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Abstract

In order to infer that a single-nucleotide polymorphism (SNP) either affects a pheno-

type or is linkage disequilibrium with a causal site, we must have some assurance that

any SNP-phenotype correlation is not the result of confounding with some environmental

variable that also affects the trait. Here we provide a mathematical analysis of LD Score

regression, a recently developed method for using summary statistics from genome-wide

association studies (GWAS) to ensure that confounding does not inflate the number of

false positives. We do not treat the effects of genetic variation as a random variable and

thus are able to obtain results about the unbiasedness of this method. We demonstrate

that LD Score regression can produce estimates of confounding at null SNPs that are

nearly unbiased under fairly general conditions. This robustness can hold even in cases

now thought to be unfavorable, such as a correlation over SNPs between LD Scores and

the degree of confounding. LD Score regression is thus an even stronger technique for

causal inference than foreseen by its developers. Additionally, we demonstrate that LD

Score regression can produce unbiased estimates of the genetic correlation, even when its

estimates of the genetic covariance and the two univariate heritabilities are substantially

biased.

Key Words: causal inference; heritability; population stratification; quantitative genetics
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1 Introduction

The goal of genome-wide association studies (GWAS) is to find loci in the genome where

variation affects a phenotype. However, this must be accomplished from observed correla-

tions, and inferring causation from correlation is a famously perilous endeavor (Freedman,

1999; Pearl, 2009). GWAS has been fortunate in that it offers a variety of methods to

check whether confounding effects have produced spurious correlations between genetic

and phenotypic variation. These methods have led to a strong consensus that confounding

has a minimal impact on GWAS results (Goldstein, 2011; Visscher, Brown, McCarthy, &

Yang, 2012; Lee, 2012; Lee, Vattikuti, & Chow, 2016).

One of the newer methods used to check the causal status of GWAS associations

is known as LD Score regression (Bulik-Sullivan et al., 2015b), which can be applied to

summary statistics assembled from the contributions of different research groups and thus

does not require access to individual-level data. This ingenious technique relies on the

simple linear regression of assayed single-nucleotide polymorphism (SNP) j’s association

chi-square statistic on

lj =
∑
k

Γ2
jk, (1)

the sum over all SNPs of each SNP’s squared correlation with the focal SNP j. This

latter quantity is called SNP j’s “LD Score.” Empirically, the regression curve relating

chi-square statistics to LD Scores is always very close to an upwardly sloping straight

line. This result is explicable because a SNP tagging more of its neighbors—and, thus,

having a higher LD Score—is more likely to tag one or more causal sites affecting the

phenotype. The lowest possible LD Score of a SNP is in fact one, which is obtained

when a SNP is in perfect linkage equilibrium (LE) with all other SNPs. A hypothetical

SNP with an LD Score of zero, then, fails to tag the causal effect of any SNP in the
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genome—including whatever effect the SNP itself may have. Therefore, if the intercept

of LD Score regression departs upward from unity (the theoretical expectation of the chi-

square distribution with one degree of freedom), then intuitively the departure must be

due to confounding, poor quality control, overlapping samples in the meta-analysis, or

other artifacts. This simple and insightful method of estimating the distribution of truly

null SNPs (or at least a certain subset of such SNPs) should in most cases lead to a much

better global correction of the association statistics than the overly conservative genomic

control (Devlin & Roeder, 1999).

The slope obtained from LD Score regression could in principle also provide an estimate

of the trait’s heritability, although the developers do not recommend this particular use

of the method. We will show in detail why LD Score regression is not a reliable estimator

of heritability below.

Another use of LD Score regression is the estimation of genetic correlations (Bulik-

Sullivan et al., 2015a). The dependent variable in this case is not the chi-square statistic

from the GWAS of a single trait but rather the product of two Z statistics, each taken

from a GWAS of a distinct trait. In principle, this use offers a means of determining

whether a trait-trait correlation (as opposed to a SNP-trait correlation) is attributable to

the presence of confounders affecting both traits. If the genetic correlation is statistically

and quantitatively significant, then we can be sure that the total phenotypic correlation

is not attributable solely to confounders that are entirely environmental in nature. Many

interesting relationships have been confirmed or discovered by bivariate LD Score regres-

sion, including a high genetic correlation (∼0.70) between years of education and age

at first childbirth (Barban et al., 2016) and a moderate one (∼0.35) between years of

education and intracranial volume (Okbay et al., 2016).

In the classical era of quantitative genetics, genetic correlations were most commonly
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estimated with twin data. Rather large samples of twinships are required for precise esti-

mates with this design, and in some cases the estimates are not as robust against modeling

assumptions as estimates of univariate heritabilities (Beauchamp, Cesarini, Johannesson,

Lindqvist, & Apicella, 2011). For these reasons a welcome development in quantitative

genetics has been the advent of GWAS, which can now reach sample sizes in the millions.

The appearance of robustness offered by GWAS can be illusory, however, if estimates of

genetic correlations are themselves subject to confounding. One can devise estimators

of the genetic correlation that might be biased by environmental confounders that affect

both phenotypes and happen to be correlated with genetic variation (Palla & Dudbridge,

2015; Okbay et al., 2016). An attractive feature of LD Score regression in this respect

is that that its control of confounding extends not just to the evidence of association at

individual SNPs but also to its genome-wide estimates of genetic correlations. This is

important because, again, it is precisely the issue of a phenotypic correlation’s underlying

causal nature that can call for an accurate estimate of the genetic correlation.

