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Abstract

Drug resistance is a major impediment to the success of cancer treatment. Resistance
is typically thought to arise through random genetic mutations, after which mutated cells
expand via Darwinian selection. However, recent experimental evidence suggests that the
progression to drug resistance need not occur randomly, but instead may be induced by the
treatment itself, through either genetic changes or epigenetic alterations. This relatively
novel notion of resistance complicates the already challenging task of designing effective
treatment protocols. To better understand resistance, we have developed a mathematical
modeling framework that incorporates both spontaneous and drug-induced resistance.
Our model demonstrates that the ability of a drug to induce resistance can result in
qualitatively different responses to the same drug dose and delivery schedule. We have
also proven that the induction parameter in our model is theoretically identifiable, and
proposed an in vitro protocol which could be used to determine a treatment’s propensity
to induce resistance.
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Introduction

Tumor resistance to chemotherapy and targeted drugs is a major cause of treatment failure.
Both molecular and microenvironmental factors have been implicated in the development of
drug resistance [33]. As an example of molecular resistance, the upregulation of drug efflux
transporters can prevent sufficiently high intracellular drug accumulation, limiting treatment
efficacy [30]. Other molecular causes of drug resistance include modification of drug targets,
enhanced DNA damage repair mechanisms, dysregulation of apoptotic pathways, and the pres-
ence of cancer stem cells [30, 17, 33, 79, 82]. The irregular tumor vasculature which results
in inconsistent drug distribution and hypoxia is an example of a microenvironmental factor
that impacts drug resistance [77]. Other characteristics of the tumor microenvironment that
influence drug resistance include regions of acidity, immune cell infiltration and activation, and
the tumor stroma [26, 77, 55, 15, 33, 54]. Experimental and clinical research continues to shed
light on the multitude of factors that contribute to cancer drug resistance. Mathematical mod-
eling studies have also been used to explore both broad and detailed aspects of cancer drug
resistance, as reviewed in [42, 7, 24].

Resistance to cancer drugs can be classified as either pre-existing or acquired [33]. Pre-
existing (intrinsic) drug resistance describes the case in which a tumor contains a subpopulation
of drug resistant cells at the initiation of treatment, making the therapy (eventually) ineffective
due to resistant cell selection [33]. As examples, pre-existing BCR-ABL kinase domain mu-
tations confer resistance to the tyrosine kinase inhibitor imatinib in chronic myeloid leukemia
patients [66, 35], and pre-existing MEK1 mutations confer resistance to BRAF inhibitors in
melanoma patients [8]. Many mathematical models have considered how the presence of such
pre-existing resistant cells impact cancer progression and treatment [36, 38, 57, 39, 22, 23, 71,
16, 59, 62, 4, 21, 43, 3, 31, 81, 28, 48, 56, 58, 78, 69, 9, 10].

On the other hand, acquired drug resistance broadly describes the case in which drug re-
sistance develops during the course of therapy from a population of cells that were initially
drug sensitive [33]. The term “acquired resistance” is really an umbrella term for two dis-
tinct phenomena, which complicates the study of acquired resistance. On the one hand there
is resistance that is spontaneously, or randomly, acquired during the course of treatment, be
it due to random genetic mutations or stochastic non-genetic phenotype switching [65]. This
spontaneous form of acquired resistance has been considered in many mathematical models
[14, 38, 46, 57, 39, 22, 23, 44, 4, 21, 32, 43, 51, 31, 81, 25, 45, 50, 56, 10]. On the other hand,
drug resistance can be induced (caused) by the drug itself [61, 60, 70, 65, 64].

The question of whether resistance is an induced phenomenon or the result of random events
was first famously studied by Luria and Delbrück in the context of bacterial (Escherichia coli)
resistance to a virus (T1 phage) [52]. In particular, Luria and Delbrück hypothesized that
if selective pressures imposed by the presence of the virus induce bacterial evolution, then
the number of resistant colonies that formed in their plated experiments should be Poisson dis-
tributed, and hence have an approximately equal mean and variance. What Luria and Delbrück
found instead was that the number of resistant bacteria on each plate varied drastically, with
the variance being significantly larger than the mean. As a result, they concluded that the
bacterial mutations are spontaneous, and not induced by the presence of the virus [52].

