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Abstract—We consider the problem of optimizing general
convex objective functions with nonnegativity constraints. Using
the Karush-Kuhn-Tucker (KKT) conditions for the nonnegativity
constraints we will derive fast multiplicative update rules for
several problems of interest in signal processing, including non-
negative deconvolution, point-process smoothing, ML estimation
for Poisson Observations, nonnegative least squares and nonnega-
tive matrix factorization (NMF). Our algorithm can also account
for temporal and spatial structure and regularization . We will
analyze the performance of our algorithm on simultaneously
recorded neuronal calcium imaging and electrophysiology data.

Index Terms—NMF, point process smoothing, Poisson image
reconstruction, nonnegativity, KKT conditions, latent variables

I. INTRODUCTION

The advent of big data has given rise to new challenges in
signal processing. Fast and scalable solvers for solving large
optimization problems remains a big challenge of optimization
theory. In this paper we consider the problem of solving
general optimization problems under nonnegativity constraints.
Such optimization problems arise in many applications of
interest. Examples include nonnegative matrix factorization
for images of objects [1], Poisson image reconstruction [2],
point process smoothing for stimulus-response experiments
in neurophysiology [3], nonnegative least squares [4] and
nonnegative calcium deconvolution [5]. In this paper we will
use the KKT conditions [6] to provide a unified framework
for solving such optimization problems with nonnegativity
constraints. As we will see these conditions naturally lead
to multiplicative updates with suitable convergence in many
applications.

Multiplicative updates have been used for solving ML
and MAP estimation as well as KL-divergence minimization.
Many of these algorithms are special cases of the so-called
proximal backward-forward scheme [7]. These algorithms try
to find fixed points of a set of equations resulting from setting
gradients of the objective function to zero. A With the help
of parallel computing and graphics processing units (GPUs),
these iterative methods can be solved very fast. Therefore,
they become increasingly important. An important application
of these multiplicative updates is the Richardson-Lucy (RL)
algorithm for image deconvolution [8], which is widely used
in astronomy and microscopy [9]. The RL algorithm recovers
the ML estimate of a sample under Poisson statistics [10].

Multiuplicative updates are commonly contrasted with gra-
dient descent methods. Their update steps do not necessarily

follow the direction of the steepest descent. Multiplicative
updates are argued to be insensitive to noise and more
flexible [11]. Despite fast early convergenece multiplicative
updates are claimed to converge slowly in later stages [12].
However, this argument has been refuted for Poisson Image
reconstruction [11], the Weiszfeld problem [7] and NMF [13]
by showing their equivalence to a Majorization Minimization
(MM) algorithm which has linear convergence in iterations
[14]. In contrast, both multiplicative updates and gradient de-
scent based algorithms such as the proximal-gradient method
have sublinear rate of convergence [7] in general. Moreover,
with specific choices of the stepsize, in many cases such as
the Weiszfeld problem these algorithms have proven to be
equivalent [7] . These findings suggest that slow convergence
of multiplicative updates in some cases is due to absence of
strong convexity in the objective function.

An advantage of multiplicative updates over gradient de-
scent based algorithms is their flexibility in terms of adapting
to the objective functions without the need for calculation dual
functions or tuning extra parameters such as the step-size.
Despite the recent breakthroughs in choosing these parameters
[15], each step in calculation of the step size is usually
as costly as an iteration of the algorithm which is not as
effective for big data problems. In addition many problems
such as image reconstruction and calcium deconvolution [16]
are spatially separable and are easily parallelized.

Finally, temporal dynamics and penalization play an im-
portant role in signal recovery from noisy data. Examples
include state-space estimations, video reconstruction and total
variation denoising problems. Apart from special cases, the
solutions to these problems are generally batch mode and
computationally demanding. In this paper we provide a unified
framework for generalizations of multiplicative updates to
the problems with nonnegativity constraints and dynamics
by adapting the update rules to different forms of penalties.
We have empirically found that multiplicative updates show
superior convergence properties and speed to gradient descent
methods for models that include dynamics and penalization.

