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Abstract

Reference genomes guide our interpretation of DNA sequence data. However, conven-
tional linear references are fundamentally limited in that they represent only one version
of each locus, whereas the population may contain multiple variants. When the reference
represents an individual's genome poorly, it can impact read mapping and introduce bias.
Variation graphs are bidirected DNA sequence graphs that compactly represent genetic
variation, including large scale structural variation such as inversions and duplicationst
Equivalent structures are produced by de novo genome assemblers>5 Here we present vg,
a toolkit of computational methods for creating, manipulating, and utilizing these struc-
tures as references at the scale of the human genome. vg provides an efficient approach to
mapping reads onto arbitrary variation graphs using generalized compressed suffix arrays,4
with improved accuracy over alignment to a linear reference, creating data structures to
support downstream variant calling and genotyping. These capabilities make using varia-
tion graphs as reference structures for DNA sequencing practical at the scale of vertebrate

genomes, or at the topological complexity of new species assemblies.
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1 Introduction

Where genomes are small, it is possible to study genetic variation by assembling whole genomes
and then comparing them via whole-genome comparison > For large genomes such as human,
routine complete and accurate de novo genome assembly is impractical, and we use prior infor-
mation to interpret new sequence data in its correct genomic context. The current paradigm is
to align sequence reads to a single high-quality reference genome sequence that represents one
haplotype at each location in the genome, leading to mapping biases towards the reference and
away from variant alleles. There will even be some sequence in each new sample that is entirely
absent in the reference !’

In principle, we would like to align to a genome that is as similar to our sample as possible,
ideally a “personalized” reference genome® that already incorporates the individual's variants.
Although in general we will not know what variants are present before aligning data from a
sample, most differences between any one genome and the reference are segregating in the
population. Thus, if we build a structure that represents known shared variation, then that will
contain most of the correct personalized reference sequence for any individual.

The natural computational structure for doing this is the sequence graphX’ Sequence graphs
have long been used to represent multiple sequences that contain shared differences or ambiguities
in a single structure. For example, multiple sequence alignments have a natural representation
as partially ordered sequence graphs.® The variant call format!® (VCF), which is a common data
format for describing populations of genome sequences can be understood as defining a partially
ordered graph similar to those implied by a multiple sequence alignment. Related structures
frequently used in genome assembly include the De Bruijn graph? and string graph,® which collapse
long repeated sequences, so the same nodes are used for different regions of the genome. Graphs
to represent genetic variation have previously been used for microbial genomes and localized
regions of the human genome such as the Major Histocompatibility Complex 1t

We define a variation graph as a sequence graph together with a set of paths representing
possible sequences from a population (Figure |1]). In this paper, we describe vg, a multipurpose
toolkit for performing genomic analyses using a variation graph as a reference, discussing in
particular construction, modification and read mapping. Recently software packages have been
introduced that support a subset of variation graphs that reflect local variation away from a linear
reference 2213 formalizing approaches introduced in FreeBayes and the GATK HaplotypeCaller
for the 1000 Genomes Project analysis 241 Importantly, our model goes beyond these in that it
does not require the graph to be based around an initial linear reference, or indeed directionally
ordered, and thus supports cycles and inversions. vg is the first openly available tool with these

properties to scale practically to the multi-gigabase scale required for whole vertebrate genomes.
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Here we describe the design and implementation of vg, and demonstrate its capabilities by
constructing a variety of variation graphs and aligning sequencing data against these, demon-
strating that we observe improved mapping compared to linear references. We first describe
the core data model, data structures and algorithms, and implementation of vg. We then we
present results demonstrating the functionality of vg. Variant calling using vg against a variety

of different human genome variation graphs is described elsewhere 2’

2 Methods

2.1 Model

We define a variation graph to be a graph with embedded paths G = (N, E, P) comprised of a
set of nodes N = n;...ny, aset of edges £ =e;...ep, and a set of paths P = p; ... pg, each
of which describes the embedding of a sequence into the graph.