In the case of cancer, there is strong evidence that at least some drugs have the ability
to induce resistance, as genomic mutations can be caused by cytotoxic cancer chemotherapeu-
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tics [74, 73]. For instance, nitrogen mustards can induce base substitutions and chromosomal
rearrangements, topoisomerase II inhibitors can induce chromosomal translocations, and an-
timetabolites can induce double stranded breaks and chromosomal aberrations [74]. Such drug-
induced genomic alterations would generally be non-reversible. Drug resistance can also be
induced at the epigenetic level [61, 65, 68]. As one example, the expression of multidrug resis-
tance 1 (MDR1), an ABC-family membrane pump that mediates the active efflux of drug, can
be induced during treatment [33, 65]. In another recent example, the addition of a chemother-
apeutic agent is shown to induce, through a multistage process, epigenetic reprogramming in
patient-derived melanoma cells [68]. Resistance developed in this way can occur quite rapidly,
and can often be reversed [70, 65, 34].

Despite these known examples of drug-induced resistance, differentiating between drug-
selected and drug-induced resistance is nontrivial. What appears to be drug-induced acquired
resistance may simply be the rapid selection of a very small number of pre-existing resistant
cells, or the selection of cells that spontaneously acquired resistance [44, 65]. In pioneering work
by Pisco and colleagues, the relative contribution of resistant cell selection versus drug-induced
resistance was assessed in an experimental system involving HL60 leukemic cells treated with the
chemotherapeutic agent vincristine [65]. After 1-2 days of treatment, the expression of MDR1
was shown to be predominantly mediated by cell-individual induction of MDR1 expression,
and not by the selection of MDR1-expressing cells [65, 64]. In particular, these cancer cells
exploit their heritable, non-genetic phenotypic plasticity (by which one genotype can map onto
multiple stable phenotypes) to change their gene expression to a (temporarily) more resistant
state in response to treatment-related stress [65, 64].

Although there is a wealth of mathematical research addressing cancer drug resistance,
relatively few models have considered drug-induced resistance. Of the models of drug-induced
resistance that have been developed, many do not explicitly account for the presence of the
drug. Instead, it is assumed that these models apply only under treatment [65, 29, 11, 1, 19],
with the effects of the drug being implicitly captured in the model terms. Since these models of
resistance-induction are dose-independent, they are unable to capture the effects that altering
the drug dose has on resistance formation. To our knowledge, there have been less than a
handful of mathematical models developed in which resistance is induced by a drug in a dose-
dependent fashion [13, 28, 48]. In [28] and follow-up work in [69, 63], the duration and intensity
of drug exposure determines the resistance level of each cancer cell. This model allows for
a continuum of resistant phenotypes, but is very computationally complex as it is a hybrid
discrete-continuous, stochastic spatial model. While interesting features about the relationship
between induced resistance and the microenvironment have been deduced from this model, its
complexity does not allow for general conclusions to be drawn about dose-dependent resistance-
induction.

Another class of models which addresses drug-induced resistance is that in [13]. These
models are distinct in that they are motivated by in vitro experiments in which a cancer
drug transiently induces a reversible resistant phenotypic state [70]. The individual-based
and integro-differential equation models developed consider rapidly proliferating drug sensitive
cells, slowly proliferating drug resistant cells, and rapidly proliferating drug resistant cells.
An advection term (with the speed depending on the drug levels) is used to model drug-
induced adaptation of the cell proliferation level, and a diffusion term for both the level of cell
proliferation and survival potential (response to drug) is used to model non-genetic phenotype

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/235150doi: bioRxiv preprint 

https://doi.org/10.1101/235150


instability [13]. Through these models, the contribution of nongenetic phenotype instability
(both drug-induced and random), stress-induced adaptation, and selection can be quantified
[13].

Finally, the work in [48] models the evolutionary dynamics of the tumor population as
a multi-type non-homogeneous continuous-time birth-death stochastic process. This model
accounts for the ability of a targeted drug to alter the rate of resistant cell emergence in a dose-
dependent manner. The authors’ specifically considered the case where the rate of mutation that
gives rise to resistant cell: 1) increases as a function of drug concentration, 2) is independent of
drug concentration, and 3) decreases with drug concentration. Interestingly, this model led to
the conclusion that the optimal treatment strategy is independent of the relationship between
the drug concentration and rate of resistance formation. In particular, they found resistance
is optimally delayed using a low-dose continuous treatment strategy coupled with high-dose
pulses [48].

