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Abstract  
 
Humans have a remarkably high capacity and long duration memory for complex scenes. 

Previous research documents the neural substrates that allow for efficient categorization of 

scenes from other complex stimuli like objects and faces, but the spatiotemporal neural 

dynamics underlying scene memory are less well understood. In the present study, we used 

high density EEG during a visual continuous recognition task in which new, old, and scrambled 

scenes consisting of color outdoor photographs were presented at an average rate 0.26 Hz. Old 

scenes were single repeated presentations occurring within either a short-term (< 20 seconds) 

or longer-term intervals of between 30 sec and 3 minutes or 4 and 10 minutes. Overall 

recognition was far above chance, with better performance at short- than longer-term intervals. 

A group ANOVA found parietal and frontal ERPs discriminated the three scene types as early 

as 59 ms after stimulus onset. Parietal ERPs were greater for old compared to new scenes by 

189 ms, while fronto-temporal ERPs were greater for new compared to old scenes by 194 ms. 

For old scenes presented within longer-term intervals, parieto-temporal and centro-frontal ERPs 

were greater by 228 and 355 ms respectively compared to old scenes presented within a short-

term interval. Supervised machine learning exhibited above-chance decoding of scene type by 

275 ms. Single-subject BOLD-fMRI showed greater activity for old scenes across frontal, 

parietal, and temporal cortex. These converging findings show that a widespread network 

including parietal, frontal, and temporal regions supports short- and long-term scene memory.  
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Significance Statement  
 
The ability to recognize a scene as novel or familiar is critical for basic cognition. Scene 

recognition plays an important role in episodic memory because it helps us quickly establish 

place, a first step in recalling where previous events occurred. Short-term recognition supports 

our ability to detect changes in the immediate environment, an ability critical to survival. Scene 

recognition after a longer-term interval is often the essential cue for retrieving autobiographical 

memories. Previous behavioral studies demonstrate high capacity and long duration scene 

memory. Neural studies have identified the brain regions that support scene-specific 

processing. The present study extends this research by filling a gap in understanding how 

distributed spatiotemporal patterns of neural activity support short- and long-term scene 

memory.  
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Introduction  
 
Humans have a remarkable capacity for remembering complex visual information. Early 

behavioral studies demonstrated that adults and children can recognize large sets of visual 

stimuli after a single exposure (Shepard, 1967; Standing et al., 1970; Brown and Scott, 1971). 

While speed of recognition for pictures tends to be slower than for verbal material, reaction 

times for a range of learning set sizes indicate fast memory search (Standing, 1973). Picture 

recognition is also highly flexible, with subjects able to discriminate in forced choice paradigms 

between targets and distractors using perceptual and ecphoric similarity (Tulving, 1981). Early 

studies of visual memory capacity often mixed objects with travel slides containing complex 

naturalistic visual scenes. Subsequent research compared encoding of complex scenes with 

edited versions of scenes that contained a common feature (e.g., a door) and found memory 

performance for non-edited original photographs was close to 85%. When scene details were 

removed performance dropped by as much as 20%, suggesting that visual details in scenes 

contribute positively to long-term memory (Vogt and Magnussen, 2007).  

Other findings support that subjects successfully maintain detailed representation of 

thousands of images (Brady et al., 2008). When the number of exemplars from different 

categories is controlled for during the study of large picture sets, the capacity to remember 

visual information in long-term memory varies more with conceptual structure than perceptual 

distinctiveness. Images from object categories with conceptually distinctive exemplars show 

less interference as the number of exemplars is increased (Konkle et al., 2010). High capacity 

picture memory would appear to be at odds with the traditional view that working memory 

capacity is limited to three or four items. The ability to recognize complex images after short 

retention intervals would seem to require a larger capacity temporary store, especially if 

complex details are used. When maintenance using a rehearsal strategy is prevented by using 

rapid serial visual presentation, memory capacities of up to 30 retained pictures for 100 item 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2017. ; https://doi.org/10.1101/234609doi: bioRxiv preprint 

https://doi.org/10.1101/234609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running Head: Cortical Contributions to Scene Memory 

 5

lists are obtained, which suggests humans have a larger capacity temporary memory store 

when proactive interference is minimized (Endress and Potter, 2014).  

Scalp EEG has been used to demonstrate fast, parallel processing of complex scenes. 

In a go/no-go task in which subjects must determine whether a briefly presented scene contains 

an animal or not, a frontal event related negativity develops on no-go trials approximately 150 

ms after stimulus onset (Thorpe et al., 1996). Event related potentials (ERPs) reflect the visual 

category of a scene as early as 75-80 ms post-stimulus, but are not correlated with behavior 

until around 150 ms (Vanrullen and Thorpe, 2001). Subjects are as fast at responding to two 

simultaneously presented scenes as to a single one (Rousselet et al., 2002) demonstrating 

parallel processing, but behavior and ERPs suffer a processing cost when up to four scenes are 

presented simultaneously (Rousselet et al., 2004). For biologically relevant scenes, fronto-

central ERPs begin to diverge from other stimulus categories around 185 ms after stimulus 

onset, with a later divergence in parietal regions (Anokhin et al., 2006). Scene recognition is 

state-dependent and can be modulated by alcohol intoxication (De Cesarei et al., 2006), which 

reduces early differential ERP activity occurring 150-220 ms when discriminating targets from 

non-target distractors. An early marker of scene-specific processing was found in a recent study 

which reported that the first ERP component to evoke a stronger response to real-world scenes 

compared to other categories is the P2, peaking approximately 220 ms after stimulus onset 

(Harel et al., 2016).  