As appealing as the intuition behind LD Score regression may be, the mathematical

justifications of this method given so far in the literature raise questions because of their

assumption that the effects of genetic variants can be treated as a random variable. This

assumption is a useful convenience for computations, but it is not biological; the effects of

genetic polymorphisms should be invariant, and it is genotypes and phenotypic residuals

that vary between individuals (Lee & Chow, 2014; de los Campos, Sorensen, & Gianola,

2015). The assumption also precludes a quantitative treatment of the method’s accuracy.

Here we refrain from this assumption of random genetic effects and instead treat the effects

as a vector of arbitrary fixed constants. Hence we are able to obtain precise expressions

of the quantities estimated by LD Score regression, which can be compared with the

quantities of actual interest to determine when they coincide. Here is a preview of our
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results:

1. If the per-SNP heritability contributed by SNP j and its correlated neighbors is

not related to SNP j’s LD Score, then the slope of LD Score regression provides

an unbiased estimate of heritability. For evolutionary reasons, however, per-SNP

heritability is typically smaller near SNPs with higher LD Scores (Gazal et al., 2017).

LD Score regression is therefore not a reliable way to estimate the heritability of a

trait (or, by extension, the genetic covariance between two traits).

2. Here is the most novel and important conclusion of our analysis. The intercept of

LD Score regression reflects a useful measure of confounding in the GWAS even in

certain cases where there is a relationship between LD Scores and the correlations

of SNPs with environmental confounders. The developers of LD Score regression

warn that in this case the intercept will not accurately estimate the contribution of

confounding to the GWAS statistics (Bulik-Sullivan et al., 2015b). In the cases that

we consider, however, it is the conditional extent of confounding at just those SNPs

neither affecting the trait nor in LD with any causal SNPs that contributes to the

intercept. This is the only piece of information needed to correct the association

statistics of null SNPs so that their average chi-square statistic is in line with the

null hypothesis of no causality.

3. LD Score regression provides an accurate estimate of the genetic correlation between

two traits, even if neither trait’s heritability is well estimated.

We now substantiate these claims.
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2 Materials and methods

Consider a meta-analytic sample of n individuals and p biallelic SNPs. The standard

linear model of quantitative genetics is

y = Xα + e, (2)

where y ∈ Rn is the vector of standardized phenotypes, α ∈ Rp is a vector of fixed con-

stants equaling the average effects of gene substitution (Fisher, 1941; Lee & Chow, 2013),

e ∈ Rn is the vector of non-genetic residuals, and X ∈ Rn×p is the matrix of standardized

genotypes. From these definitions the heritability of the phenotype attributable to the

average effects of the p SNPs is h2 = (1/n)α′X ′Xα, although LD Score regression uses

the definition h2 = α′α. These two definitions coincide if all causal sites are in linkage

equilibrium (LE). As a result of LD induced by assortative mating and natural selection,

this condition will often fail to be satisfied, but the resulting discrepancy between is likely

to be small (Tenesa, Rawlik, Navarro, & Canela-Xandri, 2016). Henceforth we will mostly

ignore the distinction between these two quantities (and similar distinctions that arise in

the consideration of the genetic correlation).

We consider two different types of averages: 1) the expectation over individuals and

2) the empirical average over some attribute of SNPs, such as their GWAS association

statistics, represented by the symbols En and Ep respectively. With this convention, X
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and e are random variables with the properties

En(ei) = 0,

En(Xij) = 0,

En(X
2
ij) = 1,

En(XijXik) = Γjk,

En(Xijei) = vj. (3)

The last condition represents confounding due to a correlation between SNP j and e. Note

that our representation of confounding as a correlation between a SNP and the non-genetic

residual e is extremely general, including as a special case the sampling of the individuals

from different geographically defined subpopulations varying in allele frequencies and

exposures to environmental causes. We will use γj to denote the jth column (row) of

Γ ∈ Rp×p, such that the jth LD Score is equal to lj = γ′
jγj.

Different populations, such as Europeans and East Asians, are characterized by dif-

ferent values of Γ. We assume throughout this work that the individuals studied in the

GWAS can be regarded as members of the same population as the reference sample used

to estimate Γ.

Any contribution to the chi-square statistic of a given SNP from a causal site not

included in the computation of its LD Score will introduce some form of bias. Such

omissions from Equation (1) might occur because the windows used in practice to compute

LD Scores are too short or because some causal sites have properties that lead to their

exclusion from the reference sample (rare alleles or being a type of polymorphism other

than a SNP). Although it may be worthwhile to analyze these and other limitations, we

do not do so here.
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3 Results

3.1 The slope of univariate LD Score regression as an estimator
of heritability

Although Bulik-Sullivan et al. (2015b) do not encourage using the slope of the (χ2
j , lj)

regression as a heritability estimator, it is useful to see in further detail why, not least

because we will reuse our primary result later. Let xj be the jth column of X. In the

regression of the GWAS phenotype on a single SNP j, the estimated marginal (univari-

ate) regression coefficient is β̂j = (1/n)x′
jy = (1/n)y′xj. Note that in the absence of

confounding, the average effects of gene substitution can be estimated by the multivariate

regression coefficient α̂ = (X ′X)−1X ′y (Fisher, 1941; Lee & Chow, 2013). Squaring gives

β̂2
j =

1

n2
x′
jyy

′xj

=
1

n2
x′
j(Xα + e)(Xα + e)′xj,

which has the expected value over random sampling of individuals

En(β̂
2
j ) =

1

n2
En

(
x′
jXαα′X ′xj + x′

jXαe′xj + x′
jeα

′X ′xj + x′
jee

′xj

)
. (4)

The problem with evaluating Equation (4) is that the fourth moment of the genotypes

is required and it is generally not known. However, if we assume that higher-order cu-

mulants of the genotype distribution are small compared to the second cumulants, then

the distribution governing the genotypes can be approximated with a multivariate nor-

mal distribution. We can then use Wick’s theorem (sometimes called Isserlis’s theorem),

which states that if (X1, . . . , X2n) follows a zero-mean multivariate normal distribution,

then

En(X1X2 · · ·X2n) =
∑∏

En(XiXj),
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where the notation
∑∏

means summing over all distinct ways of partitioningX1, . . . , X2n

into pairs such as XiXj and each summand is the product of pair expectations.