II. NOTATIONS AND PROBLEM FORMULATION

Throughout the paper we will use the following notation.
We use the convention [T ] = {1, · · · , T} and W[T ] =
[w1, · · · ,wT ], i.e. wk represents the kth column of W[T ]. �
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and � denote elementwise multiplication and division respec-
tively. Throughout the paper we will use the terms innovations
and spikes interchangeably. Unless otherwise stated, a function
acts on a vector elementwise. For a matrix A = [aij ] ∈ Rm×n
its mixed p, q-norm is denoted by ‖A‖p,q , i.e.

‖A‖p,q =

 m∑
i=1

 n∑
j=1

|aij |p
q/p


1/q

,

and ‖x‖2Σ= xTΣ−1x. Finally, for a summation

L =
n∑
i=1

li = L+ − L−,

where L+ =
∑n
i=1 max{li, 0}, L− = −

∑n
i=1 max{−li, 0}.

We consider a convex optimization problem of the form

minimize
X�0

F(X) := L(X) + λP(X), (1)

where L(.) denotes a convex objective function and P(.)
denotes a suitable penalty function. Typically L(.) is a negative
log-likelihood and P(.) is a smooth norm. Additionally we
make the assumption that both L and P are differentiable with
respect to X on the positive orthant,

Among the algorithms used for solving (1) one can name
the primal-dual algorithm and proximal gradient method. For
specific choices of the penalty functions `1 and `2 (Tikhonov)
regularization several fast algorithms exist. However these
algorithms cannot be easily generalized to arbitrary penalties
or temporal dynamics. In some cases such as the gradient
based methods they require knowledge of the proximal map
or have extra parameters such as the step size to be tuned and
chosen. Calculation of the step size is usually as costly as a
few iterations of the algorithm and could slow them down.
However, our approach to solving (1) does not require tuning
of extra parameters and is very simple to implement. We will
next discuss our solution.

III. SOLUTION TO THE MAIN OPTIMIZATION PROBLEM

In this section we will introduce our solution to (1) via
multiplicative updates. The Lagrangian form of (1) is given
by

minimize
X,S�0

F(X) + S�X. (2)

Assuming convexity and zero duality gap, the KKT conditions
for (2) can be expressed as

X? � 0, S? � 0, (3)
S? �X? = 0, (4)
∇XF(X) + S = 0. (5)

In the rest of the paper, we drop the subscripts and arguments
whenever they can be understood from the context. Multiply-
ing (5) by X and using (4) we obtain:

∇F(X)�X = 0. (6)

Our solution to (1) looks for a positive fixed point of (6).
Therefore giving us the multiplicative update rule

X(k+1) ←
(
∇F(X(k))

)−
�
(
∇F(X(k))

)+

�X(k). (7)

In all application introduced in this paper we initialize the
algorithm with a positive solution, the choice of which depends
on the application. The update rule will then ensure the
solution remains positive. In order to provide more insight
into our algorithm we will next provide several examples and
applications.

In applications of interest in this paper we consider temporal
dynamics in X, hence referring to our algorithm by FAst
DEconvolution (FADE) algorithm. In the spirit of easing
reproducibility, we have made MATLAB implementations of
our codes publicly available [17].

IV. EXAMPLES AND APPLICATION TO REAL DATA

In this Section we will provide examples of the multiplica-
tive updates in different applications of interest.

A. Nonnegative Deconvolution

In its simplest form the nonnegative deconvolution problem
can be formalized by considering the state-space model given
by

xt = Θxt−1 + wt, yt = Atxt + vt, (8)

where wt � 0 models the innovations at time t ∈ [T ]. Usually,
the observation noise is assumed to be i.i.d normal, i.e. vt ∼
N (0,Σt) and the measurement matrices At are assumed to
conserve positivity. For this problem we can identify W =
W[T ] and

L(W) =

T∑
t=1

‖yt −Atxt‖2Σt
=

T∑
t=1

∥∥∥∥∥yt −At

t−1∑
τ=0

Θτwt−τ

∥∥∥∥∥
2

Σt

,

from which we can calculate

(∇wt
L(W))

+
=
∑
τ≥t

(
Θτ−t)T AT

τ Σ−1
τ yτ ,

(∇wtL(W))
−
=
∑
τ≥t

(
Θτ−t)T AT

τ Σ−1
τ Aτxτ .