Intracranial EEG and fMRI studies identify spatiotemporal aspects of scene processing. 

An intra-cerebral study found early posterior parahippocampal gyrus gamma (50-150 Hz ) 

activity between 200-500 ms when subjects passively viewed scenes (Bastin et al., 2013). 

Functional MRI activity in both lateral occipital area (LOC) and parahippocampal place area 

(PPA) can be harnessed to classify scenes accurately. PPA activity confuses scenes that have 

similar spatial boundaries, while LOC activity confuses scenes that have similar content (Park et 

al., 2011). Recent work extends the role for occipital place area by demonstrating it can predict 
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pathways for movement in novel scenes (Bonner and Epstein, 2017). It has also been 

demonstrated recently that humans do not segment a scene into objects but instead use global, 

ecological properties like navigability and mean depth (Greene and Oliva, 2009). Neural 

evidence also shows that contrast energy and spatial coherence modulate single-trial ERP 

amplitudes early (100-150 ms), with spatial coherence influencing later activity up to 250 ms 

(Groen et al., 2013).  

While behavioral studies demonstrate that scene memory is high capacity and long-

lasting and neural studies have characterized scene-specific neural processing, the 

spatiotemporal neural patterns that support scene memory remain to be fully characterized. In 

the present study, we asked: When do neural patterns distinguish scenes from scrambled 

perceptual input? How do neural patterns differentiate new from previously presented scenes? 

And how do neural patterns differ for short- and long-term scene memory? 

 
Materials and Methods 
 
Subjects 
 
A total of 29 subjects (mean age 21.21, std. age 2.88, range 18-29, 9 males, 1 left-handed) 

were recruited between September 2016 and August 2017 by flyers posted throughout the 

[Author University]. Included in the study were healthy adults between the ages of 18 and 29 

with normal or corrected-to-normal vision and the ability to make button presses. Participants 

were excluded if they did not speak English. Each participant provided written informed consent 

and completed study procedures according to a protocol approved by the Institutional Review 

Board of the [Author University]. Participants were compensated $15 per hour for participation. 

All 29 participants completed the scene memory task during high density scalp 

electroencephalography (HD-EEG). EEG data from two subjects were excluded because of 

excessive noise leaving 27 subjects (mean age 21.33, std. age 2.92, range 18-29, 9 males, 1 

left-handed). Two additional subjects underwent fMRI (both female, ages 26 and 30).  
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Experimental Design 
 
Subjects who underwent HD-EEG completed four 20-minute runs of a visual continuous 

recognition task (VCRT) during a single session. The VCRT stimuli consisted of color scenes 

and phase-scrambled scenes (Fig 1a). Scenes were 24-bit color images randomly sampled 

from the SUN database (Xiao et al., 2010). Only a small fraction (618) of all the SUN database 

pictures were used in the present study. Care was taken to sample pictures of outdoor scenes 

with no clearly visible faces. The task was programmed in Visual C++ with graphic presentation 

optimized by pre-loading as texture maps all stimuli into video RAM using OpenGL.  Each 

stimulus was presented for 1400 ms with jittered interstimulus intervals (ISI). A total of 1228 

stimuli were shown during the 80-minute EEG testing session (~15.35 stimuli per minute). 

Stimuli consisted of 305 scrambled scenes, 618 new scenes, with 309 of the new scenes sub-

divided among three old conditions and subsequently repeated one more time 1) within 20 sec, 

2) within 30 sec and 3 min, and 3) between 4 min and 10 min. (Fig 1b).  

Each scene was displayed on a 27-inch LED monitor with a refresh rate of 60 hertz (Hz) 

and a screen resolution of 1920-by-1080. Participants sat 83.5 cm from the monitor and 

maintained stable viewing using a combined forehead/chin rest. Each scene measured 800-by-

600 pixels on the screen, and from the subject’s point of view occupied a horizontal viewing 

angle of 17.2 degrees and a vertical viewing angle of 12.7 degrees. The EEG recordings took 

place within a sound-attenuated booth (IAC acoustics) to minimize auditory and visual 

distractions. Subjects made one of two button (green=old; red=new) responses with their thumb 

using a fiber optic response device (fORP 904, Current Designs, Inc.) held in their right hand.  

 
[insert Fig 1 here] 

 
 
 
Behavioral Analysis 
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Analyses of VCRT behavioral data included computing subject accuracy in the form of percent 

correct in distinguishing old and new scenes. Signal detection analyses were also performed to 

assess each subject’s recognition ability. A hit was counted when an old scene was correctly 

classified as an old scene. A false alarm was counted when a new scene was incorrectly 

classified as an old scene. For each subject, total hits and false alarms were expressed as 

proportions and used to compute a measure of sensitivity as the difference in standardized 

normal deviates of hits minus false alarms: d-prime (d’) = Z(hit rate) – Z(false alarm rate). The d-

prime sensitivity measure represents the separation between the means of the signal and noise 

distributions, compared against the standard deviation of the signal or noise distributions 

(Stanislaw and Todorov, 1999).  