Applying Wick’s theorem to the first expectation term of Equation (4) yields∑
k,k′,i,i′

αkαk′En (XijXikXi′jXi′k′)

≈
∑

i,i′,k,k′

αkαk′ [En(XijXik)En(Xi′jXi′k′) + En(XijXi′j)En(XikXi′k′)

+ En(XijXi′k′)En(XikXi′j)]]

= n2
∑
k,k′

ΓjkαkΓjk′αk′ +
∑

i,i′,k,k′

En(XijXi′j)αkEn(XikXi′k′)αk′ +
∑
k,k′

nΓjk′αk′Γkjαk

= n2β2
j +

∑
i,k,k′

En(XijXij)En(XikXik′)αkαk′ + nβ2
j

≈ (n2 + n)β2
j + nh2,

where we have applied Equation (3) and the identity βj = γ′
jα. The latter is true in

the large-n limit or by the path-tracing rules (Wright, 1934). The last line assumes that∑
k ̸=k′ Γkk′αkαk′ , the term distinguishing the two definitions of heritability, is small; recall

our assumption that these two definitions lead to numerically close values.

Similarly, the expected sum of the second, third, and fourth terms in Equation (4) is∑
k

2n2αkΓjkvj +
∑
k

2nαkvjΓkj +
∑
k

2nαkvk

+ n2v2j + nv2j + n

[
1− h2 − 2Covn

(∑
k

Xikαk, ei

)]
= 2n2βjvj + 2nβjvj + n2v2j + nv2j + n(1− h2).

Substituting all terms back into Equation (4) and assigning χ2
j = nβ̂2

j gives

En(χ
2
j) ≈ (n+ 1)β2

j + 1 + 2(n+ 1)βjvj + (n+ 1)v2j

≈ nβ2
j + nv2j + 2nβjvj + 1

= nα′α cos2 θjlj + nv2j + 2n|α| cos θj
√

ljvj + 1. (5)
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Here we have used

β2
j = (γ′

jα)
2 = γ′

jγjα
′α cos2 θj,

where θj is the angle between γj and α. Hence, the square of the estimated marginal

regression coefficient equals the sum of the following quantities:

1. the square of the regression coefficient induced by any true average effects of gene

substitution;

2. the square of the bias induced by confounding;

3. twice the cross-product of the true coefficient and the bias; and

4. sampling noise with a variance equal to 1/n.

We now consider the conditions under which the slope of the (χ2
j , lj) regression is

proportional to h2. We can compute this explicitly by using Equation (5) in the formula

for the regression coefficient. However, a more informative way is to compare to the

analogous expression in Bulik-Sullivan et al. (2015b), which in our notation is

Ep(χ
2
j | lj) ≈

n

p
ljh

2
LDSC + nEp(v

2
j ) + 1. (6)

Our placement of the subscript LDSC on h2 emphasize that this factor in the regression

slope might not necessarily equal h2. In the case of v = 0, the equivalence of (6) to the

average of (5) over all SNPs implies

h2
LDSC = α′αpEp(cos

2 θj), (7)

which gives a biased estimate of heritability unless Ep(cos
2 θj) = 1/p. This condition can

hold if the γj are uniformly distributed with respect to α. Thus, the slope of LD Score
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regression is proportional to the heritability if the average effects of gene substitution and

LD Scores are uncorrelated.

The requirement of this null correlation for an unbiased estimate of h2 is quite rea-

sonable. Regressing χ2
j on lj to estimate the heritability depends on a constant average

per-SNP heritability regardless of LD. If average per-SNP heritability declines in higher-

LD regions, say, then the estimated heritability must fall short of the true heritability.

This sensitivity to LD is a feature shared with the heritability-estimation method GREML

(Speed, Hemani, Johnson, & Balding, 2012; Lee & Chow, 2014; Yang et al., 2015; Chen,

2016).

However, a negative correlation between LD and heritability tagged per SNP is ex-

pected. Mutations with larger effects on a given trait will tend to be selectively disfavored

as a result of stabilizing selection or deleterious pleiotropic side effects. Such mutations

will thus rarely drift to high allele frequencies, and SNPs where one allele is rare tend to

have smaller LD Scores. The empirical evidence to date clearly bears out this evolutionary

prediction (Kemper, Visscher, & Goddard, 2012; Yang et al., 2015; Gazal et al., 2017). In

this case of SNPs with higher LD Scores tagging less heritability, the slope of the (χ2
j , lj)

regression leads to h2
LDSC < h2, an underestimation of the true heritability.