Each node n; represents a sequence seq(n;) which is built from an alphabet A = {A,C, G, T,N}.
Nodes may be traversed in either the forward or reverse direction, with the sequence being reverse-
complemented in the reverse direction. We write 7; for the reverse-complement of node n;, so
that seq(m;) = revcomp(seq(n;)); note that m; = n;. For convenience, we refer to both n; and
7; as ‘nodes”.

Edges represent adjacencies between the sequences of the nodes they connect. Thus, the
graph implicitly encodes longer sequences as the concatenation of node sequences along walks
through the graph. Edges can be identified with the ordered pairs of oriented nodes that they
link, so we can write e;_,; = (n;,n;). Edges also can be traversed in either the forward or the
reverse direction, with the reverse traversal defined as €;5; = (7;,7;). Note that graphs in vg
can contain ordinary cycles (in which n; is reachable from n;), reversing cycles (in which 7; is
reachable from n;), and non-cyclic instances of reversal (in which both n; and 7; are reachable

from n;).

2.2 Implementation

The vg implementation is multithreaded and written in C++-11, and is available from
https://github.com/vgteam/vg under the MIT open source software license. It provides
both a primary application to support the operations we describe here, and a library 1ibvg which
applications can use to access the data structures, indexes and low level operations.

Our core representation of the graph uses Google's open source protobuf system, which directly

supports serialization onto disk for storage. We also provide a protobuf alignment format, GAM (for
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Figure 1. A region of a yeast genome variation graph corresponding to the start of the subtelom-
eric region on the left arm of chromosome 9 in a multiple alignment of the strains sequenced
by Yue et al.,*® built using vg from a full genome multiple alighment generated with the Cactus
alignment package® The inset shows a subregion of the alignment at single base level. The
colored paths correspond to separate contiguous chromosomal segments of these strains.

“Graph Alignment Map”), with analogous functionality to BAM*® To enable read mapping and
other random access operations against large sequence graphs we have implemented a succinct
representation of a vg variation graph (xg) that is static but very memory and time efficient,
using rank/select dictionaries and other data structures from the Succinct Data Structures Library
(SDSL).?% Graphs can be imported from and exported to a variety of formats, including the
assembly format (GFA and the W3C graph exchange format RDF2Y Further details about the

implementation and features are available in the supplement and at the Github website.

2.3 Alignment

A key requirement for a reference genome is the ability to efficiently and accurately find an optimal
alignment for a new DNA sequence such as a sequencing read. Analogous to the way that read

mappers to linear references work, our approach to this problem is to find seed matches by an
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indexed search process, cluster them if there are multiple seeds close together, and then perform
a local constrained dynamic programming alignment of the read against a region of the graph
around each cluster. A brief description of the key steps in this process is given here, with further
details in the supplement.

The GCSA2 library* that vg uses for seeding can perform linear time exact match queries
independent of the graph size to find super-maximal exact match (SMEM) seeds, subject to a
maximum query length, in time comparable to the corresponding operations in bwa mem. SMEMs
are exact matches between a query substring and a reference substring that cannot be extended in
either direction, and for which there is no extension of the query substring that matches elsewhere
in the graph.

After obtaining SMEMs for a query sequence using GCSA2, we cluster them using a global
approximate distance metric and distance estimates provided by any nearby paths. For paired
reads, we cluster all the SMEMSs for both reads in the pair to preferentially support mappings
where the SMEMs match a fragment model that we establish online during the alignment of the
read set.

We next select the best consistent sequence of SMEMs within each cluster as the maximum
likelihood path through a Markov model over the SMEMs that rewards long SMEMs and short
gaps between SMEMs. In many cases there is just one SMEM in the sequence, but there are
complex cases where the best SMEM sequence is not correct, and to catch these we recursively
mask out the SMEMs in paths found so far and re-run the algorithm to obtain additional disjoint
SMEM sequences if available.