As in vitro experiments have demonstrated that treatment response can be impacted by
drug-induced resistance [70, 65], here we seek to understand this phenomenon further using
mathematical modeling. The initial mathematical model that we developed, and that will
be analyzed herein, is a system of two ordinary differential equations with a single control
representing the drug. We intentionally chose a minimal model that would be amenable to
analysis, as compared to previously-developed models of drug-induced resistance which are
significantly more complex [13, 28, 69, 63]. Despite the simplicity of the model, it incorporates
both spontaneous and drug-induced resistance.

This manuscript is organized as follows. We begin by introducing a mathematical model
to describe the evolution of drug resistance during treatment with a theoretical resistance-
inducing (and non-inducing) drug. We use this mathematical model to explore the role that
the drug’s resistance induction rate has on treatment dynamics. We demonstrate that the
induction rate of a theoretical cancer drug could have a nontrivial impact on the qualitative
responses to a given treatment strategy, including the tumor composition and the time horizon
of tumor control. In our model, for a resistance-preserving drug (i.e. a drug which does not
induce resistance), better tumor control is achieved using a constant therapeutic protocol as
compared to a pulsed one. On the other hand, in the case of a resistance-inducing drug, pulsed
therapy prolongs tumor control longer than does constant therapy due to sensitive/resistant
cell competitive inhibition. Once the importance of induced resistance has been established,
we demonstrate that all parameters in our mathematical model are identifiable, meaning that
it is theoretically possible to determine the rate at which drug resistance is induced for a given
treatment protocol. Since this theoretical result does not directly lend itself to an experimental
approach for quantifying a drug’s ability to induce resistance, we also describe a potential
in vitro experiment for approximating this ability for constant therapies. We end with some
concluding remarks and a discussion of potential extensions of our analysis, such as a model
that differentiates between reversible and non-reversible forms of resistance.

Materials and Methods

In this section, we introduce a general modeling framework to describe the evolution of drug
resistance during treatment. Our model captures the fact that resistance can result from random
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events, or can be induced by the treatment itself. Random events that can confer drug resistance
include genetic alterations (e.g. point mutations or gene amplification) and phenotype-switching
[65]. These spontaneous events can occur either prior to or during treatment. Drug-induced
resistance is resistance specifically activated by the drug, and as such, depends on the effective
dosage encountered by a cell. Such a formulation allows us to distinguish the contributions
of both drug-dependent and drug-independent mechanisms, as well as any dependence on pre-
existing (i.e. prior to treatment) resistant populations.

We consider the tumor to be composed of two types of cells: sensitive (S) and resistant (R).
Sensitive (or wild-type) cells are fully susceptible to treatment, while treatment affects resistant
cells to a lesser degree. To analyze the role of both random and drug-induced resistance, we
utilize a system of two ordinary differential equations (ODEs) to describe the dynamics between
the S and R subpopulations:

dS

dt
= r

(
1− S +R

K

)
S − (ε+ αu(t))S − du(t)S + γR, (1)

dR

dt
= rR

(
1− S +R

K

)
R + (ε+ αu(t))S − dRu(t)R− γR. (2)

All parameters are non-negative. In the absence of treatment, we assume that the tumor grows
logistically, with each population contributing equally to competitive inhibition. Phenotypes
S and R each possess individual intrinsic growth rates, and we make the assumption in the
remainder of the work that 0 < rR < r. This simply states that resistant cells grow slower than
non-resistant cells, an assumption supported by experimental evidence [47, 67, 6].

The transition to resistance can be described with a net term of the form εS + αu(t)S.
Mathematically, the drug-induced term αu(t)S, where u(t) is the effective applied drug dosage
at time t, describes the effect of treatment on promoting the resistant phenotype. As an
example, this term could represent the induced over-expression of the P-glycoprotein gene, a
well-known mediator of multi-drug resistance, by the application of chemotherapy [33, 75].

The spontaneous evolution of resistance is captured in the εS term, which permits resistance
to develop even in the absence of treatment. Note that ε is generally considered small [49],
although recent experimental evidence into error prone DNA polymerases suggests that cancer
cells may have increased mutation rates due to the over-expression of such polymerases [40,
53, 41]. For example, in [40], mutation rates due to such polymerases are characterized by
probabilities as high as 7.5 × 10−1 per base substitution, and it is known that many point
mutations in cancer arise from these DNA polymerases [41]. For this work we adopt the
notion that random point mutations leading to drug resistance are rare, and that drug-induced
resistance occurs on much quicker time scales [65]. Therefore we will assume that α > ε in our
analysis of eqns. (1)-(2).