3.2 The intercept of univariate LD Score regression as an esti-
mator of confounding

A far more important use of LD Score regression is the estimation and correction of

confounding (or any other bias that can inflate the association statistics, such as over-

estimation of the effective sample size). If the intercept of LD Score regression is truly

equal to the average chi-square statistic of null SNPs that neither affect the phenotype nor

tag any causal sites, then dividing all of the GWAS chi-square statistics by the intercept
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should restore the average chi-square statistic of null SNPs to the theoretically proper

value of unity and bring the Type 1 error rate close to the targeted level.

We will now show that division by the intercept can still be viable means of correcting

confounding in the situation where LD Scores and SNP-environment correlations are

related (i.e., lj and v2j are correlated).

At lj = 0, Equation (5) gives

En(χ
2
j | lj = 0) = nv2j + 1. (8)

Thus, if Ep(χ
2
j | lj) is found to be linear in lj (which is indeed empirically observed), then

the intercept of the (χ2
j , lj) regression will equal the average of Equation (8) over some

set of SNPs. If v2j is independent of lj, then the intercept will equal the average over all

SNPs, nEp(v
2
j ) + 1. The truly null SNPs in this case are likely to share the same average

value of v2j as all other SNPs, and dividing the chi-square statistics by the intercept is

thus an effective means of restoring the Type 1 error rate (Bulik-Sullivan et al., 2015b).

If v2j is dependent on lj, we can write for the intercept

nEp(v
2
j | lj = 0) + 1. (9)

There are of course no SNPs with an actual LD Score of zero. Suppose, however, that the

dependence of v2j on lj is linear. SNPs with lj = 1 can tag at most one causal SNP, SNPs

with lj = 2 can tag more than one, and so on. The linear extrapolation Ep(v
2
j | lj = 0)

in (9) is thus very close to the average squared confounding at SNPs that are null by

virtue of tagging very few SNPs. If the trait is so highly polygenic that virtually all SNPs

with even moderate LD Scores tag at least one causal site (Loh et al., 2015; Boyle, Li,

& Pritchard, 2017), then the intercept estimated under these conditions is sufficient to

rescale the chi-square statistics of the few null SNPs so as to bring their average in line
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with the theoretical value under the null hypothesis (i.e., no causality or LD with a causal

site).

If the trait is not sufficiently polygenic, then there will be many SNPs with moderate

or large LD Scores that happen to be null. Then Equation (9) reflects the average squared

confounding at only a certain subset of null SNPs, and one might worry that the chi-square

statistics of null SNPs outside of this subset are not properly corrected. When considering

realistic reasons for a dependence of v2j on lj, however, we find that the intercept continues

to be robust. The most likely case of lj dependence is a direct (non-genetic) effect of parent

on offspring phenotype, such as when highly educated parents can help even their adopted

offspring become highly educated in turn (Sacerdote, 2007). In this case Ep(v
2
j | lj) indeed

depends linearly on lj to the extent that β2
j does so, because v2j is equal to β2

j up to

an attenuating constant factor plus whatever part of the squared confounding does not

depend on β2
j (Lee, 2012). Critically this affine dependence of v2j on β2

j means that null

SNPs (β2
j = 0), regardless of their LD Scores, will have an average chi-square statistic

equal to the intercept given by Equation (9) so long as the β2
j -independent confounding

does not depend on lj.

Note that the inability to factor out the contribution of 2nβjvj +nv2j to the chi-square

statistics of non-null SNPs in these cases simply leaves us with more or less statistical

power to detect such SNPs without affecting the Type 1 error rate.

The preceding arguments depend on the linearity of the (χ2
j , lj) regression. It is cer-

tainly possible to create gross violations of linearity in simulations (Bulik-Sullivan et al.,

2015b, Supplementary Fig. 7). For example, if we depopulate high-LD regions of causal

SNPs, then the (β2
j , lj) regression curve can be non-monotonic, rising at first and then

declining as lj increases. In this case the slope of LD Score regression can be negative and

the intercept greater than unity even in the absence of confounding (v = 0). However, no
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empirical application of LD Score regression has ever uncovered any situation remotely

resembling this hypothetical one. Nevertheless it is a salutary practice to inspect the

actual (χ2
j , lj) scatterplot for any evidence of pathology.

A mild degree of nonlinearity might have some effect on the intercept if the SNPs

with largest LD Scores deviate from the linear trend extrapolated from the SNPs with

the smallest LD Scores. For this reason it is fortunate that in practice LD Score re-

gression is a weighted regression where the SNPs with the smallest LD Scores receive

the largest weights. The purpose of this weighting is to address heteroskedasticity and

non-independence; if the (χ2
j , lj) regression curve is perfectly linear, then the effect of this

weighting is to improve the standard errors. If the curve is nonlinear, then an additional

effect is to bring the entire regression line closer to the linear extrapolation from the SNPs

with the smallest LD Scores and the intercept thereby closer to the average chi-square

statistic of truly null SNPs.

This conclusion regarding the extraordinary robustness of LD Score regression as a

safeguard against confounding is a novel result of our analysis. Bulik-Sullivan et al.

(2015b) went to some lengths to show that LD Scores are uncorrelated with FST (a mea-

sure of population differentiation in allele frequencies) at various geographical scales within

Europe. This is very convincing evidence in support of the assumption that confounding

is uncorrelated with LD Scores—at least when the confounding takes the form of “pop-

ulation stratification,” the sampling of the individuals in the study from geographically

distinct subpopulations differing in both allele frequencies and exposure to environmen-

tal factors. But even if confounding is correlated with LD Scores, what we find is that

the intercept of LD Score regression can still be used to ensure that null SNPs have an

average chi-square statistic of close to unity in some important cases, including extreme

polygenicity and an environmentally mediated effect of the parent phenotype.
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With all of these considerations in mind, we turn to the recent work of de Vlaming,

Johannesson, Magnusson, Ikram, and Visscher (2017). These authors found that a very

large Ep(v
2
j ) in their simulations leads to an intercept falling short of Ep(v

2
j ) itself and also

an overestimate of h2. These in silico results are rather puzzling because they were not

replicated by Bulik-Sullivan et al. (2015b) despite apparently similar simulation settings.