For each consistent sequence of SMEMs, we then obtain the subgraph containing the cluster.
To avoid the complications introduced by cycles and inversions?? we transform the local graph
region into a directed acyclic graph (DAG) while maintaining an embedding in the original,
potentially cyclic bidirected graph. We can then perform partial order alighment to the DAG,”
using banded dynamic programming and an extension of Farrar's SIMD-accelerated striped Smith
Waterman algorithm 2

The vg alignment tool also uses base qualities in alignment scores, and calculates adjusted
mapping quality scores. Base qualities are probabilistic estimates of the confidence of each base
call in a read provided by the sequencing technology. vg combines these with a probabilistic
interpretation of alignment“® to adjust the scoring function for alignments, which has previously
been shown to improve variant calling accuracy.?® Mapping qualities®® are a probability-based
measure of the confidence in the localization of a read on the reference that is important for
variant calling and other downstream analyses. vg computes mapping qualities by comparing
the scores of optimal and subobptimal alignments under the probabilistic alignment model, in a

similar fashion to bwa memn.
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2.4 Graph editing and construction

We can build a graph either by direct construction from external graphs such as from de novo
assemblies, or by a series of editing operations applied to simple starting graphs such as standard
linear reference genomes. To support editing of existing graphs, vg supports operations that can
split a node where sequences diverge and insert additional edges and nodes. While doing this
it keeps track of the relationship to the previous graph in a translation object, which supports
projection of coordinates from one version of the graph to another.

We make use of the editing operations to construct graphs from Variant Call Format (VCF)
files X% as produced by population sequencing projects such as the 1000 Genomes Project,®
inserting a cluster of nodes and edges into a linear reference for each overlapping subset of
VCF records. Edit operations also allow progressive construction of a vg graph from a set of
sequences by repeated alignment and editing, so that all the initial sequences are embedded in
the graph as paths. Last but not least, edit operations allow new variants to be added to an
existing vg reference graph to support use cases such as incorporating novel variants from new
individuals mapped and called against the graph, while retaining a coordinate mapping to the
existing reference. These actions are also invertible, in that vg can generate VCF to describe the

graph as a set of variants, using an arbitrarily chosen embedded path as a reference.

2.5 Experiments

Experiments were carried out on a dedicated compute node with 256 gigabytes of RAM and two
2.4GHz AMD Opteron 6378 processors with a total of 32 CPU cores, or for the whole human

data set on a cluster of Amazon Web Services r3.8xlarge nodes.

3 Results

For a species such as human with only 0.1% nucleotide divergence on average between individual
genome sequences, over 90% of 100bp reads will derive from sequence exactly matching the
reference. Therefore the first requirement for any new mapper to be used in practice is that
against a linear reference it performs at least as well as the current standard, which we take
to be bwa mem*’ with default parameters. We then show that around divergent sites vg maps

significantly more informatively.
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3.1 Mapping human data to the 1000 Genomes Project graph

The final phase of the 1000 Genomes Project produced a data set of approximately 80 million
variants in 2504 humans*® The corresponding vg graph uses 4.76 GB when serialized to disk, and
contains 3.181 Gbp of sequence, which is exactly equivalent to the length of the input reference
plus the length of the novel alleles in the VCF file. The associated random-access and search
indices require 38 GB memory each. We also built and indexed a second vg graph corresponding
to the standard GRCh37 linear reference sequence, without including any variation.

We next aligned ten million 150 bp paired end reads simulated with errors from the parentally
phased haplotypes of an Ashkenazi Jewish male NA24385, who was sequenced by the Genome
in a Bottle (GIAB) Consortium,?® and who is not included in the 1000 Genomes Project sample
set. To map the reads to the 1000GP graph required 60 seconds to load the indexes, 75 GB of
RAM, and approximately one elapsed hour (32 core hours) to align the reads. Figures and
show the accuracy of these alignments compared with bwa mem, in terms of Receiver Operating
Characteristic (ROC) curves parameterised by mapping quality, partitioned into reads that were
simulated from segments in N24385 not containing variants from the reference (Figure , and
reads simulated from segments that do contain variants (Figure [2b]). Both groups of reads may
contain differences from the source segment sequences because of simulated sequencing errors,
which included both substitution and (at a lower rate) insertion/deletion (indel) errors.