Typically one can use a smooth norm in order to enforce
prior assumptions on the spikes, for example one can use a
sparsity inducing prior P = ‖W‖1,1, for which (∇P)+ = 1
and (∇P)− = 0. The choice of the penalty function on the
spikes is arbitrary and could differ from application to appli-
cation. In applications where such information is not readily
available, one would like to enforce minimal assumptions on
the spikes and hence would want to enforce non-informative
priors. The most famous example of such priors is known as
Jeffrey’s prior [18]. However this problem is an active area
of research as there is no unanimously agreed upon choice of
non-informative priors.
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Fig. 1: Application of the FADE algorithm to calcium deconvolution
problem.

B. Application to Calcium Deconvolution

Calcium imaging is used to visualize currents associated
with action potentials in living neurons. This is done using
fluorescent molecules that change their fluorescence proper-
ties upon binding calcium, and using a one- or two-photon
fluorescence microscope to record these changes [19], [20].
Inferring action potentials (spikes) from calcium recordings,
referred to as calcium deconvolution, is an important problem
in neural data analysis. For the special case of calcium imaging
we have Σ = σ2I, At = I and Θ = θI. Here the baseline
is assumed to have been estimated and subtracted separately,
but can be estimated similarly. We refer to [5] for details on
estimation of the unknown parameters σ2 and θ and a list of
methods used for calcium deconvolution. These approaches
require solving convex optimization problems, which do not
scale well with the temporal dimension of the data.

Figure 1 shows application of the FADE algorithm to
simultaneously recorded imaging and electrophysiology data.
The algorithm has covnverged (less than 0.5% change in
spikes) in 28 iterations. The data is a 100 second interval
from the spikefinder challenge [21] (dataset 3, neuron 1). We
have used an AR(2) model and an `0.5,1 penalty on the spikes
in order to enforce temporal sparsity. The spikes have been
obtained by simply thresholding the deconvolved spikes at 3σ,
where σ is the estimated standard deviation of the observation
noise. A comparison of the performance of our algorithm with
many other methods is provided on the spikefinder challenge
website [21].

One can use spatial regularization on elements of wt in
this setup as well as compressive sensing regimes for when A
satisfies the restricted isometry property RIP [5]. We refer to

[5] for a more detailed discussion.

C. Poisson Image Reconstruction and Point Process Smooth-
ing

State-space models with Poisson observations have also
been studied in many applications of interest. In neuroscience,
temporal dynamics of stimulus-response experiments in neu-
rophysiology have been modeled using a Poisson state-space
model. In emission tomography, dynamics of the photons
hitting the detectors can be modeled with Poisson noise
models. Without loss of generality we consider the state-space
model given by

xt = Θxt−1 + wt, yt ∼ Poisson (φ (Axt + bt)) , (9)

where wt � 0 and bt � 0 model the spikes and baseline rates
at time t ∈ [T ] respectively and φ(.) is a bijective convex
function. Common examples include φ(x) = exp(x), φ(x) =

exp(x)
1+exp(x) and φ(x) = x. We assume the latter in our derivations
due to space considerations.