One possibility is that SNPs with larger LD Scores tend to exhibit higher FST in the

cohorts available to de Vlaming et al. (2017), perhaps because of higher-quality imputation

leading to more accurate estimates of allele-frequency differences. This would lead to both

h2
LDSC > h2 and Ep(v

2
j ) > Ep(v

2
j | lj = 0). Whatever the problem may be, evidence for it

can be seen in the (χ2
j , lj) scatterplot, which shows a nonlinearity in the leftmost simulated

data points that we have never observed in real empirical data. It is also worth noting

that the problems in these simulations only arise when population stratification is quite

extreme, leading to an intercept greater than 1.5 with rather small sample sizes. In this

regime Wick’s theorem may no longer provide a good approximation, although we think

this unlikely to be the explanation of the simulation results. In any event intercepts of

this magnitude have not yet been observed in actual GWAS.

3.3 Bivariate LD Score regression as an estimator of genetic
correlations

We now consider LD Score regression as an estimator of the genetic correlation between

the two traits

y1 = X1α1 + e1,

y2 = X2α2 + e2. (10)

We will use rLDSC to denote the genetic correlation as it is estimated by bivariate LD

Score correlation—which is not necessarily the same as the true genetic correlation r :=
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α′
1α2/

√
h2
1 h

2
2. Nevertheless, previous studies have found these two quantities to be con-

sistently close (Bulik-Sullivan et al., 2015a; Shi, Mancuso, Spendlove, & Pasaniuc, 2017),

and our goal now is to explain this robustness.

The dependent variable in bivariate LD Score regression is now the product of SNP

j’s two Z statistics,

nβ̂1jβ̂2j =
1

n
x′
jy1y

′
2xj

=
1

n
x′
j(Xα1 + e1)(Xα2 + e2)

′xj,

which has the expected value

En(Z1jZ2j) =
1

n
En

(
x′
jXα1α

′
2X

′xj + x′
jXα1e

′
2xj + x′

je1α
′
2X

′xj + x′
je1e

′
2xj

)
.

As before, we can use Wick’s theorem to evaluate the expectation and obtain

En(Z1jZ2j) ≈ nβ1jβ2j + nβ1jv2j + nβ2jv1j + nv1jv2j

+ Covn

(∑
k

Xikα1k, e2i

)
+ Covn

(∑
k

Xikα2k, e1i

)
+ ρ.

where ρg := α′
1α2 = α′

2α1 is the genetic covariance, ρe = En(ei1ei2) is the environmental

covariance, and ρ := ρg+ρe. The last three terms arise from the coincidence of the person

indices in the summations and thus become smaller with decreasing sample overlap. They

vanish if the samples are independent. Henceforth we ignore these overlap-dependent

terms. We are then left with

En(Z1jZ2j) ≈ nβ1jβ2j + nβ1jv2j + nβ2jv1j + nv1jv2j

= nγ′
jα1γ

′
jα2 + nβ1jv2j + nβ2jv1j + nv1jv2j. (11)

In LD Score regression (regression of Z1jZ2j on lj), the slope is naively expected to be

proportional to the genetic covariance. In the absence of confounding and sample overlap,
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the intercept is zero since the expected product of two independent and null-distributed

Z statistics is zero. Any upward departure of the intercept from zero in this case is

indicative of confounders affecting both traits, just as an upward departure from unity is

analogously indicative of confounders affecting the focal trait in the univariate case.

As in the univariate case, we can compute the circumstances under which the regres-

sion slope is proportional to the genetic covariance explicitly using Equation (11) in the

formula for the regression coefficient, but it is more informative to compare directly to

the analogous expression from Bulik-Sullivan et al. (2015a),

Ep(Z1jZ2j | lj) ≈
n

p
ρg,LDSClj. (12)

Assume that β1jv2j, β1jv1j, and v1jv1j are all uncorrelated with lj; a total absence of

confounding, v1 = v2 = 0, meets this assumption. We have found that the robustness of

bivariate LD Score regression holds in certain importance cases of lj dependence, such as

a direct effect of parental phenotype discussed by Lee (2012), but these details are beyond

the scope of this work. The output of bivariate LD Score regression is then

rLDSC =
ρg,LDSC√

h2
1,LDSC h2

2,LDSC

. (13)

The average of (11) over all SNPs and (12) are equivalent if

ρg,LDSC ≡ Ep

(
1

p
α′
1α2γ

′
jγj

)
= Ep(γ

′
jα1γ

′
jα2), (14)

which we will show is not generally true. As in the univariate case above, the righthand

side of Equation (14) can be rewritten as

Ep(γ
′
jα1γ

′
jα2) = |α1||α2|Ep(cos θ

1
j cos θ

2
j lj), (15)

where cos θkj is the unit-vector projection of αk onto γj. The average over SNPs in (15) is

equivalent to taking the unit-vector projections of α1 onto the γj in turn, doing the same

18

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 30, 2017. ; https://doi.org/10.1101/234815doi: bioRxiv preprint 

https://doi.org/10.1101/234815


with α2, and taking the lj-weighted dot product of the two results. From (15) we can see

two sources of bias, which can be interpreted geometrically. The first is the nontrivial

correlation between γj and αk as in the univariate case and manifested as nonuniformity

in cos θkj . We will shortly see, however, that this bias cancels from the numerator and

denominator of Equation (13). The second source of bias is that the γj vectors do not

form an orthogonal basis over SNP space, which then distorts the angle between α1 and

α2 after projecting onto the γ basis.