We model the effects of treatment by assuming the log-kill hypothesis [76], which states
that a given dose of chemotherapy eliminates the same fraction of tumor cells, regardless of
tumor size. We allow for each cellular compartment to have a different drug-induced death rate
(d, dR); however, to accurately describe resistance it is required that 0 ≤ dR < d. Our analysis
presented herein will be under the simplest assumption that the drug is completely ineffective
against resistant cells, so that dR = 0.
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The last term in the equations, γR, represents the re-sensitization of cancer cells to the
drug. In the case of non-reversible resistance, γ = 0 and otherwise γ > 0. Our subsequent
analysis will be done under the assumption of non-reversible resistance. For a discussion of the
effect of reversibility on the presented model, see Supporting Information (SI) Section B.

Finally, we note that the effective drug concentration u(t) can be thought of as a control
input. For simplicity, in this work we assume that it is directly proportional to the applied
drug concentration. However, pharmacodynamic/pharmacokinetic considerations could be in-
corporated to more accurately describe the uptake/evolution of the drug in vivo or in vitro; for
example, as in [2, 80, 20].

To understand the above system of drug resistance evolution, we reduce the number of
parameters via non-dimensionalization. Rescaling S and R by their (joint) carrying capacity
K, and time t by the sensitive cell growth rate r,

S̃(τ) =
1

K
S

(
1

r
τ

)
,

R̃(τ) =
1

K
R

(
1

r
τ

)
,

(3)

system (1)-(2) (with γ = dR = 0) can be written in the form

dS

dt
= (1− (S +R))S − (ε+ αu(t))S − du(t)S, (4)

dR

dt
= pr (1− (S +R))R + (ε+ αu(t))S. (5)

For convenience, we have relabeled S,R, and t to coincide with the non-dimensionalization, so
that the parameters ε, α, and d must be scaled accordingly (by 1/r). As rr was assumed to
satisfy 0 ≤ rR < r, the relative resistant population growth rate pr satisfies 0 ≤ pr < 1.

One can show (see SI Section A) that asymptotically, under any treatment regime u(t) ≥ 0,
the entire population will become resistant:

(
S(t)
R(t)

)
t→∞−−−→

(
0
1

)
. (6)

However, tumor control is still possible, where one can combine therapeutic efficacy and clonal
competition to influence transient dynamics and possibly prolong patient life. Indeed, the
modality of adaptive therapy has shown promise in utilizing real-time patient data to inform
therapeutic modulation aimed at increasing quality of life and survival times [27]. This work
will focus on such dynamics and controls.

Results/Discussion

Effect of Induction on Treatment Efficacy

We investigate the role of a drug’s induction capability (parameter α in (4)-(5)) on treatment
dynamics. Specifically, the value of α may have a substantial impact on the relative success of
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two standard therapy protocols: constant dosage and periodic pulsing.

Treatment Protocol

To quantify the effects of induced resistance, a treatment protocol must be specified. We adopt
a clinical perspective over the course of the disease, which is summarized in Figure 1. We
assume that the disease is initiated by a small number of wild-type cells:

S(0) = S0, R(0) = 0, (7)

where 0 < S0 < 1. The tumor then progresses untreated until a specific volume Vd is detected
(or, for hematologic tumors, via appropriate blood markers), which utilizing existing nuclear
imaging techniques corresponds to a tumor with diameter on the order of 10 mm [18]. The time
to reach Vd is denoted by td, which in general depends on all parameters appearing in (4)-(5).
Note that, assuming ε > 0, a non-zero resistant population will exist at the onset of treatment.
Therapy, represented through u(t), is then applied, until the tumor reaches a critical size Vc,
which we equate with treatment failure. Since the (S,R) = (0, 1) state is globally asymptotically
stable in the first quadrant, Vc < 1 is guaranteed to be obtained in finite time. Time until failure,
tc, is then a measure of efficacy of the applied u(t).

t

V

td tc

V0

Vd

Vc

(a)

t

u

td tc

uon,c

uon,p

(b)

Figure 1: Schematic of tumor dynamics under two treatment regimes. (a) Tumor volume V
in response to treatment initiated at time td. Cancer population arises from a small sensitive
population at time t = 0, upon which the tumor grows to detection at volume Vd. Treatment is
begun at td, and continues until the tumor reaches a critical size Vc (at a corresponding time tc),
where treatment is considered to have failed. (b) Illustrative constant and pulsed treatments,
both initiated at t = td.

