in a TP53-deficient background. 105	

Finally, similar to the functional roles of antisense transcription at protein-106	

coding genes, we identify a rare example of an antisense RNA capable of 107	

regulating a cancer-associated miRNA. 108	

 109	

Results 110	
 111	
lncTAM34a is a broadly expressed non-coding transcript whose levels 112	
correlate with miR34a expression 113	
 114	
lncTAM34a is transcribed in a “head-to-head” orientation with approximately 115	

100 base pair overlap with the miR34a host gene (HG) (Fig. 1a). Due to the 116	
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fact that sense/antisense pairs can be both concordantly and discordantly 117	

expressed, we sought to evaluate this relationship in the case of miR34a HG 118	

and its asRNA. Using a diverse panel of cancer cell lines, we detected co-119	

expression of both the miR34a HG and lncTAM34a (Fig. 1b). We used cell 120	

lines with a known TP53 status in the panel due to previous reports 121	

that miR34a and lncTAM34a are known downstream targets of TP53. These 122	

results indicate that miR34a HG and lncTAM34a are co-expressed and that 123	

their expression levels correlate with TP53 status, with TP53-/- cells tending to 124	

have decreased or undetectable expression of both transcripts. 125	

  126	
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	127	
 128	
Figure 1: Characterization of the lncTAM34a transcript. A) Architecture of the miR34a locus 129	
(hg38, RefSeq) including miR34a HG, mature miR34a, and lncTAM34a (LINC01759). H3K4me3 130	
ChIP-seq data, indicating the active promoter region, and conservation are also shown. B) Semi-131	
quantitative PCR data from the screening of a panel of cancer cell lines. Wild type TP53 is indicated 132	
with +, - indicates null, and +* represents either a non-null TP53 mutation or wild-type TP53 with 133	
mechanisms present that inhibit its function (e.g. SV40 large T antigen in HEK293T cells). C) TCGA 134	
correlation analysis. Expression was log2 normalized to the maximum expression value. 135	
Nonsynonymous TP53 mutations are indicated on the top of the plot (cancer type abbreviation 136	
definitions and corresponding statistics are in Figure 1-Supplement 1). D) 3’-RACE sequencing results 137	
and the annotated lncTAM34a (LINC01759) are shown. E) Semi-quantitative PCR results from the 138	
primer walk assay (i.e. common reverse primer (exon 2) and forward primers (F10-F15) staggered 139	
upstream of lncTAM34a’s annotated start site) performed using HEK293T cells (Figure 1-Supplement 140	
2a details primer placement) F) Coding potential analysis assessed via the Coding-potential 141	
Assessment Tool including lncTAM34a, two known non-coding RNAs (HOTAIR and XIST), and three 142	
protein-coding RNAs (β-actin, Tubulin, and MYC). 143	
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We next sought to analyze primary cancer samples to examine whether a 144	

correlation between lncTAM34a and miR34a expression levels could be 145	

identified. We utilized RNA sequencing data from The Cancer Genome Atlas 146	

(TCGA) after stratifying patients by cancer type, TP53 status, and, in the case 147	

of breast cancer, cancer subtypes. The results indicate that lncTAM34a 148	

and miR34a expression are strongly correlated in the vast majority of cancer 149	

types examined, both in the presence and absence of wild-type TP53 (Fig. 150	

1c, Figure 1-Figure Supplement 1a). The results also further confirm that 151	

the expression levels of both miR34a and lncTAM34a are significantly 152	

reduced in patients with nonsynonymous TP53 mutations (Figure 1-Figure 153	

Supplement 1b). 154	

 155	

Next, we aimed to gain a thorough understanding of lncTAM34a’s molecular 156	

characteristics and cellular localization. To experimentally determine the 3’ 157	

termination site for the lncTAM34a transcript we performed 3’ rapid 158	

amplification of cDNA ends (RACE) using the U2OS osteosarcoma cell line 159	

that exhibited high endogenous levels of lncTAM34a in the cell panel 160	

screening. Sequencing the cloned cDNA indicated that the transcripts 3’ 161	

transcription termination site is 525 bp upstream of the lncTAM34a transcript’s 162	

annotated termination site (Fig. 1d). Next, we characterized the lncTAM34a 5’ 163	

transcription start site by carrying out a primer walk assay, i.e. a common 164	

reverse primer was placed in exon 2 and forward primers were gradually 165	

staggered upstream of lncTAM34a’s annotated start site (Figure 1-Figure 166	

Supplement 2a). Our results indicated that the 5’ start site for lncTAM34a is 167	

in fact approximately 90 bp (F11 primer) to 220 bp (F12 primer) upstream of 168	
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the annotated start site (Fig. 1e). Polyadenylation status was evaluated via 169	

cDNA synthesis with either random nanomers or oligo(DT) primers followed 170	

by semi-quantitative PCR which showed that lncTAM34a is polyadenylated 171	

although the unspliced form seems to only be present in a polyadenylation 172	

negative state (Figure 1-Figure Supplement 2b). Furthermore, we 173	

investigated the propensity of lncTAM34a to be alternatively spliced in U2OS 174	

cells, using PCR cloning followed by sequencing and found that the transcript 175	

is post-transcriptionally spliced to form multiple isoforms (Figure 1-Figure 176	

Supplement 2c). In order to evaluate the subcellular localization of 177	

lncTAM34a, we made use of RNA sequencing data from five cancer cell lines 178	

included in the ENCODE (Encode Project Consortium	2012) project that had 179	

been fractionated into cytosolic and nuclear fractions. The analysis revealed 180	

that the lncTAM34a transcript primarily localizes to the nucleus with only a 181	

minor fraction in the cytosol (Figure 1-Figure Supplement 2d). 182	

 183	

Lastly, we utilized several approaches to evaluate the coding potential of 184	

the lncTAM34a transcript. The Coding-Potential Assessment Tool is a 185	

bioinformatics-based tool that uses a logistic regression model to evaluate 186	

coding-potential by examining open reading frame (ORF) length, ORF 187	

coverage, Fickett score, and hexamer score (Wang et al. 2013). Results 188	

indicated that lncTAM34a has a similar low coding capacity to known non-189	

coding transcripts such as HOTAIR and XIST (Fig. 1F). We further confirmed 190	

these results using the Coding-Potential Calculator that uses a support vector 191	

machine-based classifier and accesses an alternate set of discriminatory 192	

features (Figure 1-Figure Supplement 2e) (Kong et al. 2007). Finally, we 193	
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downloaded mass spectrometry spectra for 11 cancer cell lines (Geiger et al. 194	

