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Abstract Second order statistics such as the variance and
autocorrelation can be useful indicators of the stability of
randomly perturbed systems, in some cases providing early
warning of an impending, dramatic change in the system’s
dynamics. One specific application area of interest is the
surveillance of infectious diseases. In the context of disease
(re-)emergence, a goal could be to have an indicator that is
informative of whether the system is approaching the epi-
demic threshold, a point beyond which a major outbreak be-
comes possible. Prior work in this area has provided some
proof of this principle but has not analytically treated the ef-
fect of imperfect observation on the behavior of indicators.
This work provides expected values for several moments of
the number of reported cases, where reported cases follow
a binomial or negative binomial distribution with a mean
based on the number of deaths in a birth-death-immigration
process over some reporting interval. The normalized sec-
ond factorial moment and the decay time of the number of
case reports are two indicators that are insensitive to the re-
porting probability. Simulation is used to show how this in-
sensitivity could be used to distinguish a trend of increased
reporting from a trend of increased transmission. The sim-
ulation study also illustrate both the high variance of esti-
mates and the possibility of reducing the variance by av-
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1 Introduction

Early warning signals (EWS) are certain statistical indica-
tors that have shown promise of predicting catastrophic changes
to complex systems (Pace et al 2017; Chen et al 2014; Schef-
fer et al 2015). Such predictions are challenging because
changes in the equilibrium state of the system are typically
very small prior to the catastrophic change in the equilib-
rium. A key insight that the EWS approach brings to the
problem is that even when the equilibrium value of the sys-
tem does not change, the rate at which deviations from the
equilibrium decay can decrease a great deal and this slow-
ing down can indicate an approaching catastrophe. In fact,
such slowing down can also be expected to occur for some
non-catastrophic changes to the system’s equilibrium (Kéfi
et al 2013), as it has its mathematical basis in the normal
forms of many types of bifurcations (Kuehn 2011). As such,
a literature is growing that studies application of EWS for
the transition from the disease-free to the endemic equilib-
rium of simple compartmental models of an infectious dis-
ease (O’Regan and Drake 2013; O’Regan et al 2015; Miller
et al 2017; Brett et al 2017; Drake and Hay 2017).

This literature has yet to address two seemingly unre-
lated problems with such an application of EWS. The first
is that the theoretical basis for EWS has been based on the
assumption that data on the number of infected individuals
at various time points are available, which often is not the
case. Often, the available data consist of reports of some
number of infected individuals that have received treatment
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and stopped transmitting within some time period. We refer
to this type of data as case reports.

A second problem is that many EWS are based on sec-
ond order properties of time series (e.g., variance and auto-
correlation) which have no obvious advantage over using a
simple first order indicator such as a rolling mean for the
simple compartmental models studied. If the disease-free
equilibrium is stable and there is occasionally a randomly
imported infection from some other population, the expected
number of cases per unit time is a small number that grows
as the system approaches the epidemic threshold. Thus it
would seem sufficient to monitor the distance to the epi-
demic threshold by monitoring the mean number of cases
per unit time, which in this situation provides an estimate of
slowing down. If the endemic equilibrium is stable, the mean
number of cases per unit time does not provide an estimate
of slowing down but it does provide an estimate of the equi-
librium, and the equilibrium moves gradually to zero as the
threshold is approached. Thus in either situation, it would
seem that the mean is the natural choice of indicator.

Here we derive a theoretical expectation for the mean
and second order indicators based on case report data, and
we also find a new reason to use second order indicators:
some observational biases that affect the mean do not affect
second order indicators. In the following we establish this
fact for a model of case report data that is constructed by
adding an observation model to a birth-death-immigration
model. We then present a simulation study that illustrates
how this insight could be used to distinguish between in-
creased reporting and increased transmission of an infec-
tious disease.