Although a diverse set of inputs u(t) may be theoretically applied, presently we consider
only strategies as illustrated in Figure 1(b). The blue curve in Figure 1(b) corresponds to a
constant effective dosage uc(t) initiated at td (administered approximately utilizing continuous
infusion pumps and/or slow-release capsules), while the black curve represents a corresponding
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pulsed strategy up(t), with fixed treatment windows and holidays. In general, we may allow for
different magnitudes, uon,c and uon,p, for constant and pulsed therapies respectively; for example
to relate the total dosage applied per treatment cycle (AUC in clinical literature). However for
simplicity we assume the same magnitude in the subsequent section (although see SI Section C
for a normalized comparison). While these represent idealized therapies, such u(t) may form
an accurate approximation to in vitro and/or in vivo kinetics. Note that the response V (t)
illustrated in Figure 1(a) will not be identical (or even qualitatively similar) for both presented
strategies, as will be demonstrated numerically.

Constant vs. Pulsed Therapy Comparison

To qualitatively demonstrate the role induced resistance plays in designing schedules for therapy,
we consider two drugs with the same cytotoxic potential (i.e. same drug-induced death rate
d), each possessing a distinct level of resistance induction (parameter α). A fundamental
question is then whether there exist qualitative distinctions between treatment responses for
each chemotherapy. More specifically, how does the survival time compare when scheduling
is altered between constant therapy and pulsing? Does the optimal strategy (in this case,
optimal across only two schedulings) change depending on the extent to which the drug induces
resistance?

We fix two values of the induction parameter α:

αs = 0, αi = 10−2.

Recall that we are studying the non-dimensional model (4)-(5), so no units are specified. Pa-
rameter α = 0 corresponds to no therapy-induced resistance (henceforth denoted as phenotype-
preserving), and therefore considering this case permits a comparison between the classical
notion of random evolution towards resistance (α = 0) and drug-induced resistance (α > 0).
For the remainder of the section, parameters are fixed as in Table 1. Importantly, all param-
eters excluding α are identical for each drug, enabling an unbiased comparison. Treatment
magnitudes uon,c and uon,p are selected to be equal: uon,c = uon,p = uon.

Note that selecting parameter Vd = 0.1 implies that the carrying capacity has a diameter
of 100 mm, as Vd corresponds to a detectable diameter of 10 mm. Assuming each cancer cell
has volume 10−6 mm3, tumors in our model can grow to a carrying capacity of approximately
12.4 cm in diameter, which is in qualitative agreement with the parameters estimated in [12]
(≈ 12.42 cm, assuming a tumor spheroid).

By examining Figures 2(a)-2(b), we clearly observe an improved response to constant ther-
apy when using a phenotype-preserving drug, with a treatment success time tc nearly seven
times as long compared to the resistance-inducing therapy. It can be seen that the tumor
composition at treatment conclusion is quite different for each therapy (not shown for this
simulation, but see a comparable result in Figures S2(b) and S2(d)), and it appears that the
pulsed therapy was not sufficiently strong to hamper the rapid growth of the sensitive popula-
tion. Indeed, treatment failed quickly due to insufficient treatment intensity in this case, as the
population remains almost entirely sensitive. Thus, for this patient under these specific treat-
ments, assuming drug resistance only arises via random stochastic mutations, constant therapy
would be preferred. One might argue that a pulsed, equal-magnitude treatment is worse when
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Parameter Biological Interpretation Value (dimensionless)
S0 Initial sensitive population 0.01
R0 Initial resistant population 0
Vd Detectable tumor volume 0.1
Vc Tumor volume defining treatment failure 0.9
ε Background mutation rate 10−6

d Cytotoxicity of sensitive cells 1
pr Resistant growth fraction 0.2
uon Treatment magnitude, constant dose 1.5
∆ton Pulsed treatment window 1
∆toff Pulsed holiday length 3

Table 1: Parameters utilized in Figure 2

α = 0 simply because less total drug (i.e. AUC) is applied. However, we see that even in this
case, intermediate dosages may be optimal (see Figure 4(a) below). Thus, it is not the larger
total drug per se that is responsible for the superiority of the constant protocol in this case, a
point that is reinforced by the fact that the results remain qualitatively unchanged even if the
total drug is controlled for (see SI Section C).