2012), 7 of which were also present in the cell line panel above (Fig. 1b), and 195	

searched it against a database of human protein sequences which also 196	

contained the 6 frame translation of lncTAM34a. However, we did not manage 197	

to detect any peptides matching the sequence in any of the 11 cell lines. 198	

Taken together our results indicate that lncTAM34a is not a coding transcript 199	

and that it is not translated to any significant degree. 200	

 201	

TP53-mediated regulation of lncTAM34a expression 202	

miR34a is a known downstream target of TP53 and has been previously 203	

shown to exhibit increased expression within multiple contexts of cellular 204	

stress. Several global analyses of TP53-regulated lncRNAs have also shown 205	

lncTAM34a to be induced upon TP53 activation (Rashi-Elkeles et al. 2014, 206	

Hunten et al. 2015, Leveille et al. 2015, Ashouri et al. 2016, Kim et al. 2017). 207	

To confirm these results in our biological systems, we treated HEK293T, 208	

embryonic kidney cells, and HCT116, colorectal cancer cells, with the DNA 209	

damaging agent doxorubicin to activate TP53. QPCR-mediated 210	

measurements of both miR34a HG and lncTAM34a indicated that their 211	

expression levels were increased in response to doxorubicin treatment in both 212	

cell lines (Fig. 2a). To assess whether TP53 was responsible for the increase 213	

in lncTAM34a expression upon DNA damage, we treated TP53+/+ and TP53-/- 214	

HCT116 cells with increasing concentrations of doxorubicin and monitored the 215	

expression of both miR34a HG and lncTAM34a. We observed a dose-216	

dependent increase in both miR34a HG and lncTAM34a expression levels 217	

with increasing amounts of doxorubicin, revealing that these two transcripts 218	
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are co-regulated, although, this effect was largely abrogated in TP53-/- cells 219	

(Fig. 2b). These results indicate that TP53 activation increases lncTAM34a 220	

expression upon DNA damage. Nevertheless, TP53-/- cells also showed a 221	

dose-dependent increase in both miR34a HG and lncTAM34a, suggesting 222	

that additional factors, other than TP53 are capable of initiating an increase in 223	

expression of both of these transcripts upon DNA damage. 224	

  225	
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	226	

Figure 2:  TP53-mediated regulation of the miR34a locus. A) Evaluating the effects of 24 hours of 227	
treatment with 200 ng/ml doxorubicin on lncTAM34a and miR34a HG in HCT116 and HEK293T 228	
cells.* B) Monitoring miR34a HG and lncTAM34a expression levels during 24 hours of doxorubicin 229	
treatment in TP53+/+ and TP53-/- HCT116 cells.* C) Quantification of luciferase and renilla levels after 230	
transfection of HCT116 and HEK293T cells with the p1 construct (Figure 2-Supplement 2 contains a 231	
schematic representation of the p1 construct).* D) HCT116 cells were co-transfected with the p1 232	
construct and shRNA renilla or shRNA control and subsequently treated with increasing doses of 233	
doxorubicin. 24 hours post-treatment, cells were harvested and renilla and luciferase levels were 234	
measured using QPCR.* *Individual points represent results from independent experiments and the 235	
gray shadow indicates the density of those points. Error bars show the 95% CI, black horizontal lines 236	
represent the mean, and P values are shown over long horizontal lines indicating the comparison tested. 237	
All experiments in Figure 2 were performed in biological triplicate. 238	
  239	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 12	

The head-to-head orientation of miR34a HG and lncTAM34a, suggests that 240	

transcription is initiated from a single promoter in a bi-directional manner (Fig 241	

1a). To investigate whether miR34a HG and lncTAM34a are transcribed from 242	

the same promoter as divergent transcripts, we cloned the previously reported 243	

miR34a HG promoter, a ~300 bp region including the TP53 binding site and 244	

the majority of the first exon of both transcripts, into a luciferase/renilla dual 245	

reporter vector (Figure 2-Figure Supplement 1a-b) (Raver-Shapira et al. 246	

2007). We hereafter refer to this construct as p1. Upon transfection of p1 into 247	

HCT116 and HEK293T cell lines we observed increases in both luciferase 248	

and renilla indicating that miR34a HG and lncTAM34a expression can be 249	

regulated by a single promoter contained within the p1 construct (Fig. 2c). 250	

 251	

lncTAM34a facilitates miR34a induction in response to DNA damage 252	

We hypothesized that lncTAM34a may regulate miR34a HG levels and, in 253	

addition, that the overlapping regions of the sense and antisense transcripts 254	

may mediate this regulation. Knockdown of endogenous lncTAM34a is 255	

complicated by its various isoforms (Figure 1-Figure Supplement 2c). For 256	

this reason, we utilized the p1 construct to evaluate the regulatory role of 257	

lncTAM34a on miR34a HG. Accordingly, we first co-transfected the p1 258	

construct, containing the overlapping region of the two transcripts, and two 259	

different short hairpin (sh) RNAs targeting renilla into HEK293T cells and 260	

subsequently measured luciferase and renilla expression. The results 261	

indicated that shRNA-mediated knock-down of the p1-renilla transcript 262	

(corresponding to lncTAM34a) caused p1-luciferase (corresponding 263	

to miR34a HG) levels to concomitantly decrease (Figure 2-Figure 264	
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Supplement 2). The results suggest that lncTAM34a positively regulates 265	

levels of miR34a HG and that the transcriptional product of lncTAM34a within 266	

the p1 construct contributes to inducing a miR34a response. To further 267	

support these conclusions and better understand the role of lncTAM34a 268	

during TP53 activation, TP53+/+ HCT116 cells were co-transfected with p1 269	

and shRNA renilla (2.1) and subsequently treated with increasing doses of 270	

doxorubicin. Again, the results showed a concomitant reduction in luciferase 271	

levels upon knock-down of p1-renilla i.e. the lncTAM34a corresponding 272	

segment of the p1 transcript (Fig. 2d). Furthermore, the results showed that in 273	

the absence of p1-renilla the expected induction of p1-luciferase in response 274	

to TP53 activation by DNA damage is abrogated. Collectively these results 275	

indicate that lncTAM34a positively regulates miR34a expression and 276	

furthermore, suggests that it is crucial for an appropriate TP53-277	

mediated miR34a response to DNA damage. 278	

 279	

lncTAM34a can regulate miR34a host gene independently of TP53 280	

Despite the fact that TP53 regulates miR34a HG and lncTAM34a expression, 281	

our results showed that other factors are also able to regulate this locus (Fig. 282	