2 Methods

First, we review past analytic results that are applicable to
the moments of the number of case reports and present them
in such a context. We then extend these results to the case
of a negative binomial model of observed reports, which is
a standard model used when analyzing case report data. We
then describe simulations used to verify our analytic results.
Finally, we describe the design of a simulation study which
evaluates the idea of using moment estimates to monitor the
distance to the epidemic threshold in a manner that is not
susceptible to confounding by trends in the reporting proba-
bility.

2.1 Equations for moments of the number of cases

We model the number of infectious individuals for a disease
as a birth-death-immigration (BDI) process. This modeling
approach is often considered appropriate for infections that
are introduced into a population from time to time but are

unable to spread to a great enough extent within the popu-
lation to affect population-level immunity. To be clear, the
idea is to map the importation of a disease to immigration,
transmission within the population to birth, and the removal
of infectious individuals from the transmitting population to
death. The birth and death rates are assumed to depend lin-
early on the population size. This BDI process captures the
self-exciting nature of infectious disease dynamics and yet
remains analytically tractable (Bartlett 1956).

Although analytic results for the population size of BDI
processes have long been known (Kendall 1948), analytic
results that describe the distribution of case reports are com-
paratively obscure. For notifiable infectious diseases, no-
tification data often consists of the number of individuals
that were diagnosed with the disease by healthcare work-
ers over the course of some reporting period. Based on the
assumption that healthcare workers direct the infected indi-
viduals to avoid contact with susceptible individuals (Emer-
son 1937), a common assumption is that the number of case
reports corresponds to the number of individuals removed
from the transmitting population over the course of the re-
porting period. Hopcraft et al (2014) derived equations for
a BDI process that correspond to the moments of these re-
movals. In the remainder of this subsection, we briefly re-
view the derivation of these equations and provide an ex-
plicit connection between them and some proposed indica-
tors of disease emergence.

Let PN,n(T ) denote the probability that a total of n infec-
tious individuals are removed from the population over an
interval of length T and that there are N infectious individu-
als remaining at the end of the interval. The master equation
is
dPN,n

dT
= λ (N−1)PN−1,n +νPN−1,n−λNPN,n−νPN,n

+η(N +1)PN+1,n−1−ηNPN,n, (1)

where λ is the per-capita transmission rate, η is the per-
capita removal rate, and ν is the importation rate (Hopcraft
et al 2014).

To obtain a solution for the moments of n, we make use
of a moment generating function of PN,n(T ). As we will be
making use of several results from Hopcraft et al (2014), we
use their definition of a moment generating function:

q(s,z;T ) =
∞

∑
N=0

∞

∑
n=0

(1− s)N(1− z)nPN,n(T ). (2)

The master equation leads to a partial differential equa-
tion for the value of the generating function. For the case
that λ < η and that the underlying BDI process has reached
stationarity, the solution is

q(s,z;T ) =
(

1− λ

η−λ

(
−s− λ r(z)(r(z)+ s)(1−θ)

U−λ

))−ν/λ

× exp(νTr(z)), (3)
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where r(z) = (−λ + η −
√
(η−λ )2 +4ληz)/(2λ ), U =

η−λ2r(z), and θ = exp(−(U−λ )T ). By setting s = 0, we
obtain the probability generating function for the marginal
distribution of n. This function may be written as (Hopcraft
et al 2014)

q(0,z;T ) =
exp(αγ)

[coshy+(y/(2γ)+ γ/(2y))sinhy]α
, (4)

where α = ν/λ , γ = (η−λ )T/2, and y =
√

γ2 +ηλT 2z.
We can now calculate the mean of n as

〈n〉= − d
dz

∣∣∣∣
z=0

q(0,z;T ) = ηT ν/(η−λ ). (5)

We will calculate the variance of n by way of the normalized
second factorial moments. It turns out that the equations for
the factorial moments are simpler than those for the regular
moments, and later we shall see they may have some advan-
tages as indicators of threshold distances. The normalized
Rth factorial moment of a random variable X is defined as

X [R] =
〈X(X−1)(X−2) . . .(X−R+1)〉

〈X〉R
. (6)