Overall percent correct and d-prime were based on the ability to recognize scenes as old 

or new across the four 20-minute blocks. Separate accuracy and d-prime measures were 

computed for each condition of old: old1 (repeated presentation within <20 sec), old2 (repeated 

presentation between 30 sec and 3 min), and old3 (repeated presentation between 4 min and 10 

min). Average subject response times were also computed for new, old, hits, misses, false 

alarms, and correct rejections. Repeated measures ANOVAs of accuracy, d-prime, and 

response times were performed using JASP 0.8.3.1 (https://jasp-stats.org/) with post-hoc tests 

and Bonferroni multiple comparisons corrections.  

 

EEG Acquisition 
 

EEG data were sampled at 1 kHz using Pycorder software from 62 scalp locations using 

an active electrode system with an actiCHamp amplifier (Brain Products). Electrodes were 

placed at standard locations specified by an extended 10-20 system. The recording ground 

(Fpz) was located at the frontal midline and the recording reference was located at the left 

mastoid (TP9) leaving 61 scalp recordings. Two additional channels were designated for left 
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(LOC) and right (ROC) vertical electrooculography (VEOG) recordings for subsequent isolation 

of eye blink artifacts.  

Recordings to disk began after electrode impedances fell below 25 K Ohms. Although 

the standard convention is to reduce impedance to 5 K Ohms or below (Teplan, 2002), the 

actiCHamp system uses active electrodes with noise reducing techniques built into the amplifier 

to ensure that impedances under 25 K ohms are sufficient for interpretable signals. Channels 

with impedance values above 25 K ohms were interpolated using data from neighboring 

electrodes with impedances below 25 K ohms. An auxiliary channel was used to record from a 

photosensor placed directly on a corner of the LED monitor. A 10-by-10 pixel square located 

under the photosensor was programmed to change from white to black during the onset of each 

visual stimulus; it changed from black to white during stimulus offset. Recording changes in 

screen luminance from the photosensor at 1 kHz allowed for precise timing of stimulus onset 

and offset with respect to the recorded EEG data. 

 
EEG Analysis  
 
EEG signals were processed with BESA Research (v6.1) after re-referencing to a common 

average reference. First, notch (frequency 60 Hz, 2 Hz width) and bandpass (low cutoff 1 Hz, 

type forward, slope 6dB/oct; high cutoff 40 Hz, type zero phase, slope 12 dB/oct) filters were 

applied to all channels. Second, the signal on each channel was visually inspected to find, mark, 

and exclude the duration of all muscle artifacts. Third, a characteristic eye-blink was marked by 

finding an alternating deflection greater than 100 microvolts (μV) between the LOC and ROC 

signals. A template matching algorithm was then used to find all eye blink artifacts on all 

channels and remove the component of variance accounted for by the eye blinks (Picton et al., 

2000; Ille et al., 2002). Finally, additional artifacts were isolated and excluded using amplitude 

(120 μV), gradient (75 μV), and low-signal (max. minus min) criteria (0.01). A participant’s data 

was used in further processing only if a minimum of 60% of trials survived this final artifact scan. 
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Following filtering and cleaning of EEG data, average evoked response potentials 

(ERPs) were computed for each condition (e.g., new, old (all), old1 (ST), old2 (LT), old3 (LT), and 

scrambled). The average ERPs for each condition were then used as input to group ERP 

statistical analyses performed with BESA Statistics v2.0 with appropriate multiple corrections 

across space and time (Maris and Oostenveld, 2007; Maris, 2012). Using this approach, 

statistical significance is assessed using nonparametric cluster permutation tests (N=1,000). 

Group ANOVAs were followed by pairwise t-test comparisons of different conditions in which 

contiguous clusters in space and time of coherent F (for ANOVA) or t values (for paired 

comparisons) exceeding an a priori corrected p-value of less than or equal to 0.05 were deemed 

significant. Summed F or t values of the clusters are compared to a null distribution of F or t 

sums of random clusters obtained by permuting the data order across subjects. This controls for 

type I errors due to multiple comparisons. The null hypothesis of the permutation test assumes 

that the assignment of the conditions per subject is random and exchangeable. The idea behind 

data clustering used in combination with permutation testing is that if a statistical effect is found 

over an extended time period in neighboring channels, it is unlikely that the effect occurred by 

chance. For t-values, a statistical effect can have a positive or negative direction and therefore 

positive and negative cluster values may be obtained. The positive or negative cluster value is 

the test statistic reported for each cluster, and the p-value reported is the one associated with 

that cluster based on permutation testing. For each of the 1000 permutations, new clusters are 

determined and the corresponding cluster values are derived for each cluster. Based on the 

new distribution, the alpha error of the initial cluster value can be directly determined. For 

example, if only 2% of all cluster values are larger than the initial cluster value, the initial cluster 

has a 2% chance that the null hypothesis was falsely rejected. This cluster would then be 

associated with a p-value of 0.02. The time with respect to stimulus onset and the sensor 

locations of each cluster are reported in addition to the cluster value and p-value (Table 1).   