2b). Utilizing a lentiviral system, we stably over-expressed the lncTAM34a 283	

transcript in three TP53 -null cell lines, PC3 (prostate cancer), Saos2 284	

(osteogenic sarcoma), and Skov3 (ovarian adenocarcinoma). We first 285	

analyzed the levels of lncTAM34a in these stable cell lines, compared to 286	

HEK293T cells, which have high endogenous levels of lncTAM34a. On 287	

average, the over-expression was approximately 30-fold higher in the over-288	

expression cell lines than in HEK293T cells, roughly corresponding to 289	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 14	

physiologically relevant levels in cells encountering a stress stimulus, such as 290	

DNA damage (Figure 3-Figure Supplement 1). Analysis of miR34a levels in 291	

the lncTAM34a over-expressing cell lines showed that this over-expression 292	

resulted in a concomitant increase in the expression of miR34a in all three cell 293	

lines (Fig. 3a). These results indicate that, in the absence of 294	

TP53, miR34a expression may be rescued by activating lncTAM34a 295	

expression.  296	
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	297	

Figure 3: lncTAM34a positively regulates miR34a and its associated phenotypes. A) QPCR-298	
mediated quantification of miR34a expression in cell lines stably over-expressing lncTAM34a.* B) Cell 299	
cycle analysis comparing stably over-expressing lncTAM34a cell lines to the respective mock 300	
control.* C) Analysis of cellular growth over time in lncTAM34a over-expressing PC3 cells. Points 301	
represent the median from 3 independent experiments, the colored shadows indicate the 95% 302	
confidence interval, and vertical lines show the minimum and maximum values obtained from the three 303	
experiments. D) Differential phosphorylated polymerase II binding in lncTAM34a over-expressing PC3 304	
cells.* *Individual points represent results from independent experiments and the gray shadow 305	
indicates the density of those points. Error bars show the 95% CI, black horizontal lines represent the 306	
mean, and P values are shown over long horizontal lines indicating the comparison tested. 307	
  308	
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miR34a has been previously shown to regulate cell cycle progression, with 309	

miR34a induction causing G1 arrest (Raver-Shapira et al. 2007, Tarasov et al. 310	

2007). Cell cycle analysis via determination of DNA content showed a 311	

significant increase in G1 phase cells and a concomitant decrease in G2 312	

phase cells in the PC3 and Skov3 lncTAM34a over-expressing cell lines, 313	

indicating G1 arrest (Fig. 3b). The effects of miR34a on the cell cycle are 314	

mediated by its ability to target cell cycle regulators such as cyclin D1 315	

(CCND1) (Sun et al. 2008). Quantification of both CCND1 RNA expression 316	

(Figure 3-Figure Supplement 2a) and protein levels (Figure 3-Figure 317	

Supplement 2b) in the PC3 lncTAM34a over-expressing cell line showed a 318	

significant decrease of CCND1 levels compared to the mock control. 319	

Collectively, these results indicate that lncTAM34a-mediated induction of 320	

miR34a is sufficient to result in the corresponding miR34a-directed effects on 321	

cell cycle. 322	

 323	

miR34a is also a well-known inhibitor of cellular growth via its ability to 324	

negatively regulate growth factor signaling. Furthermore, starvation has been 325	

shown to induce miR34a expression causing inactivation of numerous pro-326	

survival growth factors (Lal et al. 2011). We further interrogated the effects 327	

of lncTAM34a over-expression by monitoring the growth of the PC3 stable cell 328	

lines in both normal and starvation conditions via confluency measurements 329	

over a 35-hour period. Under normal growth conditions there is a small but 330	

significant reduction (P = 3.0e-8; linear regression, Fig. 3c) in confluency in 331	

the lncTAM34a over-expressing cell lines compared to mock control. 332	

However, these effects on cell growth are drastically increased in starvation 333	
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conditions (P = 9.5e-67; linear regression; Fig. 3c). This is in agreement with 334	

our previous results, and suggests that lncTAM34a-mediated increases 335	

in miR34a expression are crucial under conditions of stress and necessary for 336	

the initiation of an appropriate cellular response. In summary, we find that 337	

over-expression of lncTAM34a is sufficient to increase miR34a expression 338	

and gives rise to known phenotypes observed upon induction of miR34a. 339	

 340	

lncTAM34a transcriptionally activates miR34a host gene 341	

Antisense RNAs have been reported to mediate their effects both via 342	

transcriptional and post-transcriptional mechanisms. Due to the fact that 343	

miR34a expression is undetected in wild type PC3 cells (Fig. 1b) but, upon 344	

over-expression of lncTAM34a, increases to detectable levels, we 345	

hypothesized that lncTAM34a is capable of regulating miR34a expression via 346	

a transcriptional mechanism. To ascertain if this is actually the case, we 347	

performed chromatin immunoprecipitation (ChIP) for phosphorylated 348	

polymerase II (polII) at the miR34a HG promoter in both lncTAM34a over-349	

expressing and mock control cell lines. Our results indicated a clear increase 350	

in phosphorylated polII binding at the miR34a promoter upon lncTAM34a 351	

over-expression indicating the ability of lncTAM34a to transcriptionally 352	

regulate miR34a levels (Fig. 3d). 353	

 354	
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	355	

Figure 4: Survival analysis in TCGA cancers. A) Kaplan-Meier survival curves comparing the 356	
effects of TP53-mutated samples (left), low lncTAM34a expression (middle) and low miR34a 357	
expression (right) to control samples in papillary kidney cancer (results for other cancers in Figure 4-358	
Supplement 1). Middle and Right panel include only TP53 wild type patients where RNAseq data 359	
exists.  B) Correlation analysis between the effects on the 5-year survival probability of TP53-mutated 360	
samples, low lncTAM34a expression, and low miR34a expression as indicated. For each variable the 5-361	
year survival probability was compared to the control group (negative values indicate lower survival, 362	
positive values indicate higher survival). Spearman correlation coefficients are given on the top left of 363	
each plot. Each dot indicates one cancer type (see Fig. 1c for legend). Boxplots on the bottom 364	
summarize the effects for the parameter on the x-axis, with indication of P values, as calculated using 365	
paired Wilcoxon signed rank test. Low expression was defined as TP53 non-mutated samples having 366	
expression values in the bottom 10th percentile.	  367	
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	368	
Low lncTAM34a expression levels are associated with decreased 369	
survival 370	
 371	
As TP53 mutations and low expression of miR34a have been associated with 372	

worse prognosis in cancer, we compared survival rates of samples with low 373	

expression of lncTAM34a (bottom 10th percentile) to control samples in 17 374	

cancer types from TCGA (Figure 4-Supplement 1) (Gallardo et al. 2009, 375	

Zenz et al. 2009, Liu et al. 2011). To correct for the effect of TP53 mutations 376	

we focused on non-TP53 mutated samples, and noted a worse survival for the 377	

low expression group in several cancers. This effect was most pronounced in 378	

papillary kidney cancer (unadjusted P=0.00095; Fig. 4a). By systematically 379	

comparing 5-year survival probabilities between the low expression group and 380	

the control group for each cancer we found a median reduction of 5-year 381	

survival probability of 9.6% (P=0.083; Wilcoxon signed rank test; Fig. 4b). 382	

Furthermore, we found that lncTAM34a expression showed similar patterns in 383	

terms of direction and strength of association with 5-year survival probability 384	

as miR34a expression (r=0.57, P=0.037) and TP53 mutations (r=0.80, 385	

P=0.00054) across the different cancer types (Fig. 4b). Although these results 386	

do not implicate any causal relationship, they do indicate a striking similarity 387	

between the association of worse prognosis and TP53 mutations, low 388	

miR34a, and low lncTAM34a expression. 389	
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	390	