The normalized second factorial moment of n is then

n[2] = 〈n〉−2(−1)2 d2

dz2

∣∣∣∣
z=0

q(0,z;T )

= 1+
λ

νγ

(
1− 1− exp(−2γ)

2γ

)
. (7)

The variance follows as

varn = 〈n2〉−〈n〉2

= 〈n〉2n[2]+ 〈n〉−〈n〉2

= 〈n〉2(n[2]−1)+ 〈n〉. (8)

A bilinear moment function is defined by Hopcraft et al
(2014) as

g(τ;T ) =
〈n(0)n(τ)〉
〈n〉2

=
1
〈n〉2

∞

∑
n=0

∞

∑
n′=0

nn′p(n,n′;τ,T ), (9)

where τ ≥ T and n(x) is the number of removals that occur
in the interval [x,x+T ). The probability may be calculated
as

p(n,n′;τ,T ) =

∑
M,M′,M′′

p(n′|M′′;T )P(M′′|M′;τ−T )p(n,M′|M;T )PM,

(10)

where PM is the probability of there being M individuals in
the population at time 0 and P(M′′|M′;τ −T ) is the proba-
bility that the population transitions from M′ to M′′ individ-
uals in the time between the intervals in which n and n′ are

counted. In Hopcraft et al (2014), g is derived in terms of the
moments as

g(τ;T ) = 1+
λ

γ2ν
sinh2(γ)exp(−(η−λ )τ), (11)

where as above we have assumed that the process is ob-
served after reaching stationarity. A stationary autocorrela-
tion ρ can of course be written in terms of g as

ρ(τ,T ) = [〈n(0)n(τ)〉−〈n〉2]/varn

= 〈n〉2[g(τ;T )−1]/varn

=
g(τ;T )−1

n[2]−1+ 〈n〉−1
. (12)

2.2 Binomial model for case reports

The moment equations derived in the previous subsection
have been derived under the assumption that every removal
is observed as a case report. Such a complete record of the
process is not a realistic model for the data from most surveil-
lance systems. It is more realistic to suppose that each re-
moval is reported only with a given probability. That is, a
step toward realism is to assume that the number of case re-
ports mbin is binomially distributed, with n being the number
of trials and ξ being the probability of success in each trial.
The binomial distribution may be a good model for the num-
ber of reported cases in which each case report corresponds
to an individual who received medical care, was tested for
the disease, and then prevented from having contact with
others, thereby being removed from the population of trans-
mitting individuals. For a highly specific diagnostic test, it
is unlikely for the number of reported cases to ever exceed
the number of true cases. The binomial preserves that upper
bound on the number of reports.

For binomial sampling, the generating function for the
number of case reports can be obtained by substituting ξ z
for z in (4), the generating function for the number of re-
movals (Hopcraft et al 2014). With this substitution, we ob-
tain the moments in the same manner as above, yielding

〈mbin〉= ηT νξ/(η−λ ) = ξ 〈n〉, (13)

m[2]
bin = n[2], (14)

gbin(τ;T ) = g(τ;T ). (15)

We have not provided details about the calculation of the
bilinear moment because the steps of the calculation for an
equivalent model (a BDI model with a rate µ unobserved re-
movals and η for observed removals) are outlined by Hopcraft
et al (2014).
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Equations (13), (14), and (15) may be used to write out
equations for two standard EWS—the variance and autocor-
relation:

varmbin = 〈mbin〉2n[2]−〈mbin〉2 + 〈mbin〉, (16)

ρbin(τ,T ) = 〈mbin〉2[g(τ;T )−1]/varmbin. (17)

2.3 Negative binomial model for case reports

The binomial model may be an unsuitable one for the noti-
fication data of many infectious diseases. It does not allow
for the number of case reports to exceed the true number of
removals. In practice, over-reporting may occur due to mis-
diagnoses or clerical errors. For such reasons, analysts often
allow for overdispersed reporting distributions when fitting
case report data (Bretó et al 2009; He et al 2010; Martinez-
Bakker et al 2015). Following (Bretó et al 2009) we allow
for such overdispersion by assuming that the case reports
are negatively binomially distributed and employ the mean-
dispersion parameterization of the negative binomial. The
mean is assumed to be equal to the true number of case re-
ports n times the reporting probability ξ . The variance of the
number of case reports, conditional on ξ n, is determined by
a dispersion parameter φ according to ξ n+(ξ n)2/φ .