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2017. ; https://doi.org/10.1101/234609doi: bioRxiv preprint 

https://doi.org/10.1101/234609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running Head: Cortical Contributions to Scene Memory 

 11

Supervised Machine Learning  
 
Supervised machine learning was performed on the cleaned and filtered ERP data matrix to 

investigate temporal and spatial patterns. Classification groups were new, old and scrambled 

scenes, and variances included between-subject variance. The first dimension of the input data 

matrix concatenated subject numbers for old, new, and scrambled condition. The second 

dimension was the number of channels used as the classification features. The third dimension 

was the number of time samples. The ERP matrix was segmented by a temporal sliding window 

using 50 ms length non-overlapping windows (Haufe et al., 2014). A classification pipeline was 

constructed which included a standardization scaler and linear stochastic gradient descent 

(SDG) classifier (Haufe et al., 2014; King and Dehaene, 2014). Cross validation was measured 

by a stratified 5-fold cross validation and data were shuffled within each fold. A total of 28 

classifiers (each a 50 ms window) were cross-validated. Permutation tests were used to 

examine significance of the classifiers. The area under a receiver operating characteristic curve 

(ROC AUC) was used as the metric for the 2-class case of old and new. Accuracy was used as 

the metric for the 3-class case of old, new, and scrambled. Scalp topography patterns were 

computed as the dot product of the covariance matrix by the feature weights to visualize activity 

differences for new and old scenes (Haufe et al., 2014). 

  
MRI Scanning  
 
Due to time constraints, the two subjects who underwent fMRI scanning completed only one 20-

minute block of the VCRT. During the task, a T1-weighted anatomical MRI (TE 3.59 ms, TR 

2000 ms, 9 degree flip angle, 249 mm field-of-view, 255 mm field-of-view, 1.00 mm slice 

thickness, 192 slices) and a single 20-minute EPI BOLD-fMRI run (800 timepoints, TE 30 ms, 

TR 1500 ms, 80 degree flip angle, 249 mm field-of-view, 3.10 mm slice thickness, 27 slices) 

were collected on a 3 tesla Siemens Prisma MRI scanner at the [Author University].  

 
fMRI Analysis  
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Alignment of the fMRI volumes, co-registration of each volume to the anatomical MRI, and 

statistical analysis of the fMRI timeseries was performed in AFNI Version AFNI_17.3.01 (Cox, 

1996) using the align_epi_anat.py script and the 3dDeconvolve command. The deconvolution of 

the responses to the jittered, randomized events (new, old, scrambled) assumed a 

hemodynamic response function, HRF(t), of int(g(t-s), s=0..min(t,d)), where g(t)=t^q*exp(-

t)/(q^q*exp(-q)) and where t is time, d=1, and q=5. Statistical maps were computed using a 

general linear model with the six motion parameters as regressors of no interest and the new, 

old, and scrambled scene onset times as regressors of interest. General linear tests included 

old vs. new, old vs. scrambled, and new vs. scrambled. Pial layer and inflated cortical surfaces 

were made using Freesurfer v5.3 (Fischl, 2012) and used to display single-subject statistical 

maps in AFNI’s SUMA viewer. 

 
 
Results 
 
A list of all statistical comparisons and p values obtained from the behavioral, EEG (including 

standard ERP and supervised machine learning), and fMRI analyses is included in Table 1. 

 
Behavioral  
 
Subjects performed well above chance (50%) discriminating old from new stimuli (85.7% 

correct, S.D. 8.5, Fig 2a). When old scene recognition was analyzed as a function of the three 

time intervals, accuracy was best for the short-term (ST) interval and declined at each of the two 

longer-term (LT) intervals (repeated measures ANOVA, F(2,56)=186.3, p<0.001, Fig 2a). A similar 

pattern was obtained when the dependent measure was sensitivity (d-prime) instead of percent 

correct (repeated measures ANOVA, F(2,54)=165.3, p<0.001, Fig 2b). Subjects responded faster 

to old scenes compared to new scenes (old=967.6 ms, s.d. 58.95 vs. new=1012.1 ms, s.d. 

79.45, paired t(28)=4.067, p<0.001, Fig 2c). A signal detection breakdown of response times 

confirmed differences among hits (957.5 ms, s.d. 57.62), correct rejections (986.9 ms, s.d. 
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81.80), misses (1040.5 ms, 92.59 s.d.) and false alarms (1352.1 ms, 173.73 s.d.). A repeated 

measures ANOVA to compare the effect of type of response on the dependent variable 

response time was significant (F(3,84)=86.63, p<0.001, Fig 2c). Post-hoc tests revealed that hits 

were significantly faster compared to both false alarms (post-hoc t=-10.946, pbonf<0.001) and 

misses (post-hoc t=-5.845, pbonf<0.001) but not correct rejections (post-hoc t=-2.419, 

pbonf=0.134). 