For the reads from reference-equivalent segments, both single end and paired end alignment
with vg against the reference graph performed comparably to bwa mem (green and blue curves).
Mapping these reads against the 1000GP variation graph (red curves) gave slightly worse perfor-
mance over most of the range, which we attribute to a combination of the increase in options for
alternative places to map reads provided by the variation graph, and the fact that we needed to
prune some GCSA2 index k-mers in the most complex regions of the graph.

For reads that were simulated from segments containing non-reference alleles (approximately
10% of reads), vg mapping to the 1000GP graph gives better performance than either vg or
bwa mem mapping to the linear reference (Figure , due to the fact that many variants present
in NA24385 are already represented in the 1000GP graph. This is particularly clear for single end
mapping, since many paired end reads are rescued by the mate read mapping.

We also mapped a real human genome read set with approximately 50X coverage of Illumina
150bp paired end reads from the NA24385 sample to the 1000GP graph. vg produced mappings
for 98.7% of the reads, 88.7% with reported mapping quality score > 30 on the Phred scale, and
76.8% with perfect, full-length sequence identity to the reported path on the graph.

For comparison, we also used vg to map these reads to the linear reference. Similar proportions
of reads mapped (98.7%) and mapped with reported quality > 30 (88.8%), but considerably fewer
with perfect identity (67.6%). Markedly different mappings were found for 1.0% of reads (0.9%
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Figure 2: (a) the ROC curves for 10M read pairs simulated from NA24385 bwa mem, vg with a
linear genome reference, and vg with the same pangenome reference. Performance is shown for
both single end (se) and pair end (pe) mapping. (b) the alternate allele fraction at heterozygous
variants called by GIAB in NA24385 as a function of deletion or insertion size. (c) as in (b) but
as a function of distance to the nearest non-reference variant.

mapping to widely separated positions on the two graphs, and 0.1% mapping to one graph but not
the other). The reads mapping to widely separated positions were strongly enriched for repetitive
DNA. For example, the linear reference mappings for 27.5% of these read pairs overlap various
types of satellite DNA identified by RepeatMasker, compared to 3.0% of all read pairs.

To illustrate the consequences of mapping to a reference graph rather than a linear reference,
we stratified the sites called as heterozygous insertions or deletions in NA24385 by the GIAB by
deletion or insertion length (0 for single nucleotide variants) and by whether the site was present
in 1000GP, and measured the fraction of reads mapped to the alternate allele for each category.

The results show that mapping with vg to the population graph when the variant is present
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in 1000GP (95.4% of sites) gives nearly balanced coverage of alternate and reference alleles
independent of variant size, whereas mapping to the linear reference either with vg or bwa mem
leads to a progressively increasing bias with increasing deletion and (especially) insertion length
(Figure , so that for insertions around 30bp a majority of insertion containing reads are missing

(there are over twice as many reference reads as alternate reads).

3.2 Mapping against non-ordered reference graphs

The graphs that we have used so far were constructed from variation data obtained from mapping
to a linear reference, and so are directed acyclic graphs. We next demonstrate the ability of vg to
work with arbitrary graphs that include duplications, inversions, and translocations, by showing
its use with multiple yeast strains independently assembled de novo using long read data*® These
assemblies manifest large scale structural variation and novel sequence not detected in reference-
based sequencing,? including extensive rearrangement and reordering in subtelomeric regions®
as illustrated in Figure [T}

We compared four vg graphs: a linear reference graph from the standard S288c strain, a
linear reference from the SK1 strain, a pangenome graph of all seven strains, and a “drop_SK1"
variation graph in which all sequence private to the strain SK1 was removed from the pangenome
graph. The multiple sample graphs were constructed with the Cactus progressive aligner,® which
non-partially ordered (directed-acyclic) graphs.