The moments of the number of case reports with this
negative binomial observation model can be obtained by view-
ing the number of case reports mnb as the sum of two ran-
dom variables: (i) the number of removals n times the report-
ing probability ξ and (ii) the difference between the ξ n and
mnb, which we denote with e (for error term). In symbols,
mnb = ξ n+ e. Clearly, conditional on n taking a particular
value, the expected value of the error term is zero. That is,
〈e|n〉= 0. Thus the unconditional mean

〈mnb〉= 〈〈ξ n+ e|n〉〉
= 〈〈ξ n|n〉〉+ 〈〈e|n〉〉
= ξ 〈n〉. (18)

To obtain the second factorial moment, we note that m2
nb =

(ξ n)2 +2ξ ne+ e2. The conditional means of the terms are

〈(ξ n)2|n〉= (ξ n)2, (19)

〈2ξ ne|n〉= 2ξ n〈e|n〉= 0, (20)

〈e2|n〉= ξ n+(ξ n)2/φ . (21)

By removing the conditioning, we obtain 〈m2
nb〉= ξ 2〈n2〉+

ξ 〈n〉+ ξ 2〈n2〉/φ . Using the above equations for the mo-
ments of n, we have

m[2]
nb = (1+1/φ)〈n2〉/〈n〉2 = (1+1/φ)(n[2]+1/〈n〉) (22)

The decomposition mnb = ξ n+ e also leads to an easy
proof that the bilinear moment function of the negative bi-
nomial case reports must be the same as that of the removals.

Consider

gnb(τ;T ) =
〈mnb(0)mnb(τ)〉
〈mnb〉2

=
〈(ξ n(0)+ e(0))(ξ n(τ)+ e(τ))〉

ξ 2〈n〉2
. (23)

The zero conditional mean of the e terms and their indepen-
dence from the value of n and e in adjacent reporting periods
then yields

gnb(τ;T ) =
〈n(0)n(τ)〉
〈n〉2

= g(τ;T ). (24)

The variance and autocorrealtion can now be written as

varmnb = 〈mnb〉[1−〈mnb〉+(1+1/φ)(〈mnb〉n[2]+ξ )],
(25)

ρnb(τ,T ) = 〈mnb〉2[g(τ;T )−1]/varmnb. (26)

2.4 Numerical verification of analytic results

To verify the accuracy of the above equations for the
moments, we calculated moments numerically as follows.
Twenty parameter sets were obtained by uniformly sam-
pling the removal rate η between 0.01 and 1, the report-
ing period length T between 1 and 10, the reporting prob-
ability ξ between 0 and 1, and the base-10 logarithm of φ

between -1 and 2. For each parameter set, either the nega-
tive binomial or the binomial observation model was used
with equal probability. To obtain a range of distances to
the epidemic threshold, each parameter set was assigned
a value of λ such that the quotient λ/η was varied se-
quentially from 0.05 to 0.95 in steps of 0.1 with 2 repli-
cates of each quotient. For each parameter set, an ensem-
ble of N = 104 simulations of observations of a BDI pro-
cess was computed. Individual simulations were initialized
by sampling a population size from the stationary distribu-
tion of the BDI process and were run until the simulation
time reached two reporting periods (2T ). The essential out-
puts of individual simulation i were m̄i = [mi(0)+mi(T )]/2,
m̄2

i = [mi(0)2 + mi(T )2]/2, and mi(0)mi(T ), where mi(0)
and mi(T ) are the number of case reports from the
first and second reporting period. We numerically com-
puted the mean as ∑i m̄i/N, the variance as ∑i m̄2

i /N −
(∑i m̄i/N)2, the second factorial moment as (∑i m̄2

i /N −
∑i m̄i/N)/(∑i m̄i/N)2, the bilinear moment function as
(∑i mi(0)mi(T )/N)/(∑i m̄i/N)2, and the autocorrelation as
(∑i mi(0)mi(T )/N− (∑i m̄i/N)2)/(∑i m̄2

i /N− (∑i m̄i/N)2).
These numerical results were compared with those obtained
using the above formulas by creating scatter plots.
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2.5 Simulation study