 
[insert Fig 2 here] 

 
 
 
Evoked Response Potentials  
 
ANOVA New vs. Old vs. Scrambled ERPs 
 
A group ANOVA of the ERP data with three levels (new, old, and scrambled conditions) 

produced a highly significant, extended cluster (cluster value=641760, p<0.001) ranging from 59 

ms to 1399 ms post-stimulus. This indicated that evoked responses to the three stimulus types 

were distinguishable through most of the post-stimulus time window. The scalp topography 

pattern at early and later post-stimulus times indicate higher magnitude positivities in parietal 

sensors (Fig 3a,b) and negativities (Fig 3c,d) in frontal sensors for old scenes. 

[insert Fig 3 here] 

After this ANOVA, post-hoc paired comparison t-tests were computed to compare the 

evoked response to old versus scrambled conditions and also to compare the responses to new 

versus the scrambled conditions. Early responses (~200 ms) in parietal sensors showed greater 

positivities for old scenes compared to scrambled scenes (Fig 4a,b). Later responses (~300 ms) 

in centro-frontal sensors showed more negative evoked responses to new scenes compared to 

scrambled scenes (Fig 4c,d).   

[insert Fig 4 here] 
 
 
Paired T-Test of New vs. Old ERPs 
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To determine whether evoked responses differed for new and old scenes, a paired t-test of the 

group ERP data was computed and showed that parietal ERPs were positive and greater for old 

versus new scenes by around 200 ms (cluster value=-25074.4, p<0.001, 189 ms to 750 ms, Fig 

5a,b). It was also found that evoked responses in a fronto-temporal cluster were positive and 

greater for new versus old scenes (cluster value=16478.3, p<0.001, 194 to 744 ms, Fig 5c,d). 

[insert Fig 5 here] 
 
 
 
ANOVA of Short- versus Long-Term Old Scene ERPs 
 
Motivated by the behavioral results showing different levels of recognition performance 

depending on whether a scene was first presented in a short- or long-term time interval, a group 

ANOVA of the sensor level ERPs was computed to determine whether and where evoked 

responses could distinguish the three types of old scenes, short-term (old1 within 20 sec), 

intermediate (old2 between 30 sec and 3 minutes), and long-term (old3 between 4 and 10 

minutes). Four clusters were found indicating discrimination as a function of retention interval. In 

descending order of magnitude, these included a cluster with greater positivities evoked by old 

scenes in the longer-term intervals compared to the short-term interval (cluster value=9621.85, 

p=0.001, 355 to 517 ms, peak at 454 ms at sensor FC1, old1 0.1917 vs. old2 0.4522 vs. old3 

0.5099, Fig 6c,d). The second cluster consisted of more negative responses evoked by old 

scenes in the longer-term intervals compared to the short-term interval (cluster value=9128.21, 

p=0.001, 364 to 554 ms, peak at 456 ms at sensor P8, old1 -0.4623 vs. old2 -0.6836 vs. old3 -

0.7497). The third cluster consisted of greater positivities evoked by old scenes in the longer-

term intervals compared to the short-term interval (cluster value=4082.77, p=0.004, 228 to 324 

ms, peak at 291 ms at sensor TP8, old1 -0.1368 vs. old2 0.1751 vs. old3 0.0775, , Fig 6a,b). The 

fourth cluster consisted of a greater positivity evoked by old scenes in the short-term interval 
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compared to the longer-term intervals (cluster value=3437.09, p=0.012, 259 to 326 ms, peak at 

287 ms at sensor C3, old1 0.1109 vs. old2 -0.1929 vs. old3 -0.0141). 

 
[insert Fig 6 here] 

 
 
 
Supervised Machine Learning 
 
A supervised machine learning algorithm was used to determine how accurately scene type 

could be decoded as a function of time after stimulus presentation. Decoding of stimulus type in 

a 2-class scenario with new and old scenes (Fig 7a) as well as in a 3-class scenario with new, 

old, and scrambled scenes (Fig 7b) reached levels significantly above chance by the 275 ms 

post-stimulus time interval. Decoding accuracy peaked in a time interval from 900 to 1100 ms 

post-stimulus, overlapping with the range of average subject response times (Fig 2c). When the 

decoding results were plotted as a function of post-stimulus time, early posterior activity for new 

scenes was visualized from 50 to 200 ms and then there was a switch to old scenes from 200 to 

600 ms (Fig 8). 

 
[insert Fig 7 here] 

 
 
 

[insert Fig 8 here] 
 
 
 
Functional MRI 
 
Single-subject fMRI was used to examine activity differences evoked by presentation of the old 

and new scenes in two subjects. T-maps (alpha threshold at p<0.01, false discovery rate 

q<0.05, cluster extent threshold of 100 voxels) reflecting a contrast comparing old versus new 

scenes produced four separate clusters in each of the two subjects. In the first subject (Fig 9a,b) 

all four clusters were characterized by greater activity for old compared to new scenes. The four 

clusters in descending order of size were 1) right precuneus (999 voxels with peak at +5, -45, 
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+40 mm MNI space), 2) right superior parietal lobule/angular gyrus (959 voxels with peak at 

+39, -66, +49 mm), right middle frontal gyrus/BA6 (130 voxels with peak at +38, +22, +43), and 

4) right middle frontal gyrus/BA10 (118 voxels with peak +30, +68, +2). Four clusters were also 

found in the second subject (Fig 9c,d), and were also characterized by greater activity for old 

compared to new scenes. In descending order of size they included 1) left superior frontal gyrus 

(943 voxels with peak at -24, +2, +77 mm), 2) right superior parietal lobule/angular gyrus (193 

voxels with peak at +40, -48, +65 mm), 3) right inferior frontal gyrus pars opercularis BA45/47 

(119 voxels with peak at +57, +19, -4 mm), and 4) right superior medial frontal gyrus (117 

voxels with peak at +4, +55, +49 mm).  