Similarly to the human experiments, we simulated 1 million 150bp paired reads from the SK1
reference, modelling sequencing errors, and mapped them to the four references. The resulting
ROC curves are shown in Figure[3al Not surprisingly, the best performance is obtained by mapping
to a linear reference of the SK1 strain from which the data were simulated, with substantially
higher sensitivity and specificity compared to mapping to the standard linear reference from the
strain 5288c with either vg or bwa mem. Mapping to the variation graphs gives intermediate
performance, with several percent more sensitivity and lower false positive rates than to the
standard reference. There is surprisingly little difference between mapping to graphs with and
without the SK1 private variation, probably because much of what is novel in SK1 compared to
the reference is also seen in other strains. Again we see lower sensitivity compared to mapping
just to the SK1 sequence, likely because of suppression of GCSA2 index kmers in complex or
duplicated regions.

To demonstrate the difference between mapping to the pangenome and to the standard
reference with real data, we downloaded from the National Centre for Yeast Cultures (NCYC,
http://opendata.ifr.ac.uk/NCYC/) twelve 101bp Illumina paired end read sets for S. cere-

visiae strains that were not included in the pangenome variation graph, and mapped them using
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Figure 3: (a) ROC curves as in Figure 2a,b obtained by mapping simulated SK1 yeast strain reads
against a variety of references described in the text; (b) a dotplot of alignment score relative to
the maximum possible when mapping reads from 12 additional yeast strains against either the 7
strain pangenome variation graph or the S288c linear reference.

vg to the pangenome and S288c linear references. For this analysis we added the mitochon-
drial and 2 micron plasmid circular genomes to the pangenome. Slightly more reads map to the
pangenome (93.7%) than to the linear reference (93.2%), but while 69.6% of reads map perfectly
to the pangenome, only 52.8% map perfectly to the S288c linear reference. Of the reads that
map, 74.6% map with equal scores to both the pangenome and linear references, 24.9% map
better to the pangenome, and only 0.5% map better to the linear reference. Figure 3b shows a
dotplot of the normalized alignment scores of reads to these two references, reflecting that much
of the variation in these novel genomes could be found in even a small number of alternative
reference sequences.

Finally, we constructed a vg graph from a de novo assembly of the cichlid fish Astatotilapia
calliptera made with Falcon®? from Pacific Bioscience long read data, with 270,735 overlapping
reads totalling 1.02Gbp after removing overlaps. We mapped to this an independent 81x depth

lllumina data set, achieving 95.2% mapping rate.

4 Discussion

In conclusion, vg implements a suite of tools for genomic sequence data analysis using general

variation graph references. Using the vg toolkit, we can construct or import a graph, modify it,
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visualize it, and use it as a reference. vg can accurately map new sequence reads to the reference
using succinct indexes of the graph and its sequence space, and can describe variation between a
new sample and an arbitrary reference embedded as a path in the graph. Elsewhere!” we discuss
the use of vg to map read sets and call variants against a number of alternative human reference
graphs built from multiple regions of the human genome with different properties.

For applications such as mapping to the 1000 Genomes Project variant call set, the recently
published GraphTyper? package also supports mapping to a graph. However, this functionality is
limited compared to what is available in vg in two important ways. First, GraphTyper only locally
realigns reads that already map, to the region they were already mapped to by a standard linear
genome mapper such as bwa mem, rather than globally mapping to the graph as we do with our
GCSA2 index. Second, it does not support arbitrary graph structures, which would be necessary
to represent complex genome rearrangements (as in our yeast example) and assembly graphs.