Figure 5: A graphical summary of the proposed lncTAM34a function. Stress stimuli, originating in 391	
the cytoplasm or nucleus, activate TP53 as well as additional factors. These factors then bind to 392	
the miR34a promoter and drive baseline transcription levels of the sense and antisense 393	
strands. lncTAM34a serves to further increase miR34a HG transcription levels resulting in enrichment 394	
of polymerase II at the miR34a promoter and a positive feed-forward loop. miR34a HG then, in turn, is 395	
spliced and processed in multiple steps before the mature miR34a binds to the RISC complex allowing 396	
it to repress its targets and exert its tumor suppressive effects.	  397	
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Discussion 398	
 399	
Multiple studies have previously shown asRNAs to be crucial for the 400	

appropriate regulation of cancer-associated protein-coding genes and that 401	

their dysregulation can lead to perturbance of tumor suppressive and 402	

oncogenic pathways, as well as, cancer-related phenotypes (Yu et al. 2008, 403	

Yap et al. 2010, Serviss et al. 2014, Balbin et al. 2015). Here we show that 404	

asRNAs are also capable of regulating cancer-associated miRNAs resulting in 405	

similar consequences as protein-coding gene dysregulation (Fig. 4). 406	

Interestingly, we show that, both in the presence and absence of 407	

TP53, lncTAM34a provides an additional regulatory level to control miR34a 408	

expression in both homeostasis and upon encountering various forms of 409	

cellular stress. Furthermore, we find that lncTAM34a-mediated increase in 410	

miR34a expression is sufficient to drive the appropriate cellular responses to 411	

these stress stimuli (Fig. 2d and Fig. 3c). Previous studies have exploited 412	

various molecular biology methods to up-regulate miR34a expression in cells 413	

lacking wild type TP53 (Liu et al. 2011, Ahn et al. 2012, Yang et al. 2012, 414	

Stahlhut et al. 2015, Wang et al. 2015). In this study, we demonstrate a novel, 415	

endogenous mechanism of miR34a regulation that has similar phenotypic 416	

outcomes as has been previously shown for miR34a induction in a TP53 417	

deficient background. 418	

 419	

In agreement with previous studies, we demonstrate that upon encountering 420	

various types of cellular stress, TP53 in concert with additional factors initiates 421	

transcription at the miR34a locus, thus increasing the levels of lncTAM34a 422	

and miR34a (Rashi-Elkeles et al. 2014, Hunten et al. 2015, Leveille et al. 423	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 22	

2015, Ashouri et al. 2016, Kim et al. 2017). We found that over-expression of 424	

lncTAM34a leads to recruitment of polII to the miR34a promoter and 425	

hypothesize that lncTAM34a may provide positive feedback for miR34a 426	

expression whereby it serves as a scaffold for the recruitment of additional 427	

factors that facilitate polII-mediated transcription. In this manner, miR34a 428	

expression is induced, driving a shift towards a reduction in growth factor 429	

signaling, senescence, and in some cases apoptosis. On the other hand, in 430	

cells without functional TP53, other factors, which typically act independently 431	

or in concert with TP53, may initiate transcription of the miR34a locus. Due to 432	

the fact that lncTAM34a can alter miR34a expression in these cells, we 433	

suggest that it is interacting with one of these additional factors, possibly 434	

recruiting it to the miR34a locus in order to drive miR34a transcription, similar 435	

to mechanisms described for other lncRNAs (Hung et al. 2011, Ng et al. 2012, 436	

Ng et al. 2013). The head-to-head orientation of the miR34a HG and 437	

lncTAM34a causes sequence complementarity between the RNA and the 438	

promoter DNA, making targeting by direct binding an attractive mechanism. 439	

Previous reports have also illustrated the ability of asRNAs to form hybrid 440	

DNA:RNA R-loops and, thus, facilitate an open chromatin structure and the 441	

transcription of the sense gene (Boque-Sastre et al. 2015). The fact that the 442	

p1 construct only contains a small portion (~300 bp) of the lncTAM34a 443	

transcript indicates that this portion is sufficient to give rise to at least a partial 444	

miR34a inducing response and therefore, that lncTAM34a may be able to 445	

facilitate miR34a expression independent of additional factors (Fig 2d, Figure 446	

2-Figure Supplement 2a). Nevertheless, further work will need to be 447	

performed to explore the mechanism whereby lncTAM34a regulates miR34a 448	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 23	

gene expression.  449	

 450	

An antisense transcript arising from the miR34a locus, Lnc34a, has been 451	

previously reported to negatively regulate the expression of miR34a (Wang et 452	

al. 2016). Although the Lnc34a and lncTAM34a transcripts share some 453	

sequence similarity, we believe them to be separate RNAs that are, 454	

potentially, different isoforms of the same gene. We utilized CAGE and 455	

RNAseq data from the ENCODE project to evaluate the presence of 456	

lncTAM34a and Lnc34a in 28 and 36 commonly used cancer cell lines, 457	

respectively. Although the results show the presence of lncTAM34a in these 458	

cell lines, we find no evidence for Lnc34a transcription (Supplementary 459	

Document 1). These results are in line with the findings of Wang et al. 460	

indicating that Lnc34a is highly expressed in colon cancer stem cell spheres 461	

compared to all other cell types used in their study and may not be broadly 462	

expressed in other tissues or tumor types. The fact that lncTAM34a and 463	

Lnc34a would appear to have opposing roles in their regulation of miR34a, 464	

further underlines the complexity of the regulation at this locus.    465	

 466	

Clinical trials utilizing miR34a replacement therapy have previously been 467	

conducted but, disappointingly, were terminated after adverse side effects of 468	

an immunological nature were observed in several of the patients (Slabakova 469	

et al. 2017). Although it is not presently clear if these side effects were caused 470	

by miR34a or the liposomal carrier used to deliver the miRNA, the multitude of 471	

evidence indicating miR34a's crucial role in oncogenesis still makes its 472	

therapeutic induction an interesting strategy and needs further investigation. 473	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 24	