A simulation study was performed to illustrate how these an-
alytic results might be employed in the analysis of case re-
ports data to distinguish trends of increased reporting from
those of increased transmission. We simulated case report
data over a 520 week period under two scenarios: (i) the
transmission rate λ increases over time, and (ii) the report-
ing probability ξ increases over time. We then computed
moving window estimates of the mean, which is expected to
be sensitive to changes in both transmission and reporting,
and the second factorial moment, which is expected to be
sensitive to changes in transmission only. We then plotted
the range of values containing the middle 90 percent of the
moving window estimates as a function of time. These plots
convey the feasibility of using the value of an estimate to
reliably indicate a change in transmission.

Details of the simulations were as follows. Parameters
shared between both scenarios were the removal rate η of
1 per week, the importation rate ν of 1 per week, and the
reporting period of 1 week. In the increasing reporting sce-
nario, the reporting probability ξ was initially 0.1 and it in-
creased steadily to 0.5, with the linear increasing occurring
throughout the course of the simulation. The transmission
rate λ for this scenario was fixed at 0.9 per week. In the
increasing transmission scenario, ξ was fixed at 0.5. λ was
initially 0.5 per week and increased linearly to 0.9 per week
over the course of the simulation. These parameterizations
ensure that for both scenarios the expected number of case
reports 〈n〉 was equal to 1 at the beginning of the simula-
tion and equal to 5 at the end. Simulations for both scenar-
ios were initialized by sampling from the stationary distribu-
tion of the BDI process, and both scenarios used a binomial
model for case reports. We simulated 1000 replicates of each
scenario.

The replicated simulations can also be thought of as a
single simulation of a data set comprising case reports from
many statistically identical locations. We thus refer to that
set of simulations as a homogeneous ensemble. To simulate
a multiple time series data set originating from a heteroge-
neous ensemble, we also performed a set of 1000 simula-
tions for each scenario in which the parameters were sam-
pled randomly for each time series in the ensemble. The
sampling was uniform in bands around the parameter val-
ues for the homogeneous ensembles. Parameters η and ν

were sampled from (0.5, 1.5). In the increasing reporting
scenario, the initial reporting probability was sampled from
(0.05, 0.15) and the fixed λ values were sampled condition-
ally on η so that λ/η was uniform in (0.85, 0.95). In the
increasing transmission scenario, the initial reporting prob-
abilities were sampled from (0.45, 0.55) and λ was sampled
so that λ/η was uniform in (0.45, 0.55). The rate of change
of either the reporting probability or the transmission rate

was the same as in the homogeneous simulations. The re-
porting period T was also held at 1 week.

Moving window estimates of the mean and second fac-
torial moment were estimated from the simulations as fol-
lows. We used a backward-looking window of 52 weeks. In
each window, we calculated the sample mean and the sam-
ple second factorial moment. Ensemble estimates for a given
week were generated by taking the mean of all estimates
from individual windows with a final observation occurring
that week. The quantiles of the individual window estimates
were estimated from the empirical distribution of estimates
from 1000 replicates. For the sake of computational effi-
ciency, the quantiles of the ensemble estimates were esti-
mated by a bootstrap method instead of simulating multiple
ensemble data sets from the beginning. For estimates, we
used the quantiles of a distribution of 300 ensemble esti-
mates where each ensemble estimate was based on a boot-
strap replicate of the 1000 individual window estimates.