We will proceed as if the γj are indeed an orthogonal basis. In reality, they are nearly

orthogonal; if the SNPs are numbered in order, then γ′
jγk will be virtually zero for |j− k|

sufficiently large. Then the angle between α1 and α2 is preserved in the new basis, and

we have the condition

Ep(cos θ
1
j cos θ

2
j lj) =

√
Ep(cos2 θ1j )Ep(cos2 θ2j ) cos θ12lj,

where θ12 is the angle between α1 and α2. We can then obtain

ρg,LDSC ≈ α′
1α2p

√
Ep(cos2 θ1j )Ep(cos2 θ2j ). (16)

Inserting (16) and (7) into (13) then gives

rLDSC ≈
α′
1α2p

√
Ep(cos2 θ1j )Ep(cos2 θ2j )√

α′
1α1pEp(cos2 θ1j )α

′
2α2pEp(cos2 θ2j )

=
α′
1α2√

α′
1α1α′

2α2

,

which is an unbiased estimator of the genetic correlation.

If, on the other hand, it is unacceptable to treat the γ vectors as an orthogonal basis,

then LD Score regression will not produce an unbiased estimator of genetic correlation—

at least when this quantity is defined as α′
1α2/

√
h2
1 h

2
2. We can estimate the bias by
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considering the eigenvalue decomposition S ′ΓS = Λ, where S is the orthonormal matrix

with columns of eigenvectors and Λ is the diagonal matrix of eigenvalues. We then have

pEp(γ
′
jα1γ

′
jα2) =

∑
j

γ′
jα1γ

′
jα2

= α′
1ΓΓ

′α2

= α′
1SS

′ΓSS ′Γ′SS ′α2

= α′
1SΛ

2S ′α2.

We now decompose Λ2 = λ2I +∆ and obtain

pEp(γ
′
jα1γ

′
jα2) = λ2α′

1α2 + α′
1S∆S ′α2, (17)

where λ2 represents the average correlation of γj and α and ∆ represents the deviation

from orthogonality.

4 Discussion

The regression of GWAS association statistics on LD Scores partitions the statistics into

a part that covaries with LD Scores (the slope) and a part that does not (the intercept).

Polygenic causal signal contributes to the first part by necessity, whereas confounding and

other biases spuriously inflating the statistics need not—and typically do not—make any

such contribution. This insight lies at the heart of LD Score regression, the outstanding

invention of Bulik-Sullivan et al. (2015b).

The reason that the slope of LD Score regression cannot be used to estimate the

heritability of a trait (or the genetic covariance between two traits) is that per-SNP

heritability (genetic covariance) will itself vary as a function of LD Score, such that naive

estimates based on LD Score regression will typically fall short of the target quantities.
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In order for the intercept to equal the average squared covariance between SNP and

residual (“environment”) present in the GWAS (which can then be factored out from the

association statistics), LD Scores must be uncorrelated over SNPs with squared SNP-

residual covariance. In the framework of Bulik-Sullivan et al. (2015b), this is equivalent

to the absence of a correlation between LD Scores and the FST characterizing the two

subpopulations. There may be such a correlation, however, in certain cases such as when

the phenotype of the parent affects the phenotype of the offspring through some envi-

ronmental mechanism. Remarkably we found that LD Score regression remains a robust

means of correcting the association statistics, for in such a case the intercept approaches

the average squared confounding at just those SNPs that are neither causal themselves

nor in LD with any causal sites—that is, at precisely those SNPs where otherwise an

excess of false positives might occur.

These conclusions depend importantly on the linearity of the relationship between LD

Scores and the GWAS chi-square statistics (product of Z statistics). This is essentially

because without linearity there is no guarantee that the intercept of a particular simple

least-squares regression equals the conditional expected value of the dependent variable

characterizing observations with a zero value of the independent variable. In real-data

applications of LD Score regression to date, the (χ2
j , lj) scatterplots have always borne out

approximate linearity, and they should continue to be inspected in future applications.

When users follow the developers’ recommendations for weighting of the SNPs in the

regression, those SNPs with smaller LD Scores will receive larger weights, which in the

case of nonlinearity brings the intercept closer to the conditional expected chi-square

statistic of null SNPs.

Despite the inability of LD Score regression to estimate the heritability (genetic covari-

ance) without bias, the method is able to estimate the genetic correlation quite accurately.
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Our argument on this point will be valid if the genetic correlation depends primarily on

direct overlap of the causal sites affecting the two traits—and negligibly on SNPs in LD

with more potential causal sites thereby being more likely to tag one site affecting trait 1

and a distinct site affecting trait 2, with the signs of the alleles coupled with the reference

allele at the tagging SNP showing a consistency across the genome. This tagging of dis-

tinct sites with appropriately coupled alleles contributes to the second term of the genetic

covariance in Equation (17), which is not a multiplicative bias and therefore cannot be

canceled by any division in the calculation of the genetic correlation. Such a genome-wide

pattern seems quite implausible; for example, if it is to create a misleading nonzero rLDSC

when r is in fact zero, it amounts to causal sites that affect the two traits occurring in

the same genes and regulatory elements, with the appropriate coupling of alleles, but

never coinciding. Furthermore, one might argue that this biologically implausible sce-

nario does not necessarily invalidate rLDSC as an estimator of r when the latter is defined

correctly. We have adopted the definition r := α′
1α2/

√
h2
1 h

2
2 because this seems most con-

sistent with the definition of heritability given in the original LD Score regression paper

(Bulik-Sullivan et al., 2015b, Supplementary Note, p. 1), but other authors have included

contributions from LD and consistent coupling of allele signs to the definition of r (Lynch

& Walsh, 1998).