Our results indicate an association between survival probability and low 474	

lncTAM34a expression making it an attractive candidate for controlled 475	

preclinical studies. Due to the lncTAM34a-mediated positive feedback on 476	

miR34a expression, initiation of this feedback mechanism may provide a 477	

sustained miR34a induction in a relatively more robust manner than miR34a 478	

replacement alone. In summary, our results have identified lncTAM34a as a 479	

vital component in the regulation of miR34a and its particular importance in 480	

typical examples of cellular stress encountered in cancer. On a broader level, 481	

the conclusions drawn in this study provide an example of asRNA-mediated 482	

regulation of a clinically relevant cancer-associated miRNA and contribute to 483	

fundamental knowledge concerning miR34a regulation.  484	

 485	

Materials and Methods 486	

Cell Culture 487	

All cell lines were cultured at 5% CO2 and 37°C with HEK293T, Saos2, and 488	

Skov3 cells cultured in DMEM high glucose (GE Healthcare Life Sciences, 489	

Hyclone, Amersham. UK, Cat# SH30081), HCT116 and U2OS cells in 490	

McCoy’s 5a (ThermoFisher Scientific, Pittsburgh, MA, USA. Cat# SH30200), 491	

and PC3 cells in RPMI (GE Healthcare Life Sciences, Hyclone, Cat# 492	

SH3009602) and 2 mM L-glutamine (GE Healthcare Life Sciences, Hyclone, 493	

Cat# SH3003402). All growth mediums were supplemented with 10% heat-494	

inactivated FBS (ThermoFisher Scientific, Gibco, Cat# 12657029) and 50 495	

µg/ml of streptomycin (ThermoFisher Scientific, Gibco, Cat# 15140122) and 496	

50 µg/ml of penicillin (ThermoFisher Scientific, Gibco, Cat# 15140122). All cell 497	

lines were purchased from ATCC, tested negative for mycoplasma, and their 498	
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identity was verified via STR profiling. 499	

 500	
Bioinformatics, Data Availability, and Statistical Testing 501	

The USCS genome browser (Kent et al. 2002) was utilized for the 502	

bioinformatic evaluation of antisense transcription utilizing the RefSeq 503	

(O'Leary et al. 2016) gene annotation track. 504	

 505	

All raw experimental data, code used for analysis, and supplementary 506	

methods are available for review at (Serviss 2017) and are provided as an R 507	

package. All analysis took place using the R statistical programming language 508	

(Team 2017) using external packages that are documented in the package 509	

associated with this article (Wilkins , Chang 2014, Wickham 2014, Therneau 510	

2015, Wickham 2016, Allaire et al. 2017, Arnold 2017, Wickham 2017, 511	

Wickham 2017, Wickham 2017, Xiao 2017, Xie 2017). The package facilitates 512	

replication of the operating system and package versions used for the original 513	

analysis, reproduction of each individual figure and figure supplement 514	

included in the article, and easy review of the code used for all steps of the 515	

analysis, from raw-data to figure.  516	

 517	

The significance threshold (alpha) in this study was set to 0.05. Statistical 518	

testing was performed using an unpaired two sample Student’s t-test unless 519	

otherwise specified. 520	

 521	

Coding Potential 522	

Protein-coding capacity was evaluated using the Coding-potential 523	

Assessment Tool (Wang et al. 2013) and Coding-potential Calculator (Kong et 524	
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al. 2007) with default settings. Transcript sequences for use with Coding-525	

potential Assessment Tool were downloaded from the UCSC genome 526	

browser using the Ensembl 527	

accessions: HOTAIR (ENST00000455246), XIST (ENST00000429829), β-528	

actin (ENST00000331789), Tubulin (ENST00000427480), 529	

and MYC (ENST00000377970). Transcript sequences for use with Coding-530	

potential Calculator were downloaded from the UCSC genome browser using 531	

the following IDs: HOTAIR (uc031qho.1), β-actin (uc003soq.4). 532	

 533	

Peptide identification in MS/MS spectra 534	

Orbitrap raw MS/MS files for 11 human cell lines were downloaded from the 535	

PRIDE repository (PXD002395; (Geiger et al. 2012)) converted to mzML 536	

format using msConvert from the ProteoWizard tool suite (Holman et al. 537	

2014). Spectra were then searched using MSGF+ (v10072) (Kim et al. 2014) 538	

and Percolator (v2.08) (Granholm et al. 2014). All searches were done 539	

against the human protein subset of Ensembl 75 in the Galaxy platform 540	

(Boekel et al. 2015) supplemented with the 6 frame translation of both the 541	

annotated (LOC102724571; hg38) and PCR cloned sequence of lncTAM34a 542	

(supplementary data; (Serviss 2017)). MSGF+ settings included precursor 543	

mass tolerance of 10 ppm, fully-tryptic peptides, maximum peptide length of 544	

50 amino acids and a maximum charge of 6. Fixed modification was 545	

carbamidomethylation on cysteine residues; a variable modification was used 546	

for oxidation on methionine residues. Peptide Spectral Matches found at 1% 547	

FDR (false discovery rate) were used to infer peptide identities. The output 548	

from all searches are available in (Serviss 2017). 549	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 27	

 550	

shRNAs 551	

shRNA-expressing constructs were cloned into the U6M2 construct using the 552	

BglII and KpnI restriction sites as previously described (Amarzguioui et al. 553	

2005). shRNA constructs were transfected using Lipofectamine 2000 or 3000 554	

(ThermoFisher Scientific, Cat# 12566014 and L3000015). The sequences 555	

targeting renilla is as follows: shRenilla 1.1 (AAT ACA CCG CGC TAC TGG 556	

C), shRenilla 2.1 (TAA CGG GAT TTC ACG AGG C). 557	

 558	

Bi-directional Promoter Cloning 559	

The overlapping region (p1) corresponds with the sequence previously 560	

published as the TP53 binding site in (Raver-Shapira et al. 2007) which we 561	

synthesized, cloned into the pLucRluc construct (Polson et al. 2011), and 562	

sequenced to verify its identity. 563	

 564	

Promoter Activity 565	

Cells were co-transfected with the p1 renilla/firefly bidirectional promoter 566	

construct (Polson et al. 2011) and GFP by using Lipofectamine 2000 (Life 567	

Technologies, Cat# 12566014). The expression of GFP and luminescence 568	

was measured 24 h post transfection by using the Dual-Glo Luciferase Assay 569	

System (Promega, Cat# E2920) and detected by the GloMax-Multi+ Detection 570	

System (Promega, Cat# SA3030). The expression of luminescence was 571	

normalized to GFP. 572	

 573	

Generation of U6-expressed lncTAM34a Lentiviral Constructs 574	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 28	