[insert Fig 9 here] 
 
 
 
 
 
Discussion  
 
The remarkable human capacity for detailed scene recognition memory has been extensively 

documented in previous behavioral studies, yet the neural bases supporting this ability remain 

to be fully understood. Previous neural studies have focused mostly on understanding the basis 

for scene specificity and therefore have utilized designs in which categorization is the required 

cognitive task for making decisions about stimulus sets consisting of scenes and other complex 

visual stimuli like faces, animals, or objects or scenes with faces, animals or objects (Thorpe et 

al., 1996; Tsivilis et al., 2001; Rousselet et al., 2002; Rousselet et al., 2004; Harel et al., 2016). 

Understanding categorization ability, although certainly an interesting and highly-developed 

cognitive function, was not the focus of the present study. Instead, the questions addressed 

here involved scene memory. The primary object was to understand when and how neural 

patterns distinguish novel, familiar, and scrambled scenes. We therefore included as a baseline 

condition a set of phase-scrambled scenes in which color and spatial frequency were similar to 

the real outdoor color scenes. Subjects could not, however, infer from the phase-scrambled 
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scenes anything about place, spatial layout, or meaning from the content of the images. The 

use of scenes and phase-scrambled counterparts, rather than complex stimuli of different 

categories, makes the proactive interference experienced during viewing of the interspersed 

scrambled scenes perceptual rather than categorical.  

The first novel contribution of the present study is the characterization of the 

spatiotemporal neural patterns associated with distinguishing new and old scenes from the 

phase-scrambled versions. A group ANOVA revealed parietal and frontal ERPs discriminated 

the three scene conditions (i.e., new, old, and scrambled) as early as 59 ms after stimulus 

onset. Inspection of the early evoked patterns in Fig 3d shows that this involved a greater 

negativity for new and old scenes compared to the scrambled set in a centro-frontal region. 

When post-hoc direct comparisons of different scene types were made to the scrambled set, 

parietal positivities were greater for old scenes by 210 ms (Fig 4a,b) and centro-frontal 

negativities were greater for new scenes by 235 ms (Fig 4c,d). The greater parietal positivity at 

210 ms is consistent with recent finding that a P2 amplitude peaking at 220 ms is sensitive to 

distinguishing open and closed natural scenes (Harel et al., 2016).  Intuitively the pattern of 

neural results with fastest evoked responses for scrambled scenes followed by longer times for 

real scenes makes sense since identification of a stimulus as a scrambled scene (Fig 1a) 

happens quickly at a perceptual level; identifying aspects of a non-scrambled scene that include 

the content conveying meaning, place and layout relating to the real world likely involves 

additional neural computations.  

The second novel contribution of the present study is the characterization of the 

temporal dynamics associated with discriminating old and new scenes. Direct paired 

comparisons of evoked responses showed elevated parietal ERPs for old compared to new 

scenes by 189 ms (Fig 5a,b). For new scenes, fronto-temporal ERPs were less negative by 194 

ms and eventually developed a greater positivity relative to old scenes. The pattern of findings 

obtained is reminiscent of previously reported old/new effects found with other recognition 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2017. ; https://doi.org/10.1101/234609doi: bioRxiv preprint 

https://doi.org/10.1101/234609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running Head: Cortical Contributions to Scene Memory 

 18

paradigms (Sanquist et al., 1980; Warren, 1980; Wagner et al., 2005; Rugg and Curran, 2007). 

The old/new effect has been described as the more positive-going evoked response to old (i.e., 

studied) items compared to new (i.e., unstudied items). The effect is usually seen as a left-sided 

parietal response peaking 400 to 500 ms after stimulus onset. In the present study, we 

employed a rapid jittered design with stimulus presentation rate of about 6.6 stimuli every 20 

seconds and, because of the speeded presentation, did not attempt to have subjects rate 

familiarity strength using a remember/know procedure after each scene presentation. This 

means that we cannot determine whether the parietal responses evoked by old scenes were 

enhanced for scenes actually remembered compared to scenes merely recognized as familiar 

(Warren, 1980).  