Several approaches have been proposed in the literature for
finding the MAP solution to (9). We refer to [22] for a detailed
list of these methods. In [3] the authors used the maximum
a posteriori derivation of the Kalman filter and proposed
an approximate expectation maximization (EM) approach to
this problem by Gaussian approximations of the posterior
likelihood. This EM approach has several shortcomings. First,
it requires solving a nonlinear system of equations which
could potentially be computationally costly. Second, it only
accounts for Gaussian spikes. Third its performance heavily
depends on the Poisson rate model, especially when the rates
are small, which is the usual case for spiking activities. In these
cases usually φ(x) = exp(x) is considered for stability of
approximations. Moreover due to nonlinear recursive filtering
nature of the problem, the performance of the Gaussian
approximation quickly degrades as the dimension of the latent
space goes beyond 2 or 3. Similarly, in [22] the authors
proposed SPIRAL which uses a Gaussian approximation to L
and is a gradient-based solution to (9). Except for the special
cases of `1 and TV penalties, calculation of the Gaussian
model is tedious leading to slow convergence. In [23] the
authors introduce a variational auto-encoder (gradient descent
based) model to retrieve the low-dimensional temporal factors.

In applications such as fluorescence microscopy, it is also
common to use to use variance stabilizing transforms [22]
such as square root filtering [24] in order to make Gaussian
approximations to the Poisson distribution. In the high photon
regime such transformations are not necessary as one can use
infinite divisibility property of the Poisson distribution for
Gaussian approximations. However one would then need to
deal with complications arising from equality of the mean and
the covariance matrices for such approximations. In contrast,
our algorithm gives an exact solution, is fast, can account
for any rate model and suitably scales with the problem
dimensions.

The Gaussian approximations could then be used as an input
to a Kalman smoother if the innovations (spikes) follow a
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half-normal or Gaussian distribution. Despite the fact that our
solutions are faster, exact and do not involve approximations,
for Gaussian state-spaces the Kalman smoother provides a
smoothed estimate of the covariances which could be used
for building confidence intervals, whereas the covariances are
not a direct output of the multiplicative updates.

Considering the MAP estimator for W = W[T ] we can
identify

L(W) =
T∑
t=1

1T (Axt + bt)− yTt log (Axt + bt) , (10)

for which we have

(∇wt
L(W))

+
=
∑
τ≥t

(
Θτ−t)T AT

τ 1,

and

(∇wt
L(W))

−
=
∑
τ≥t

(
Θτ−t)T AT

τ (yt � (Axt + bt)) .

The penalty function and the corresponding terms can be
calculated similar to the nonnegative deconvolution problem.
A similar update rule can be derived for the baseline. The
special case of Θ = 0 (no dynamics with the convention
00 = I) and λ = 0 (no penalization) is known as the
Richardson-Lucy (RL) iterations. The RL algorithm has also
been used with TV seminorm regularization in [25]. Similar to
the RL algorithm we can use FADE for blind deconvolution,
when the measurement matrix A is unknown. In this setup one
can alternatively update A and X. We can also used FADE,
for estimation of GLM models for self-exciting point process
models [26].

D. Combination with Other Constraints

In many applications of interest the optimization problem
could also include several inequality constraints. For example
in fluorescence microscopy the maximum changes of the
fluorescence level with respect to baseline (also referred to as
∆F
F ) is controlled by the properties of the indicator in use. In

these situations we need to satisfy the KKT conditions for the
extra constraints. Here we will introduce an adaptive method
in order to achieve this goal. Consider the modified problem
setup of Section IV-C given by(

∆F
F

)
t
= Θ

(
∆F
F

)
t−1

+ wt

yt ∼ Poisson
(
Abt(1 +

(
∆F
F

)
t
)
) , (11)

where bt ≥ 0 denotes the known baseline fluorescence at time
t, on top of which

(
∆F
F

)
t

lies. In addition to nonnegativity
constraints we need to account for the following constraints(

∆F
F

)
t
� cf for all t . (?)

The constant cf is a characteristic of the indicator used and
is assumed to be known. In order to enforce (?) we proceed
as in Algorithm 1.