The U6 promoter was amplified from the U6M2 cloning plasmid (Amarzguioui 575	

et al. 2005) and ligated into the Not1 restriction site of the pHIV7-IMPDH2 576	

vector (Turner et al. 2012). lncTAM34a was PCR amplified and subsequently 577	

cloned into the Nhe1 and Pac1 restriction sites in the pHIV7-IMPDH2-U6 578	

plasmid. 579	

 580	

Lentiviral Particle production, infection, and selection 581	

Lentivirus production was performed as previously described in (Turner et al. 582	

2012). Briefly, HEK293T cells were transfected with viral and expression 583	

constructs using Lipofectamine 2000 (ThermoFisher Scientific, Cat# 584	

12566014), after which viral supernatants were harvested 48 and 72 hours 585	

post-transfection. Viral particles were concentrated using PEG-IT solution 586	

(Systems Biosciences, Palo Alto, CA, USA. Cat# LV825A-1) according to the 587	

manufacturer’s recommendations. HEK293T cells were used for virus titration 588	

and GFP expression was evaluated 72hrs post-infection via flow cytometry 589	

(LSRII, BD Biosciences, San Jose, CA, USA) after which TU/ml was 590	

calculated. 591	

 592	

Stable lines were generated by infecting cells with a multiplicity of infection of 593	

1 and subsequently initiating 1-2 µM mycophenolic acid-based (Merck, 594	

Kenilworth, NJ, USA. Cat# M5255) selection 48-72 hours post-infection. Cells 595	

were expanded as the selection process was monitored via flow cytometry 596	

analysis (LSRII, BD Biosciences) of GFP and selection was terminated once 597	

> 90% of the cells were GFP positive. Quantification of lncTAM34a over-598	

expression and miR34a was performed in biological quintuplet for all cell 599	
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lines.  600	

 601	

Western Blotting 602	

Samples were lysed in 50 mM Tris-HCl (Sigma Aldrich, St. Louis, MO, USA. 603	

Cat# T2663), pH 7.4, 1% NP-40 (Sigma Aldrich, Cat# I8896), 150 mM NaCl 604	

(Sigma Aldrich, Cat# S5886), 1 mM EDTA (Promega, Madison, WI, USA. 605	

Cat# V4231), 1% glycerol (Sigma Aldrich, Cat# G5516), 100 µM vanadate 606	

(Sigma Aldrich, Cat# S6508), protease inhibitor cocktail (Roche Diagnostics, 607	

Basel, Switzerland, Cat# 004693159001) and PhosSTOP (Roche 608	

Diagnostics, Cat# 04906837001). Lysates were subjected to SDS-PAGE and 609	

transferred to PVDF membranes. The proteins were detected by western blot 610	

analysis by using an enhanced chemiluminescence system (Western 611	

Lightning–ECL, PerkinElmer, Waltham, MA, USA. Cat# NEL103001EA). 612	

Antibodies used were specific for CCND1 1:1000 (Cell Signaling, Danvers, 613	

MA, USA. Cat# 2926), and GAPDH 1:5000 (Abcam, Cambridge, UK, Cat# 614	

ab9485). All western blot quantifications were performed using ImageJ 615	

(Schneider et al. 2012). 616	

 617	

RNA Extraction and cDNA Synthesis 618	

For downstream SYBR green applications, RNA was extracted using the 619	

RNeasy mini kit (Qiagen, Venlo, Netherlands, Cat# 74106) and subsequently 620	

treated with DNase (Ambion Turbo DNA-free, ThermoFisher Scientific, Cat# 621	

AM1907). 500ng RNA was used for cDNA synthesis using MuMLV 622	

(ThermoFisher Scientific, Cat# 28025013) and a 1:1 mix of oligo(dT) and 623	

random nanomers. 624	
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 625	

For analysis of miRNA expression with Taqman, samples were isolated with 626	

TRIzol reagent (ThermoFisher Scientific, Cat# 15596018) and further 627	

processed with the miRNeasy kit (Qiagen, Cat# 74106). cDNA synthesis was 628	

performed using the TaqMan MicroRNA Reverse Transcription Kit 629	

(ThermoFisher Scientific, Cat# 4366597) using the corresponding oligos 630	

according to the manufacturer’s recommendations. 631	

 632	

QPCR and PCR 633	

PCR was performed using the KAPA2G Fast HotStart ReadyMix PCR Kit 634	

(Kapa Biosystems, Wilmington, MA, USA, Cat# KK5601) with corresponding 635	

primers. QPCR was carried out using KAPA 2G SYBRGreen (Kapa 636	

Biosystems, Cat# KK4602) using the Applied Biosystems 7900HT machine 637	

with the cycling conditions: 95 °C for 3 min, 95 °C for 3 s, 60 °C for 30 s. 638	

 639	

QPCR for miRNA expression analysis was performed according to the primer 640	

probe set manufacturers recommendations (ThermoFisher Scientific) and 641	

using the TaqMan Universal PCR Master Mix (ThermoFisher Scientific, Cat# 642	

4304437) with the same cycling scheme as above. Primer and probe sets for 643	

TaqMan were also purchased from ThermoFisher Scientific (Life 644	

Technologies at time of purchase, TaqMan® MicroRNA Assay, hsa-miR-34a, 645	

human, Cat# 4440887, Assay ID: 000426 and Control miRNA Assay, RNU48, 646	

human, Cat# 4440887, Assay ID: 001006).  647	

 648	

The ΔΔCt method was used to quantify gene expression. All QPCR-based 649	
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experiments were performed in at least technical duplicate. Primers for all 650	

PCR-based experiments are listed in Supplementary Document 2 and 651	

arranged by figure. 652	

 653	

Cell Cycle Distribution 654	

Cells were washed in PBS and fixed in 4% paraformaldehyde at room 655	

temperature overnight. Paraformaldehyde was removed, and cells were re-656	

suspended in 95% EtOH. The samples were then rehydrated in distilled 657	

water, stained with DAPI and analyzed by flow cytometry on a LSRII (BD 658	

Biosciences) machine. Resulting cell cycle phases were quantified using the 659	

ModFit software (Verity Software House, Topsham, ME, USA). Experiments 660	

were performed in biological quadruplet (PC3) or triplicate (Skov3). The log2 661	

fraction of cell cycle phase was calculated for each replicate and a two 662	

sample t-test was utilized for statistical testing. 663	

 664	

3’ Rapid Amplification of cDNA Ends 665	

3’-RACE was performed as described as previously in (Johnsson et al. 2013). 666	

Briefly, U2OS cell RNA was polyA-tailed using yeast polyA polymerase 667	

(ThermoFisher Scientific, Cat# 74225Z25KU) after which cDNA was 668	

synthesized using oligo(dT) primers. Nested-PCR was performed first using a 669	

forward primer in lncTAM34a exon 1 and a tailed oligo(dT) primer followed by 670	

a second PCR using an alternate lncTAM34a exon 1 primer and a reverse 671	

primer binding to the tail of the previously used oligo(dT) primer. PCR 672	

products were gel purified and cloned the Strata Clone Kit (Agilent 673	

Technologies, Santa Clara, CA, USA. Cat# 240205), and sequenced. 674	
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 675	