A use of LD Score regression that we did not study in this work is the functional

partition of heritability between different parts of the genome (Finucane et al., 2015).

Simulation studies conducted by the authors suggest that this use is also quite robust,

and this is probably the result of a similar cancellation of bias from numerator and de-

nominator.

In a field already marked by remarkable progress toward the goal of elucidating the

causal relationship between its variables of interest without undue hindrance by confound-
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ing, LD Score regression adds a powerful new tool that allows whatever confounding there

may be in a GWAS to be estimated and removed. In addition, it is a robust estimator

of the genetic correlation, which is valuable in its own right because of its relevance to

the causal nature of the phenotypic correlation (Duffy & Martin, 1994). It is fascinating

to speculate about why the inference of causation of correlation has proven to be so emi-

nently possible in genetics when it has been elusive in so many other scientific fields (Lee,

2012; Plomin, DeFries, Knopik, & Neiderhiser, 2016). Whatever the reasons, researchers

in genetics can be grateful that Nature seems to be willing to oblige their curiosity.

Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH,

The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

References

Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J., Tropf, F. C., . . .
Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human re-
productive behavior. Nature Genetics, 48 (12), 1462–1472. doi:10.1038/ng.3698

Beauchamp, J. P., Cesarini, D., Johannesson, M., Lindqvist, E., & Apicella, C. (2011).
On the sources of the height-intelligence correlation: New insights from a bivariate
ACE model with assortative mating. Behavior Genetics, 41 (2), 242–252. doi:10 .
1007/s10519-010-9376-7

Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits:
From polygenic to omnigenic. Cell, 169 (7), 1177–1186. doi:10.1016/j.cell.2017.05.
038

Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., . . .
Neale, B. M. (2015a). An atlas of genetic correlations across human diseases and
traits. Nature Genetics, 47 (11), 1236–1241. doi:10.1038/ng.3406

23

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 30, 2017. ; https://doi.org/10.1101/234815doi: bioRxiv preprint 

https://dx.doi.org/10.1038/ng.3698
https://dx.doi.org/10.1007/s10519-010-9376-7
https://dx.doi.org/10.1007/s10519-010-9376-7
https://dx.doi.org/10.1016/j.cell.2017.05.038
https://dx.doi.org/10.1016/j.cell.2017.05.038
https://dx.doi.org/10.1038/ng.3406
https://doi.org/10.1101/234815


Bulik-Sullivan, B., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Schizophrenia Working
Group of the Psychiatric Genomics Consortium, . . . Neale, B. M. (2015b). LD Score
regression distinguishes confounding from polygenicity in genome-wide association
studies. Nature Genetics, 47 (3), 291–295. doi:10.1038/ng.3211

Chen, G.-B. (2016). On the reconciliation of missing heritability for genome-wide asso-
ciation studies. European Journal of Human Genetics, 24 (12), 1810–1816. doi:10.
1038/ejhg.2016.89

de los Campos, G., Sorensen, D., & Gianola, D. (2015). Genomic heritability: What is it?
PLoS Genetics, 11 (5), e1005048. doi:10.1371/journal.pgen.1005048

de Vlaming, R., Johannesson, M., Magnusson, P. K. E., Ikram, M. A., & Visscher,
P. M. (2017). Equivalence of LD-score regression and individual-level-data meth-
ods. bioRxiv. doi:10.1101/211821

Devlin, B. & Roeder, K. (1999). Genomic control for association studies. Biometrics,
55 (4), 997–1004. doi:10.1111/j.0006-341X.1999.00997.x

Duffy, D. L. & Martin, N. G. (1994). Inferring the direction of causation in cross-sectional
twin data: Theoretical and empirical considerations. Genetic Epidemiology, 11 (6),
483–502. doi:10.1002/gepi.1370110606

Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., . . .
Price, A. L. (2015). Partitioning heritability by functional annotation using genome-
wide association summary statistics. Nature Genetics, 47 (11), 1228–1235. doi:10.
1038/ng.3404

Fisher, R. A. (1941). Average excess and average effect of a gene substitution. Annals of
Eugenics, 11, 53–63.

Freedman, D. (1999). From association to causation: Some remarks on the history of
statistics. Statistical Science, 14 (3), 243–258.

Gazal, S., Finucane, H. K., Furlotte, N. A., Loh, P.-R., Palamara, P. F., Liu, X., . . .
Price, A. L. (2017). Linkage disequilibrium-dependent architecture of human com-
plex traits shows action of negative selection. Nature Genetics, 49 (10), 1421–1427.
doi:10.1038/ng.3954

Goldstein, D. B. (2011). The importance of synthetic associations will only be resolved
empirically. PLoS Biology, 9 (1), e1001008.