2.6 Software and reproducibility

We conducted our simulations in R using the pomp
package (King et al 2016). Code to reproduce
our results is available in the Zenodo repository at
https://doi.org/10.5281/zenodo.1112362.

3 Results

3.1 Indicators of threshold distances not confounded by
reporting probabilities

The equations for the moments derived in Methods provide
insight into which moment estimates of case report data
may provide an indication of the distance to the epidemic
threshold. The accuracy of these equations is supported by
the close agreement of simulated and calculated estimates
in Figure 1. Regarding the use of these moment estimates as
indicators, we propose that two key characteristics of a good
indicator are, first, sensitivity to the difference between the
transmission and recovery rates, λ −η , and, second, insen-
sitivity to the reporting probability ξ of the reporting model.
Based on this criteria, (13), which gives the mean for the
binomial and negative binomial models, identifies the mean
as a poor indicator. Also, (14) and (22) identify the (nor-
malized) second factorial moment as a good indicator. This
contrast is illustrated in Figure 2.

By the same criterion, one could also conclude from
(11), (12), (17), and (26) that the decay rate of the auto-
correlation function, which is equal to η−λ , is also a good
indicator. On the other hand, the autocorrelation at a fixed
lag is not a good indicator because the factor in the autocor-
relation besides g(τ;T )−1 is generally sensitive to ξ . Thus
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Fig. 1 Theory and simulation agree. Model parameters were sampled
as described in Methods. The line indicates where points would fall in
the case of perfect agreement.

it would generally be desirable to estimate the autocorrela-
tion function rather than a fixed-lag value of the autocorre-
lation function. Because this estimation is a little more com-
plicated than estimating a factorial moment, we considered
only factorial moments in our simulation study.
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Fig. 2 The mean is sensitive to both the transmission rate and reporting
probabilities and the normalized second factorial moment is sensitive
to changes in the transmission rate only. Lines are drawn using (13) and
(14). Parameters: η = ν = 1 per week, T = 1 week, binomial model of
reporting.

3.2 Application to simulated surveillance data

We next present the results of a simulation study to elaborate
on the circumstances under which our criteria for good and
bad indicators could prove useful. Figure 3 shows examples
of the time series associated with representative simulation
replicates from the scenarios describe in §2.5. Based on our
analytic results, we expected that moving window estimates
of the mean should increase in both scenarios, whereas in-
creases in the second factorial moment should be specific
to increases in transmission. Figure 4 confirms this expecta-
tion. However, it also conveys the extremely high variation
in estimates of both moments from individual simulation
replicates. For our proposed indicator of the second facto-
rial moment, the variation of estimates around their expected
values is about fivefold greater than the change in expected
value due to the change in the transmission rate. Thus the
variance of estimates from individual time series rules out
the possibility of using this indicator to reliably signal an
increase in transmission.

Although the application of our indicator to a single time
series seems unpromising, in fact case report data are often
available as multiple time series. Therefore one way to re-
duce the variance of the estimates would be to calculate the
mean of an ensemble of rolling window estimates, where
each rolling window estimate is based on an individual time
series. For example, if one had a time series of case reports
from a number of areas, one could calculate sample mo-
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Fig. 3 Scenarios of either increasing transmission or reporting were
simulated. For one simulation of each scenario, the time series of case
reports, moving window moment estimates, and the percent of the to-
tal change in the transmission or reporting parameter are plotted. Sim-
ulation parameters are those given for the homogeneous ensemble in
Methods.

ments in moving windows for each area and then take the
average of estimates across areas to obtain an ensemble es-
timate. Figure 4 shows that with an ensemble of size 1000
the signal-to-noise ratio of the second factorial moment es-
timates is drastically improved. A threshold of 1.5, say, on
the second factorial moment could reliably discriminate be-
tween conditions of low and high transmission (weeks 1 to
250 versus weeks 250 and later).