Chromatin Immunoprecipitation 676	

The ChIP was performed as previously described in (Johnsson et al. 2013) 677	

with the following modifications. Cells were crosslinked in 1% formaldehyde 678	

(Merck, Cat# 1040039025), quenched with 0.125M glycine (Sigma Aldrich, 679	

Cat# G7126), and lysed in cell lysis buffer comprised of: 5mM PIPES (Sigma 680	

Aldrich, Cat# 80635), 85mM KCL (Merck, Cat# 4936), 0.5% NP40 (Sigma 681	

Aldrich, Cat# I8896), protease inhibitor (Roche Diagnostics, Cat# 682	

004693159001). Samples were then sonicated in 50mM TRIS-HCL pH 8.0 683	

(Sigma Aldrich, MO, USA, Cat# T2663) 10mM EDTA (Promega, WI, USA, 684	

Cat# V4231), 1% SDS (ThermoFisher Scientific, Cat# AM9822), and protease 685	

inhibitor (Roche Diagnostics, Cat# 004693159001) using a Bioruptor 686	

Sonicator (Diagenode, Denville, NJ, USA). Samples were incubated over 687	

night at 4°C with the polII antibody (Abcam, Cat# ab5095) and subsequently 688	

pulled down with Salmon Sperm DNA/Protein A Agarose (Millipore, Cat# 16-689	

157) beads. DNA was eluted in an elution buffer of 1% SDS (ThermoFisher 690	

Scientific, Cat# AM9822) 100mM NaHCO3 (Sigma Aldrich, Cat# 71631), 691	

followed by reverse crosslinking, RNaseA (ThermoFisher Scientific, Cat# 692	

1692412) and protease K (New England Biolabs, Ipswich, MA, USA, Cat# 693	

P8107S) treatment. The DNA was eluted using Qiagen PCR purification kit 694	

(Cat# 28106) and quantified via QPCR. QPCR was performed in technical 695	

duplicate using the standard curve method and reported absolute values. The 696	

fraction of input was subsequently calculated using the mean of the technical 697	

replicates followed by calculating the fold over the control condition. Statistical 698	

testing was performed using 4 biological replicates with the null hypothesis 699	
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that the true log2 fold change values were equal to zero. 700	

 701	

Confluency Analysis 702	

Cells were incubated in the Spark Multimode Microplate (Tecan, Männedorf, 703	

Switzerland) reader for 48 hours at 37°C with 5% CO2 in a humidity chamber 704	

in either normal medium or HBSS (ThermoFisher Scientific, Cat# 14025092) . 705	

Confluency was measured every hour using bright-field microscopy and the 706	

percentage of confluency was reported via the plate reader’s inbuilt algorithm. 707	

Percentage of confluency was normalized to the control sample in each 708	

condition (shown in figure) and then ranked to move the data to a linear scale. 709	

Using the mean of the technical duplicates in three biological replicates, the 710	

rank was then use to construct a linear model, of the dependency of the rank 711	

on the time and cell lines variables for each growth condition. Reported P 712	

values are derived from the t-test, testing the null hypothesis that the 713	

coefficient estimate of the cell line variable is equal to 0.  714	

  715	

Pharmacological Compounds 716	

Doxorubicin was purchased from Teva (Petah Tikva, Israel, cat. nr. 021361).  717	

 718	

Cellular Localization Analysis 719	

Quantified RNAseq data from 11 cell lines from the GRCh38 assembly was 720	

downloaded from the ENCODE project database and quantifications for 721	

lncTAM34a (ENSG00000234546), GAPDH (ENSG00000111640), and 722	

MALAT1 (ENSG00000251562) were extracted. Cell lines for which data was 723	

downloaded include: A549, GM12878, HeLa-S3, HepG2, HT1080, K562 724	
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MCF-7, NCI-H460, SK-MEL-5, SK-N-DZ, SK-N-SH. Initial exploratory analysis 725	

revealed that several cell lines should be removed from the analysis due to a) 726	

a larger proportion of GAPDH in the nucleus than cytoplasm or b) variation of 727	

lncTAM34a expression is too large to draw conclusions, or c) they have no or 728	

low (<6 TPM) lncTAM34a expression. Furthermore, only polyadenylated 729	

libraries were used in the final analysis, due to the fact that the cellular 730	

compartment enrichment was improved in these samples. All analyzed genes 731	

are reported to be polyadenylated. In addition, only samples with 2 biological 732	

replicates were retained. For each cell type, gene, and biological replicate the 733	

fraction of transcripts per million (TPM) in each cellular compartment was 734	

calculated as the fraction of TPM in the specific compartment by the total 735	

TPM. The mean and standard deviation for the fraction was subsequently 736	

calculated for each cell type and cellular compartment and this information 737	

was represented in the final figure. 738	

 739	

CAGE Analysis 740	

All available CAGE data from the ENCODE project (Consortium 2012) for 36 741	

cell lines was downloaded from the UCSC genome browser (Kent et al. 2002) 742	

for genome version hg19. Of these, 28 cell lines had CAGE transcription start 743	

sites (TSS) mapping to the plus strand of chromosome 1 and in regions 744	

corresponding to 200 base pairs upstream of the Lnc34a start site (9241796 - 745	

200) and 200 base pairs upstream of the GENCODE annotated lncTAM34a 746	

start site (9242263 + 200). These cell lines included: HFDPC, H1-hESC, 747	

HMEpC, HAoEC, HPIEpC, HSaVEC, GM12878, hMSC-BM, HUVEC, 748	

AG04450, hMSC-UC, IMR90, NHDF, SK-N-SH_RA, BJ, HOB, HPC-PL, 749	
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HAoAF, NHEK, HVMF, HWP, MCF-7, HepG2, hMSC-AT, NHEM.f_M2, 750	