Compare this to Figures 2(c)-2(d), which considers the same patient and cytotoxicity, but for
a highly inductive drug. The results are strikingly different, and suggest that pulsed therapy
is now not worse, and in fact substantially improves patient response (td ≈ 61 for pulsed,
compared to td ≈ 45 for constant). In this case, both tumors are now primarily resistant
(see Figures S3(b) and S3(d)), but the pulsed therapy allows prolonged tumor control via
sensitive/resistant competitive inhibition. Furthermore, treatment holidays reduce the overall
flux into resistance, since the application of the drug itself promotes this evolution. The total
amount of drug (AUC) is also smaller for the pulsed therapy (22.5 compared to ≈ 64), so
that the pulsed therapy is both more efficient in terms of treatment efficacy, and less toxic to
the patient, as side effects are typically correlated with the total administered dose, which is
proportional to the AUC.

For these specific parameter values, differences between the constant and pulsed therapy for
the inductive drug are not as extensive as in the phenotype-preserving case. However, recall
that time has been non-dimensionalized, and hence scale may indeed be clinically relevant.
Such differences can be further amplified, and in fact since exact parameters are difficult or
even (currently) impossible to measure, qualitative distinctions are paramount. Thus, at this
stage, the ranking of therapies, rather than their precise quantitative efficacy, should act as the
more important clinical criterion.

From these results, we observe a qualitative difference in the treatment strategy to apply,
based entirely on the value of α, the degree to which the drug itself induces resistance. Thus,
in administering chemotherapy, the resistance-promotion rate α of the treatment is a clinically
significant parameter. In the next section, we use our model and its output to propose in vitro
methods for experimentally measuring a drug’s α parameter.
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Figure 2: Comparison of treatment efficacy for phenotype-preserving (α = 0) and resistance-
inducing (α = 10−2) drugs. Left column indicates treatment strategy, while right indicates
corresponding tumor volume response. Note that the dashed red line in the right column indi-
cates the tumor volume representing treatment failure, Vc. (a) Constant and pulsed therapies
after tumor detection for α = 0. (b) Responses corresponding to treatment regimens in (a). (c)
Constant and pulsed therapies after tumor detection for α = 10−2. (d) Responses corresponding
to treatment regimens in (c).

Identifying the Rate of Induced Drug Resistance

The effect of treatment on the evolution of phenotypic resistance may have a significant impact
on the efficacy of conventional therapies. Thus, it is essential to understand the value of the
induction parameter α prior to administering therapy. In this section, we discuss both the
theoretical possibility and practical feasibility of determining α from different input strategies
u(t).
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Theoretical Identifiability

We first show that all parameters in system (4)-(5) are identifiable utilizing a relatively small
set of controls u(t) via classical methods from control theory. We provide a self-contained
discussion; for a thorough review of theory and methods, see the recent article [72] and the
references therein.

Assuming that time and tumor volume are the only clinically observable outputs (i.e. that
one cannot readily determine sensitive and resistant proportions in a given population), we
measure V (t) and its derivatives at time t = td for different controls u(t). For simplicity,
we assume that td = 0, so that treatment is initiated with a purely wild-type (sensitive)
population. Although the results remain valid if td > 0, this assumption will simplify the
subsequent computations. For a discussion of the practical feasibility of such methods, see the
following section.

Specifically, consider the system (4)-(5) with initial conditions (7). Measuring V (t) =
S(t) +R(t) at time t = 0 implies that we can identify S0:

V (0) = S(0) +R(0) = S0 =: Y0,

where we adopt the notation Yi, i ≥ 0 for measurable quantities. Similarly, define the following
for the given input controls:

Y1 := V ′(0), u(t) ≡ 0,

Y2 := V ′(0), u(t) ≡ 1,

Y3 := V ′′(0), u(t) ≡ 0,

Y4 := V ′′(0), u(t) ≡ 1,

Y5 := V ′′(0), u(t) ≡ 2,

Y6 := V ′′′(0), u(t) ≡ 0,

Y7 := V ′′′(0), u(t) = t.

(8)

All quantities Yi, i = 0, 1, . . . , 7 are measurable, as each requires only knowledge of V (t) in a
small positive neighborhood of t = 0. Note that the set of controls u(t) is relatively simple,
with Y7 exclusively determined via a non-constant input.