Algorithm 1 Multiplicative Updates with Adaptive Regularization
1: procedure MULTIPLICATIVE UPDATES
2: Initialize: P

(
∆F
F

)
t
= ‖

(
∆F
F

)
[T ]
‖∞,∞, λ = 0, λ0 =

0.01, i = 0.
3: repeat
4: if max

(
∆F
F

)
t
≥ cf and i = 0 then

5: λ← λ0, i← 1
6: end if
7: if λ > 0 then

8: Set λ← λ

∥∥∥(∆F
F )

[T ]

∥∥∥
∞,∞

cf
9: end if

10: Update W.
11: until convergence criteria met
12: end procedure

The main idea behind Algorithm 1 is that when the con-
straints are violated the complimentary slackness condition
should be met for the optimal dual variable λ in Lagrangian
form of the problem, meaning that the optimal solution should
satisfy ‖

(
∆F
F

)
[T ]
‖∞,∞= cf , which is equivalent to finding a

fixed point of updates for the dual (regularization) variable λ.

V. OTHER EXAMPLES

A. Dynamic Nonnegative Least Square (NLS)

The NLS problem can in general be formulated

Y = AX + V, V ∼ N (0, σ2I),

L(X) = ‖Y −AX‖22, (∇L)
+
= ATY, ∇ (L)− = ATAY.

The most famous algorithm for solving the NLS problem is
the active set method [4] which does not account for temporal
dynamics in xt or other forms of penalty. In these settings our
update rules are very similar to the nonnegative deconvolution
problem. A very useful example from the compressed sensing
literature is the Multiple Measurement Vector (MMV) problem
(without the positivity constraint) [27]. A commonly used
penalty in this setup is the ‖X‖2,1 which enforces row sparsity.

B. Dynamic Nonnegative Matrix Factorization (NMF)

The NMF problem is very similar to the NLS problem
except that the matrix A is not known. In this case we can
alternatively update our estimates of A and X [28].

Y = AX + V, V ∼ N (0, σ2I)

L(X) = ‖Y −AX‖22,
(∇XL)+ = ATY, (∇XL)− = ATAY

(∇AL)+ = YXT , (∇AL)− = YXTX

In the absence of penalization or dynamics we recover the
multiplicative updates of [1]. Our update rules can also account
for the dynamic case where

Xt = αXt−1 + Wt, Wt � 0

Yt = AXt + Vt, Vt ∼ N (0, σ2I)

For example one can account for sparsely changing temporal
factors by considering a Laplacian distribution on Wt.
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VI. EXTENSIONS AND FUTURE WORK

In this paper we considered convex optimization problems
with nonnegativity constraints and provided unified multiplica-
tive updates for them using the KKT conditions. These updates
are easy to implement and parallelizable on a CPU. They
do not require tuning of extra parameters such as the step
size, exhibit fast convergence in practice and can account
for temporal dynamics and smooth penalties without slowing
down.

Although in the absence of convexity the KKT conditions
no longer hold, we have empirically observed that our updates
exhibit good performance when the problem has simple non-
convexities. As an example one can model calcium saturation
in the calcium deconvolution problem by adopting the calcium
hill model given by yt = α xt

xt+c +vt [29]. These observations
suggest that suitable initializations result in convergence to a
suitable local minimum. As another example one can combine
the multiplicative updates with the IRLS algorithm [30] for
`q , q < 1 minimization problems. The convergence of the
IRLS algorithm was shown in the literature by showing an
equivalence to a special case of the EM algorithm [31]. We
applied this generalization to calcium imaging data using a
nonconvex penalty.

Finally, the positivity constraint can easily be relaxed in
the general form of the problems in two ways: First, any
variable X can be decomposed into X = X+ −X−, where
both X+ and X− are positive. Second, generalized positivity
and negativity could be defined with respect to the bound-
ary of the convex set of feasible solutions, i.e. any point
point inside/outside the feasibility set could be considered as
positive/negative. Generalized positive and negative terms in
the decompositions could be redefined similarly. Therefore by
looking for a generalized positive fixed point of the gradi-
ent of the log-likelihood, the multiplicative updates can be
generalized to a larger class of problems with not necessarily
positivity constraints. We leave full details of these extensions
and examples and their convergence properties to future work.
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