SkMC, NHEM_M2, and HCH. In total 74 samples were included. 17 samples 751	

were polyA-, 47 samples were polyA+, and 10 samples were total RNA. In 752	

addition, 34 samples were whole cell, 15 enriched for the cytosolic fraction, 15 753	

enriched for the nucleolus, and 15 enriched for the nucleus. All CAGE 754	

transcription start sites were plotted and the RPKM of the individual reads was 755	

used to color each read to indicate their relative abundance. In cases where 756	

CAGE TSS spanned identical regions, the RPMKs of the regions were 757	

summed and represented as one CAGE TSS in the figure. In addition, a 758	

density plot shows the distribution of the CAGE reads in the specified 759	

interval.  760	

 761	

Splice Junction Analysis 762	

All available whole cell (i.e. non-fractionated) spliced read data originating 763	

from the Cold Spring Harbor Lab in the ENCODE project (Consortium 2012) 764	

for 38 cell lines was downloaded from the UCSC genome browser (Kent et al. 765	

2002). Of these cell lines, 36 had spliced reads mapping to the plus strand of 766	

chromosome 1 and in the region between the Lnc34a start (9241796) and 767	

transcription termination (9257102) site (note that lncTAM34a resides totally 768	

within this region). Splice junctions from the following cell lines were included 769	

in the final figure: A549, Ag04450, Bj, CD20, CD34 mobilized, Gm12878, 770	

H1hesc, Haoaf, Haoec, Hch, Helas3, Hepg2, Hfdpc, Hmec, Hmepc, Hmscat, 771	

Hmscbm, Hmscuc, Hob, Hpcpl, Hpiepc, Hsavec, Hsmm, Huvec, Hvmf, Hwp, 772	

Imr90, Mcf7, Monocd14, Nhdf, Nhek, Nhemfm2, Nhemm2, Nhlf, Skmc, and 773	

Sknsh. All splice junctions were included in the figure and colored according 774	
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to the number of reads corresponding to each. In cases where identical reads 775	

were detected multiple times, the read count was summed and represented 776	

as one read in the figure. 777	

 778	

TCGA Data Analysis 779	

RNAseq data and copy number data were downloaded from TCGA and 780	

processed as described previously (Ashouri et al. 2016). Briefly, RNAseq data 781	

were aligned to the human hg19 assembly and quantified using GENCODE 782	

(v19) annotated HTSeq-counts and FPKM normalizations. Expression data 783	

from miR34a and lncTAM34a (identified as RP3-510D11.2) were used for 784	

further analysis. Copy number amplitudes for GENCODE genes were 785	

determined from segmented copy-number data. Samples that were diploid for 786	

lncTAM34a were identified as those samples that had copy number 787	

amplitudes between -0.1 and 0.1. 788	

 789	

Somatic mutation data were downloaded from the Genomics Data Commons 790	

data portal (GDC) as mutation annotation format (maf) files, called using 791	

Mutect2 on 30/10/2017 (v7) (Grossman et al. 2016).  792	

 793	

Survival analysis was performed on TCGA vital state and follow-up data, 794	

downloaded from GDC on 27/10/2017 using the R survival package 795	

(Therneau 2015). 796	
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Supplementary Figures 839	

 840	
	841	
Figure 1 Supplement 1: TCGA normalized expression levels and correlation analysis statistics. 842	
A) Spearman’s rho and P values (p) from the correlation analysis in Figure 1a between miR34a and 843	
lncTAM34a expression in TP53 wild type (wt) and mutated (mut) samples within TCGA cancer types. 844	
NA indicates not applicable, due to a lack of data for the specific group. B) Expression levels of 845	
miR34a and lncTAM34a in TP53 wt and nonsynonymous mutation samples. Expression was quantified 846	
by the log2 ratio of expression of the gene to its maximal expression value. Vertical lines indicate the 847	
median. P values are indicated on the right side of each panel and are derived from comparing the 848	
TP53 wild type samples to the samples with a nonsynonymous mutation using a two-sided Wilcoxon 849	
signed rank test. Only cancers that had at least 5 samples per group were included. In addition, only 850	
samples that were diploid at the miR34a locus were used for the analysis to avoid copy number bias.  851	
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 852	
 853	
Figure 1 Supplement 2: Molecular characteristics of lncTAM34a. A) A schematic representation of 854	
the primer placement in the primer walk assay. B) Polyadenylation status of spliced and 855	
unspliced lncTAM34a in HEK293T cells. C) Sequencing results from the analysis of lncTAM34a 856	
isoforms in U2OS cells. lncTAM34a ref. refers to the full-length transcript as defined by the 3’-RACE 857	
and the primer walk assay. D) Analysis of coding potential of the lncTAM34a transcript using the 858	
Coding-potential Calculator. E) RNAseq data from five fractionated cell lines in the ENCODE project 859	
showing the percentage of transcripts per million (TPM) for lncTAM34a. MALAT1 (nuclear 860	
localization) and GAPDH (cytoplasmic localization) are included as fractionation controls. Points 861	
represent the mean and horizontal lines represent the standard deviation from two biological replicates. 862	
  863	
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	864	
 865	
Figure 2 Supplement 1: A schematic representation of the p1 construct. A) A UCSC genome 866	
browser illustration indicating the location of the promoter region cloned into the p1 construct 867	
including the conserved TP53-binding site. B) A representative picture of the p1 construct including 868	
forward (F) and reverse (R) primer locations and the renilla shRNA targeting site.  869	
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 870	
 871	
Figure 2 Supplement 2: Evaluating the effects of lncTAM34a down-regulation. HEK293T cells 872	
were co-transfected with the p1 construct and either shRenilla or shControl. Renilla and luciferase 873	
levels were measured with QPCR 48 hours after transfection. Individual points represent independent 874	
experiments with the gray shadow indicating the density of the points. The experiment was performed 875	
in biological triplicate.   876	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 15, 2017. ; https://doi.org/10.1101/234310doi: bioRxiv preprint 

https://doi.org/10.1101/234310
http://creativecommons.org/licenses/by/4.0/


	 42	

	877	
 878	
Figure 3 Supplement 1: Physiological relevance of lncTAM34a over-expression. Comparison 879	
of lncTAM34a expression in HEK293T cells (high endogenous lncTAM34a), and the wild-type (wt), 880	
mock, and lncTAM34a over-expressing stable cell lines.   881	
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 882	
 883	
Figure 3 Supplement 2: Effects of lncTAM34a over-expression on cyclin D1. CCND1 884	
expression (A) and western blot quantification of protein levels (B) in lncTAM34a over-expressing 885	
PC3 stable cell lines.  Experiments were performed in biological sextuplets (A) or triplicates (B).  886	
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 887	

Figure 4-Supplement 1: Survival analysis in 17 cancers from TCGA. Kaplan-Meier survival curves 888	
comparing the survival of TP53-mutated samples (left), low lncTAM34a expression (middle) and low 889	
miR34a expression (right) to control samples in 17 cancer types from TCGA. Low expression was 890	
defined as TP53 non-mutated samples having expression values in the bottom 10th percentile. 891	

	 	892	
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