Each measurable Yi may also be written in terms of a subset of the parameters d, ε, pr, and
α, as all derivatives can be calculated in terms of the right-hand sides of equations (4)-(5).
For more details, see SI Section D. Equating the expressions yields a system of equations for
the model parameter, which we are able to solve. Carrying out these computations yields the
following solution:
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d = −Y2 − Y1

Y0

, (9)

ε =
Y7 − Y6 + 1

2
Y5 − 2Y4 − 3

2
Y3 + dY0(1− Y0)

dY0

, (10)

pr =
Y3 − (1− ε)Y0 + (3− ε)Y 2

0 − 2Y 3
0

εY0(1− Y0)
, (11)

α =
1
2
Y5 − Y4 + 1

2
Y3 − d2Y0

dY0

. (12)

Note that in system (9)-(12), each quantity is determined by the Yi and the parameter values
previously listed; we do not write the solution in explicit form for the sake of clarity, as the
resulting equations are unwieldy. Furthermore, the solution of this system relies on the assump-
tion of strictly positive initial conditions (S0 = Y0 > 0), wild-type drug induction death rate
(d), and background mutation rate (ε), all of which are made in this work.

Equation (12) is the desired result of our analysis. It demonstrates that the drug-induced
phenotype switching rate α may be determined by a relatively small set of input controls u(t).
As discussed in the previous section, the value of α may have a large impact on treatment
efficacy, and thus determining its value is clinically significant. Our results now prove that
it is possible to compute the induction rate, and hence utilize this information in designing
treatment protocols. In the next section, we investigate other qualitative properties that could
also be applied to understand the rate of drug-induced resistance.

An in vitro Experimental Protocol to Distinguish Spontaneous and Drug-Induced
Resistance

We have demonstrated that all parameters in (4)-(5) are identifiable, so that it is theoretically
possible to determine the phenotype switching rate α from a class of input controls u(t). How-
ever, we see that the calculation involved measuring derivatives at the initial detection time
t = td. Furthermore, the utilized applied controls (see equation (8)) are non-constant and thus
require fractional dosages to be administered. Clinically, such strategies and measurements
may be difficult and/or impractical. In this section, we describe an in vitro method for esti-
mating α utilizing constant therapies only. Specifically, our primary goal is to distinguish drugs
with α = 0 (phenotype-preserving) and α > 0 (resistance inducing). Such experiments, which
are described below, may be implemented for a specific drug, even if its precise mechanism of
promoting resistance’ remains uncertain.

Before describing the in vitro experiment, we note that we are interested in qualitative prop-
erties for determining α. Indeed, in most modeling scenarios, we have little or no knowledge of
precise parameter values, and instead must rely on characteristics that distinguish the switch-
ing rate α independently of quantitative measurements. Furthermore, as a general framework
for drug resistance, the only guaranteed clinically observable output variables are the critical
tumor volume Vc and the corresponding time tc (for a description of the treatment protocol, see
above); we cannot expect temporal clonal subpopulation measurements. Assuming Vc is fixed
for a given cancer, tc is thus the only observable that we consider.
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By examining (4)-(5), we see that the key parameters dictating the progression to the steady
state (S,R) = (0, 1) are d and α, as these determine the effectiveness and resistance-induction
of the treatment, respectively. Recall that ε is the fixed background mutation rate, and pr the
relative fitness of the resistant cells. Thus, we perform a standard dose-response experiment
for each value of drug sensitivity d, and measure the time tc to reach critical size Vc as a
function of d. The response tc will then depend on the applied dosage u (recall that we are
only administering constant therapies) and the sensitivity of the wild-type cells d, as well as
the induction rate α:

tc = tc(u, d, α). (13)

We further imagine that it is possible to adjust the wild-type drug sensitivity d. For example,
in the case of multi-drug resistance in which the over-abundance of P-glycoprotein affects drug
pharmacokinetics, altering the expression of MDR1 via ABCBC1 or even CDX2 [37] may yield a
quantifiable relationship between wild-type cell and d, thus producing a range of drug-sensitive
cell types. Figure 3(a) exhibits a set of dose response curves for representative drug sensitivities
d, for the case of a resistance-inducing drug (α = 10−2).
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Figure 3: Variation in response time tc for a treatment inducing resistance. Constant therapy
u(t) ≡ u is applied for td ≤ t ≤ tc. Induction rate α = 10−2, with all other parameters
as in Table 1. (a) Time until tumor reaches critical size Vc for various drug sensitivities d.
(b) Maximum response time Tα(d) for a treatment inducing resistance. Note that time Tα(d)
increases with drug sensitivity; compare to Figure 4(b) for purely random resistance evolution.

For each of these cell-types, we then define the supremum response time over administered
doses:

Tα(d) := sup
u
{tc(u, d, α)}. (14)

Note that in a laboratory setting, only a finite number of doses will be administered, so that the
above supremum is actually a maximum, but for mathematical precision we retain supremum.
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Thus, we obtain a curve Tα = Tα(d) for each value of the induced resistance rate α. We then
explore the properties of these curves for different α values.