The third novel contribution of the present study is the characterization of differences in 

evoked responses to old scenes as a function of retention interval. The study was designed so 

that some scene presentations were repeated a second time within a 20 sec window after the 

first presentation. We labeled this second presentation as occurring within a short-term interval 

since 20 sec is often assumed as the temporal limit for short-term memory based on classic 

interference paradigms (Peterson and Peterson, 1959; Keppel and Underwood, 1962). Although 

it should be noted that while this assumption is based on paradigms that assess memory based 

on verbalizable items like letter trigrams, it has been recently demonstrated using time-

frequency that the right parietal region is active during the maintenance (6 sec delay) of two 

scenes in short-term memory (Ellmore et al., 2017). Two other intervals of between 30 sec and 

3 min, and between 4 and 10 min were classified as long-term intervals. The behavioral results 

support a distinction among these three intervals with accuracy highest for short-term 

recognition and falling significantly for the later intervals, but remaining well-above chance (Fig 

1a,b). The evoked neural patterns obtained in the present study also support a distinction 

between short- and long-term scene memory. For old scenes presented after a long-term 

interval, parieto-temporal and centro-frontal ERPs were greater by 228 and 355 ms, 
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respectively, compared to old scenes presented after a short-term interval (Fig 6). This finding is 

consistent with recent work showing a rapid and independent role for parietal cortex in a wider 

network for developing longer-term memory (Brodt et al., 2016). 

The main conclusions of this study are based on analyses of the primary data, which 

include EEG data collected from 27 subjects. We conducted secondary analyses and collected 

other hemodynamic data that bolster some of the conclusions about the evoked spatiotemporal 

patterns. First, we performed supervised machine learning to build a model that makes 

predictions based on evidence in the presence of uncertainty. Using this model, we could 

identify patterns across the feature set of all EEG sensors to make predictions in time about 

which stimulus class (i.e., new, old, or scrambled) the subjects have been presented. The 

machine learning results demonstrated an ability to distinguish among the three scene types by 

275 ms (Fig 7) after stimulus onset. Changing patterns of activity particularly in parietal-occipital 

and fronto-temporal regions evoked by the old and new scenes were similar for machine 

learning (Fig 8) compared to the scalp topography maps generated by conventional ERP 

analysis (Fig 3 to 6). We can conclude from these results that the changing pattern of distributed 

activity across the scalp can be used to decode old from new scenes, and also classify old and 

new from scrambled scenes.  

Second, while the EEG reflects dipoles from neural activity in the brain measured by 

sensors located on the scalp, there is considerable uncertainty about where these signals 

originate. Single-subject fMRI however allows for more precise spatial localization by obtaining 

a hemodynamic measure of the elevated blood oxygenation levels occurring as a result of 

increased local field potentials. While temporal evolution of the BOLD signal is lagged by as 

much as 6 sec from stimulus onset, and therefore the temporal resolution is far inferior to that 

obtained with EEG, we collected fMRI data in two subjects who performed the same task but 

completed only one fourth of the number of trials as compared to the subjects who completed 

the EEG experiments. The fMRI results confirm the general pattern at the EEG sensor level that 
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scene memory involves widespread cortical areas including medial frontal, parietal, and 

temporal regions. We found a consistent pattern of fMRI activity across the subjects that was 

greater overall for old compared to new scenes (Fig 8) in parietal, temporal, and medial frontal 

regions. Unfortunately, the limited temporal resolution of fMRI does not allow us to distinguish 

differences in activity during narrow post-stimulus time windows of between for example 200 

and 600 ms, which EEG can resolve quite easily using jittered rapid serial visual presentation. 

Because of the fewer trials obtained in the subjects who completed fMRI, we did not attempt to 

distinguish differences for old scenes presented after long- compared to short-term intervals. An 

additional limitation in the fMRI data is that, in order to maintain a fast repetition time, we traded 

off total slice numbers in the axial acquisitions. Thus, we did not capture fully the basal and 

medial temporal areas including hippocampus and parahippocampal gyrus. Therefore, in this 

limited sample, we cannot investigate neural patterns in these regions during scene recognition.  

In conclusion, we present converging evidence from multiple modalities and analysis 

approaches that the high capacity human scene recognition memory system is supported by 

neural activity patterns occurring by 200 ms in widespread frontal, temporal and parietal cortical 

regions. Changes occurring later, between 225 and 550 ms, allow a distinction between scenes 

first presented 20 sec ago compared to several minutes ago. These findings provide a baseline 

by which to evaluate in future neural studies the more nuanced aspects of the scene memory 

system, including how scene information is consolidated rapidly and available for accurate 

recognition after even longer retention intervals, including days and beyond (Chandler, 1991), 

and how neural patterns resist accumulating proactive interference (Makovski and Jiang, 2008) 

as hundreds or even thousands more scenes are encoded for subsequent recognition.  
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Figure Legends 
 
Figure 1. Example Stimuli and Experimental Design. Three example scenes are shown 
alternating with two example phase-scrambled scenes (a). A stem plot shows 20 minutes of the 
visual continuous recognition task (b) with each stem representing a single stimulus 
presentation. The height of the stems is varied simply to aide visualization of the different 
conditions. Three sets of new scenes to be repeated with old1 occurring in the range of short-
term (ST) memory (within 20 sec) and old2 and old3 occurring in the long-term range (>30 secs 
after initial presentation). Also displayed are stems representing phase-scrambled scenes and 
new scenes only presented once during the 20-minute block of VCRT trials. 
 