There are many areas for potential future development and application of vg. These include
further improvements in the mapping and variant calling algorithms, potentially using long range
statistical haplotype structure information, stored in a graph extension of the PBWT haplotype

1

compression and search data structure*! as proposed by Novak*? Beyond variant calling, the

ability to map in an unbiased way to both reference and alternate alleles is potentially important

33 or protein binding. We note that graphs can also

when quantitating allele-specific expression
naturally represent the relationships between transcribed, spliced and edited RNA sequences and
the genome from which they are transcribed, so the vg software can potentially be used for
splice-aware RNAseq mapping.3*

We believe that genome variation graphs will underpin a new paradigm for genome sequence
data analysis They support the representation of structural variation using the same components
(edges, nodes and paths) that are used to represent single base changes. For human, they allow
more accurate and complete read mapping, as demonstrated in Figure [2] The benefits will only
be greater for other organisms with higher levels of genetic variation, or for which uncertainties
remain in the reference assembly. In order for the biological research community to exploit these
advantages, it needs software for variation graphs that scales to the genomes of humans and

other complex organisms. vg is a robust and openly available platform to fulfill this need.
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S1 Supplement

S1.1 GCSA2 index generation

We generate the GCSA2 index for a vg graph by transforming the graph into an effective De
Bruijn graph with £k = 64 or k£ = 128, with positional labels that indicate where in the source
graph a particular kmer starts. GCSA2 can then generate a GCSA from this labeled De Bruijn
graph. To build the De Bruijn graph efficiently, we initially generate kmers with £ = 16 labelled
by their start, end, preceding and following bases in the vg graph. GCSA2 then undertakes two or
three rounds of prefix doubling, wherein it uses the positional information in the input De Bruijn
graph to increase the order of the graph.

In certain circumstances where there are repeated patterns of dense variants in the graph, the
path complexity explodes exponentially, preventing practical enumeration of the De Bruijn graph.
To avoid this, we prune edges from the vg graph which induce more than a certain number
(default 4) of combinatorial bifurcations within a certain linear distance (default 16 bases), and
remove any extremely short subgraphs that result from this destructive masking operation. This
transformation preserves the coordinate system of the graph, allowing us to use it as the basis

for seed generation against the unpruned graph.

S1.2 SMEM and secondary MEM generation

vg can efficiently align reads against large graphs supported by xg and GCSA2 indexes through an
alignment process based on maximal exact match sequences between the query sequence and the
reference graph. First, a set of super-maximal exact matches (SMEMs) of a read are generated by
traversing the suffix tree encoded in the GCSA2 index until the count of matching strings drops to
0, then backing off one step to find all longest exact matches. A secondary "reseed” pass through
the traversal can then identify next-longest matches, which are used both to improve sensitivity
and to evaluate mapping quality (see below). Then, chains of SMEMs that are consistent with
the query sequence are found using a Markov model in which the optimal alignment is likely to
form a Viterbi path. For each candidate chain, we then locally align the read against the graph.
Scoring results from the local alignment are used to rank the candidate alignments. We then

return the best alignment, or multiple candidates if multiple mappings are required.

S1.3 SMEM chaining and read pairing

If the MEMs do not cover the full read length then we attempt to link them together into chains
by building a Markov model in which the best possible chains form high-scoring paths. In this
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model the nodes correspond to the reference graph positions where MEMs in the read occur and
the transitions between nodes correspond to a weight that is proportional to the approximate
indel size implied by the approximate positions of the MEMs in the graph. If we are aligning a
read pair, the weight between MEMs on different fragments is proportional to the probability of
that distance under a learned model of the fragment distribution. One we establish this model, we
take the Viterbi path through it as our first candidate alignment. By masking this path out and
re-running the Viterbi algorithm on the model, we can extract a series of candidate alignments

in descending order of goodness.

S1.4 Matching SMEM chains to the graph

Given a candidate cluster of exact matches that we have extracted from the SMEM chaining
model described in [SI1.3] we want to derive a complete description of the alignment of the read
to the reference graph. Sensitive alignment of each candidate is essential for distinguishing the

optimal alignment.

S1.5 Banded alignment

For very long reads, where in the worst case the local dynamic programming can become pro-
hibitively expensive, we break the reads into “bands” of a fixed width w (default 256 base pairs)
with overlap between successive bands of w/2. We then align these bands independently, trim
the overlaps from the alignments, and concatenate the results. This allows vg to map noisy reads
of arbitrary length, and is used as a core component in the long read progressive assembler vg

msga.