The use of ensemble estimates raises the question of how
similar members of the ensemble must be for the ensemble
estimates to be useful. We do not attempt a systematic inves-
tigation of this question in this work but do confirm that per-
fect homogeneity is not a requirement. We simulated data
for both homogeneous and heterogeneous ensembles. The
parameters used to simulate individual time series in the het-
erogeneous ensembles were sampled from bands surround-
ing the set of parameters used for each time series in the
homogeneous ensemble. Figure 4 shows that these hetero-
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Fig. 4 Moving window estimates of the mean increased with both re-
porting and transmission whereas increases in the second factorial mo-
ment were specific to increases in the transmission rate. Ribbons plot
the middle 90 percent of estimates out of a set of replicated simula-
tions. Estimates from individual time series were highly variable but
ensemble estimates were much less noisy and could provide reliable
information about the parameters.

geneous ensemble estimates behaved similarly to homoge-
neous ensemble estimates.

4 Discussion

Our work provides analytic expressions for several moments
of a model of case report data that includes mechanisms of
both disease transmission and observation. These expres-
sions make clear that certain moments are not affected by
changes in the reporting probability. Our simulation results
demonstrate how estimates of such a moment could be used
to distinguish between trends of increased reporting and
trends of increased transmission. The simulation results also
illustrate that the high variance of moment estimates from
individual time series presents a problem for their use as in-
dicators. The results further show that taking the average of
an ensemble of moment estimates, possibly originating from
heterogeneous populations, is one possible solution.

This work is in one respect a follow-up of Brett et al
(2017), which studied the behavior of the population size
of a BDI (birth-death-immigration) model as it approached
criticality and characterized how the slowing of the dynam-
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ics is borne out in the moments of the population size. Re-
sults for our case report models are in many ways similar to
those of the BDI model. For example, the mean, variance,
and autocorrelation of the case report models all increase
with the approach to criticality. Our equations even imply
that the decay times for the case report models, 1/(η −λ ),
are identical to that of the BDI model. Addition of the obser-
vation models we have considered to the BDI model, then,
does not pose a fundamental problem to the idea of creating
indicators to detect slowing down. It rather poses some solv-
able problems about trends in some indicators being con-
founded with trends in reporting parameters.

The problem of changes in reporting creating false im-
pressions about trends in the transmission of an infectious
disease is not specific to data analysis methods based on
the slowing down phenomena. Indeed, many online aber-
ration detection methods reviewed by Salmon et al (2016)
are likely to raise alarms in response to any increase in the
mean number of reported cases. Our work suggests that it
may be useful to add to these systems some indicators that
are based on second order moments to provide a metric of
the system that may be less susceptible to changes in report-
ing rates. Such indicators would not require development of
detailed models for each surveillance stream and would be
computationally simple enough to apply at large scales.

We caution, however, that at present any such applica-
tions should be considered highly experimental. First, it is
not clear at what scale the BDI model should be considered
a suitable model for the transmission of any particular in-
fectious disease. In the BDI model we have considered, all
chains of transmission share the same parameters. Although
that may be reasonable at a very fine scale, case report data
is typically available only at relatively large scales for which
multi-type BDI models may be more appropriate. Second, it
is also not clear whether our model of observation is ad-
equate. Explicitly modeling observation and the dynamics
of two frequently confused conditions, such as measles and
rubella (Helfand et al 2003), may reveal that disentangling
transmission from reporting is not so simple. In short, to pro-
vide a firm foundation for applications, future work must
systematically determine both the conditions under which
the proposed indicators perform well and whether these con-
ditions are realistic.

Although substantial work remains to be done before it
is clear what place, if any, indicators based on slowing down
have to play in the routine analysis of case report data, the
present work has further demonstrated the appeal of their
generality. It is easy to see from our results that the decay
time of the case reports will match that of the BDI process
for many models of observation in which the expected value
of the number of case reports is proportional to the true num-
ber of removals in the reporting period. This generality then
allows us to justify decay time as an indicator for any such

model. In this way, it may provide the necessary assurance
that many facts that may be uncertain may not be important.
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