Figure 2. Behavioral Accuracy and Response Times during Scene Recognition. Overall 
percent correct for new/old recognition was above chance (50%), was highest for the short-term 
interval and declined at the two longer term intervals (a). A similar pattern was found for 
sensitivity (b). Response times were longer for new compared to old scenes, fastest for hits and 
correct rejections, slower for misses, and slowest for false alarms (c). 
 
Figure 3. Evoked Response Potentials Distinguish New, Old, and Scrambled Scenes. A 
group ANOVA of ERPs distinguish the three scene types - new, old, and scrambled – across 
most of the stimulus window. The early scalp topography, especially at parietal sensor P8, 
showed higher magnitude positivities (a,b). Later in time a more negative deflection in a centro-
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frontal sensor FCz characterized the response evoked by new and old scenes (c,d) compared 
to scrambled scenes (c,d). Boxes with colored asterisks in a and c indicated sensors that are 
part of significant spatiotemporal clusters, while red shaded areas in b and d indicate time 
intervals of significant differences in group ERPs (p<0.01). 
 
Figure 4. Evoked Response Potentials Distinguish Old from Scrambled and New from 
Scrambled Scenes. Post-hoc paired comparison t-tests computed after the three level ANOVA 
compared evoked responses show that early responses (~200 ms) in parietal sensor P5 were 
characterized by greater positivities for old scenes compared to scrambled scenes (a,b). Later 
responses (~300 ms) in the centro-frontal sensor FCz showed more negative evoked responses 
to new scenes compared to scrambled scenes (c,d). Boxes with colored asterisks in a and c 
indicated sensors that are part of significant spatiotemporal clusters, while red shaded areas in 
b and d indicate time intervals of significant differences in group ERPs (p<0.01). 
 
Figure 5. Differences in Evoked Response Potentials for New and Old Scenes. A paired t-
test of the group ERP data revealed parietal sensors with greater positivities for old compared to 
new scenes (a,b). A fronto-temporal cluster showed greater positivities for new compared to old 
scenes. Boxes with colored asterisks in a and c indicated sensors that are part of significant 
spatiotemporal clusters, while red shaded areas in b and d indicate time intervals of significant 
differences in group ERPs (p<0.01). 
 
Figure 6. Frontal and Parietal ERPs Distinguish Old Scenes Presented at Long- versus 
Short-Term Intervals. A difference in ERPs centered at electrode TP8 occurring 291 ms after 
stimulus onset (a) shows the greatest positivity for old scenes first presented within 30 sec to 3 
minutes (b, light blue) and the least positivity for old scenes first presented with 20 sec ago (b, 
purple). A difference in ERPs centered at electrode FC1 occurring 458 ms after stimulus onset 
(c) shows greater positivities for old scenes first presented between 30 sec and 10 minutes ago 
(d, blue and light purple) and the least positivity for old scenes first presented 20 sec ago (d, 
purple). Boxes with colored asterisks in a and c indicated sensors that are part of significant 
spatiotemporal clusters, while red shaded areas in b and d indicate time intervals of significant 
differences in group ERPs (p<0.01). 
 
Figure 7. Decoding of Scene Type with Supervised Machine Learning. Classification of 
stimulus type using supervised machine learning in a 2-class scenario with new and old scenes 
(a) and in a 3-class scenario with new, old, and scrambled scenes (b) reached levels above 
chance (red shaded bars) by the 275 ms post-stimulus time interval. 
 
Figure 8. Spatiotemporal Scalp Topography Patterns from Machine Learning 
Classification Show Widespread Contributions to Decoding Scene Type. The decoding 
results were plotted as a function of post-stimulus time interval to visualize differences for new 
and old scenes. Early posterior activity for new scenes dominates from 50 to 200 ms and then 
there is a switch to old scenes from 200 to 600 ms. 
 
Figure 9. Single-Subject fMRI Reveals Widespread Cortical Contributions to Scene 
Memory. In two subjects, a contrast of old and new scenes produced activity differences 
dominated by more activity for old compared to new scenes. In subject 1 (a,b) all four clusters 
were found in right hemisphere and included precuneus, angular gyrus, and middle frontal gyrus 
(BA6 and BA10). In subject 2 (c,d) three out of four clusters were found in the right hemisphere 
included left superior frontal gyrus, superior parietal lobule (BA 40/7), and superior medial 
frontal gyrus (BA8). The peak of the cluster of activity in left hemisphere of subject 2 (not 
shown) was located in superior frontal gyrus (BA 6). 
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Table Legends 
 
Table 1. Statistical Table. The statistics and associated p-values are reported for each of the 
behavioral, group ERP, machine learning, and fMRI analyses. Sensor locations are named 
according to the extended international 10/20 system. Means for ERP conditions are in units of 
microvolts and are integrated across the entire temporal window indicated by start and end time. 
For machine learning accuracy is reported for 3-class decoding, while area under the curve is 
reported for 2-class decoding. Cluster sizes for fMRI are in number of voxels where each voxel 
represents 3.134x3.134x3.100 mm3. SPL=superior parietal lobule, MFG=middle frontal gyrus, 
IFG=inferior frontal gyrus, Sup. MFG=superior medial frontal gyrus.  
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