S$1.6 SIMD-accelerated local alighment

We link seeds using local alignment based on dynamic programming. To make this efficient
we extended an implementation (Zhao et al., 2013) of Farrar's SIMD-accelerated striped Smith
Waterman (SSW) algorithm (Farrar, 2007), which we term “graph striped Smith-Waterman”
GSSW. (Single input multiple data (SIMD) instructions allow vectorized mathematical operations
in a single machine instruction, and can be used to greatly speed up algorithms which can be
implemented in terms of operations on vectors.) GSSW generalizes all aspects of SSW to operate
over sequence directed acyclic graphs, including affine gap penalties, and retains its matrices for
traceback.

To interface with GSSW we transform a local region of our graph so that it is acyclic and

only represents a single strand of the DNA. The two operations we use in this transformation
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are unfold, which expands the graph to include its reverse complement where accessible via an
inversion, and dagify, which unrolls strongly connected components of the graph far enough that
we are guaranteed to be able to find any sequence of given length £ in the source graph in the
unrolled one. This allows us to align any sequence of up to length k£ against a completely general
section of a variation graph. Through these steps we retain a mapping from old node ids to
new ones, which we will use to project alignments to the transformed graph back into our base
coordinate space.

S1.7 Unfolding

Every node has an implicit default orientation (see Graph Representation below) so that it is
possible to determine edges that cause an inversion, i.e. those which connect between a forward
and a reverse complement node orientation. In VG: :unfold we use a breadth first search starting
at every inverting edge in the graph to explore the reverse complemented portions of the graph
that we can reach within length k& from the inverting edge. We then copy this subgraph, take its
reverse complement, and replace the inverting edges connecting it to the forward strand of the
graph with non-inverting ones. If k is greater than any length in our graph, then we are guaranteed
to duplicate the entire reverse complement of the graph on the forward strand, effectively doubling

the size of the graph if we have any inversions in it, as shown in Figure [ST]

S1.8 Dagification

Variation graphs may have cycles. These are useful as compact representations of copy number
variable regions, and arise naturally in the process of genome assembly. However, our partial
order alignment implementation does not handle these structures, and so when they occur we
convert them into an approximately equivalent acyclic graph in order to align with GSSW. To do
so, we unroll cyclic structures by copying their internal nodes an appropriate number of times to
allow a given query length to align through the unrolled version of the component.

We first detect all strongly connected components by using a recursion-free implementation of
Tarjan's strongly connected components algorithm (Tarjan, 1972). Then, we copy each strongly
connected component and its internal edges into a new graph. We greedily break edges in this
graph that introduce cycles. Next we k-DAGify the component progressively copying the base
component and, for each edge between nodes in the component, connecting from the source
node in the previous copy to the target node in the current copy.

We use dynamic programming to track the minimum distance back through the graph to
a root node outside the component at each step. When this reaches our target k, we stop

unrolling, and add the expanded component back into the graph by reconnecting it with its
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original neighborhood. For each copy of a node in the DAG-ified component we copy all its
inbound and outbound edges where the other end of the edge lies outside the strongly connected
component. The resulting graph is acyclic and supports queries up to length k£ on the original
graph using the translation that we maintain between the new graph and the source one. Figure

provides a visual description of the process.

S$1.9 Base quality adjusted alighment scores and mapping qualities

Base qualities are typically reported on the Phred scale so that the probability of error for a given
quality Q is € = 10~9/19. Assuming no bias in which bases are mistaken for each other, this

defines a posterior distribution over bases b for a base call z.

l—€¢ b==x
P(blz,€) = » (1)

1
3

We use this distribution to derive an adjusted score function. Normally, the match score for
two bases is defined as the logarithm of the likelihood ratio between seeing two bases x and y

aligned and seeing them occur at random according to their background frequencies.

Dzy
534 = log (—) 2
y 0is (2)

Next we marginalize over bases from the posterior distribution to obtain a quality adjusted

match score.