Kemper, K. E., Visscher, P. M., & Goddard, M. E. (2012). Genetic architecture of body
size in mammals. Genome Biology, 13 (4), 244. doi:10.1186/gb4016

Lee, J. J. (2012). Correlation and causation in the study of personality (with discussion).
European Journal of Personality, 26 (4), 372–412. doi:10.1002/per.1863

24

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 30, 2017. ; https://doi.org/10.1101/234815doi: bioRxiv preprint 

https://dx.doi.org/10.1038/ng.3211
https://dx.doi.org/10.1038/ejhg.2016.89
https://dx.doi.org/10.1038/ejhg.2016.89
https://dx.doi.org/10.1371/journal.pgen.1005048
https://dx.doi.org/10.1101/211821
https://dx.doi.org/10.1111/j.0006-341X.1999.00997.x
https://dx.doi.org/10.1002/gepi.1370110606
https://dx.doi.org/10.1038/ng.3404
https://dx.doi.org/10.1038/ng.3404
https://dx.doi.org/10.1038/ng.3954
https://dx.doi.org/10.1186/gb4016
https://dx.doi.org/10.1002/per.1863
https://doi.org/10.1101/234815


Lee, J. J. & Chow, C. C. (2013). The causal meaning of Fisher’s average effect. Genetics
Research, 95 (2–3), 89–109. doi:10.1017/S0016672313000074

Lee, J. J. & Chow, C. C. (2014). Conditions for the validity of SNP-based heritability
estimation. Human Genetics, 133 (8), 1011–1022. doi:10.1007/s00439-014-1441-5

Lee, J. J., Vattikuti, S., & Chow, C. C. (2016). Uncovering the genetic architectures of
quantitative traits. Computational and Structural Biotechnology Journal, 14, 28–34.
doi:10.1016/j.csbj.2015.10.002

Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B., Pollack, S. J., . . .
Price, A. L. (2015). Contrasting genetic architectures of schizophrenia and other
complex diseases using fast variance-components analysis. Nature Genetics, 47 (12),
1385–1392. doi:10.1038/ng.3431

Lynch, M. & Walsh, B. (1998). Genetics and the analysis of quantitative traits. Sunder-
land, MA: Sinauer.

Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., . . .
Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated
with educational attainment. Nature, 533 (7604), 539–542. doi:10.1038/nature17671

Palla, L. & Dudbridge, F. (2015). A fast method that uses polygenic scores to estimate
the variance explained by genome-wide marker panels and the proportion of variants
affecting a trait. American Journal of Human Genetics, 97 (2), 250–259. doi:10.1016/
j.ajhg.2015.06.005

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). New York: Cam-
bridge University Press.

Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated
findings from behavioral genetics. Perspectives on Psychological Science, 11 (1), 3–
23. doi:10.1177/1745691615617439

Sacerdote, B. (2007). How large are the effects from changes in family environment? A
study of Korean American adoptees. Quarterly Journal of Economics, 122 (1), 119–
157. doi:10.1162/qjec.122.1.119

Shi, H., Mancuso, N., Spendlove, S., & Pasaniuc, B. (2017). Local genetic correlation gives
insights into the shared genetic architecture of complex traits. American Journal of
Human Genetics, 101 (5), 737–751. doi:10.1016/j.ajhg.2017.09.022

Speed, D., Hemani, G., Johnson, M. R., & Balding, D. J. (2012). Improved heritability
estimation from genome-wide SNPs. American Journal of Human Genetics, 91 (6),
1011–1021. doi:10.1016/j.ajhg.2012.10.010

25

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 30, 2017. ; https://doi.org/10.1101/234815doi: bioRxiv preprint 

https://dx.doi.org/10.1017/S0016672313000074
https://dx.doi.org/10.1007/s00439-014-1441-5
https://dx.doi.org/10.1016/j.csbj.2015.10.002
https://dx.doi.org/10.1038/ng.3431
https://dx.doi.org/10.1038/nature17671
https://dx.doi.org/10.1016/j.ajhg.2015.06.005
https://dx.doi.org/10.1016/j.ajhg.2015.06.005
https://dx.doi.org/10.1177/1745691615617439
https://dx.doi.org/10.1162/qjec.122.1.119
https://dx.doi.org/10.1016/j.ajhg.2017.09.022
https://dx.doi.org/10.1016/j.ajhg.2012.10.010
https://doi.org/10.1101/234815


Tenesa, A., Rawlik, K., Navarro, P., & Canela-Xandri, O. (2016). Genetic determination
of height-mediated mate choice. Genome Biology, 16 (1), 269. doi:10.1186/s13059-
015-0833-8

Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS
discovery. American Journal of Human Genetics, 90 (1), 7–24. doi:10.1016/j.ajhg.
2011.11.029

Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics,
5 (3), 161–215.

Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A. E., Lee, S. H., . . . Visscher,
P. M. (2015). Genetic variance estimation with imputed variants finds negligible
missing heritability for human height and body mass index. Nature Genetics, 47 (10),
1114–1120. doi:10.1038/ng.3390

26

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 30, 2017. ; https://doi.org/10.1101/234815doi: bioRxiv preprint 

https://dx.doi.org/10.1186/s13059-015-0833-8
https://dx.doi.org/10.1186/s13059-015-0833-8
https://dx.doi.org/10.1016/j.ajhg.2011.11.029
https://dx.doi.org/10.1016/j.ajhg.2011.11.029
https://dx.doi.org/10.1038/ng.3390
https://doi.org/10.1101/234815

	Introduction
	Materials and methods
	Results
	The slope of univariate LD Score regression as an estimator of heritability
	The intercept of univariate LD Score regression as an estimator of confounding
	Bivariate LD Score regression as an estimator of genetic correlations

	Discussion