(1- E)pw,y + % Zb;ﬁx Po,y

a (1= e + 500 ) 9

Su4(€) = log

vg works backwards from integer scoring functions to the probabilistic alignment parameters

in this equation. After doing so, the match scores are given by

_ 1 (1 — €)G2qy €XP NSy + § D2y Gy XD ASby
5.4(6) = £ log
Qy ((1 - E)Qm + % Zb;ﬁx %)
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Here, A\ is a scale factor that can be computed from the scoring parameters, and the back-
ground frequencies ¢, are estimated by their frequency in the reference graph. Since base quality
scores are already discretized, the adjusted scores can be precomputed and cached for all reason-

able values of e.

S$1.10 Mapping qualities

The algorithm for mapping qualities in vg is also motivated by a probabilistic interpretation
of alignment scores. The score of an alignment A of two sequences X and Y is the sum of
scores given in . This makes it a logarithm of a joint likelihood ratio across bases, where the
bases are assumed independent (a more complete justification including gap penalties involves a
hidden Markov model, but it can be shown to approximate this formula). We denote this score
S(A|X,Y). Thus, assuming a uniform prior over alignments, we can use Bayes' Rule to motivate

a formula for the Phred scaled quality of the optimal alignment, A.

Q(AIX,Y) = —101log,o(1 — P(A|X,Y))
— —101log,, (1 .S LY )
>4 P(X,Y[A)
exp AS(A|X,Y) )
YoaexpAS(A|X,Y)

Using the close approximation of the LogSumExp function by element-wise maximum, there

is a fast approximation to this formula that does not involve transcendental functions.

QUAIX,Y) ~ 10%0 (suiyx, ) - max (41X, Y)) (6)

In practice, we do not compare the optimal alignment to all possible alignments, but to the
optimal alignments from other seeds. Thus, the mapping quality indicates the confidence that
we have aligned the read to approximately the correct part of the graph rather then that the
fine-grained alignment in that part of the graph is correct. It is also worth noting that since this
formula is based on alignment scores, it can incorporate base quality information through the

base quality adjusted alignment scores.
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S1.11 Succinct graph representation (xg)

When using a variation graph as a reference system, we are unlikely to need to modify it. As such
we can compress it into a system that provides efficient access to important aspects of the graph.
Specifically, we care about the node and edge structure of the graph and queries that allow us
to extract and seek to positions in embedded paths. We would like to be able to query a part of
the graph corresponding to a particular region of a chromosome in a reference path embedded in
the graph. Similarly, if we find an exact match on the graph using GCSA2, we would like to load
that region of the graph into memory for efficient local alignment.

We implement a succinct representation of variation graphs in the xg library, using data
structures from SDSL-lite. Node labels and node ids are stored in a collection of succinct vectors,
augmented by rank/select dictionaries that allow the lookup of node sequences and node ids.
An internal node rank is given for each node, and we map from and to this internal coordinate
system using a compressed integer vector of the same order as the node id range of the graph we
have indexed. To allow efficient exploration of the graph, we store each node's edge context in a
structured manner in an integer vector, into which we can jump via a rank/select dictionary keyed
by node rank in the graph. Efficient traversal of the graph’s topology via this structure is enabled
by storing edges a relative offsets to “to” or “from” node, which obviates the need for secondary
lookups and reduces the cost of step-wise traversal to member access on the containing vector
and the cost of parsing each node context record that we encounter. Paths provided to XG are
used to induce multifarious coordinate systems over the graph. We store them using a collection
of integer vectors and rank/select dictionaries that allow for efficient queries of the paths at or
near a given graph position, as well as queries that give us the graph context near a given path

position.
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Figure S1: lllustration of the unfolding process. The starting graph (A) has an inverting edge
leading from the forward to reverse strand of node 2. In (B) we unroll the graph with &k greater
than the length of the graph, which materializes the implied reverse strand as sequence on the

forward strand of new nodes.
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Figure S2: lllustration of the unrolling process. The starting graph (A) and a representation
without sequences or sides to clarify the underlying structure (B). In (C) we have unrolled one
step (k=2). In (D), k =4, (E) k=10, and (F) k£ = 25.
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