Consider first the case of a phenotype-preserving drug, so that α = 0. As u(t) ≡ u, we
see that the system (4)-(5) depends only on the product of u and d. Hence, the dependence
in (13) becomes of the form tc(u · d, 0), and thus the supremum in (14) is instead across the
joint parameter D := u · d:

T0 := sup
D
{tc(D, 0)}. (15)

Clearly, this is independent of d, so that T0 is simply a horizontal line for α = 0. Qualitatively,
the resulting curve will have no variation among the engineered sensitive phenotypes, save for
experimental and measurement noise. See Figure 4 for both representative curves (Figure 4(a),
comparable to Figure 3(a))) and a plot of T0(d) (Figure 4(b)) verifying its independence of
d. We make two minor technical notes. First, it is important that we assume d > 0 here, as
otherwise D ≡ 0, independent of dose u and the supremum is over a one element set. See below
for more details and the implications for α identifiability. Second, the slight variation for large
values of d is due to numerical error, as the maximum of tc occurs at decreasing dosages (see
SI Section E and Figure S4 for more details).
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Figure 4: Change in critical time tc for differing drug sensitivities in the case of a phenotype-
preserving treatment. (a) Time until tumor reaches critical size Vc for various drug sensitivities
d. Comparable to Figure 3(a), with α = 0. (b) Maximum critical time T0(d). Note that the
curve is essentially constant.

Comparing Figures 3(a) and 4(a), we observe similar properties: small tc for small doses, a
sharp increase about a critical uc, followed by smooth decrease and eventual horizontal asymp-
tote (for mathematical justification, see SI Section E). However, note that for a resistance-
inducing drug, (Figure 3(a)), the maximum critical time Tα(d) increases as a function of d.
This is in stark contrast with the constant behavior obtained for α = 0, argued above and
demonstrated in Figure 4(b). To understand this phenomena further, we plot Tα(d) for a fixed
induction rate α = 10−2 in Figure 3(b). The behavior of this curve is a result of the fact

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/235150doi: bioRxiv preprint 

https://doi.org/10.1101/235150


that the critical dosage uc at which Tα(d) is obtained is a decreasing function of d (see equa-
tion (S16) and Figure S4 in SI Section E). But since uc also controls the amount of resistant
cells generated (via the αu(t)S term), resistance growth is impeded by a decreasing uc. Thus,
as a non-negligible amount of resistant cells are necessary to yield Tα(d), more time is required
for resistant cells to accumulate as d increases. Hence, Tα(d) increases a function of d.

The behavior observed in Figures 3(b) and 4(b) is precisely the qualitative distinction that
could assist in determining the induced resistance rate α. In the case of a phenotype-preserving
drug, the proposed in vitro experiment would produce a flat curve, while a resistance-inducing
drug (α > 0) would yield an increasing function Tα(d). Furthermore, we could utilize this
phenomena to, in principle, measure the induction rate from the experimental Tα(d) curve. For
example, Figure 5(a) displays a range of Tα(d) for α near 10−2.
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Figure 5: Variation in maximum response time for different induction rates α. For details on
computation of Tα(d), see Figure S4. All other parameters given as in Table 1. (a) Plot of Tα(d)
for α near 10−2. (b) Analogous to (a), where α is now varied over several orders of magnitude.
Non-mutagenic case (α = 0) is included for reference.

Figure 5(a) shows a clear dependence of Tα(d) on the value of α. Quantitatively character-
izing such curves would allow us to reverse engineer the induction rate α. However, we note
that in general the precise characteristics will depend on the other fixed parameter values, such
as pr, Vc, and ε. Indeed, only order of magnitude estimates may be feasible; illustrative sample
curves are provided in Figure 5(b). Two such characteristics are apparent from this figure, both
related to the slope of Tα(d). First, as d→ 0+, we observe an increase in the slope of Tα(d) as
α decreases (note that in Figure 5(b), only d ≥ 0.05 are plotted). This follows from continuity
of solutions on parameters and the fact that T0(d) possesses a jump discontinuity at d = 0, i.e.
its distributional derivative is given by

∂

∂d

∣∣∣
d=0

T0(d) = kδ(d), (16)

where δ is the Dirac function, and k is a positive constant. As discussed previously (see (15)
and the subsequent paragraph), T0(d) is flat, except at d = 0 where the vector field contains no
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u dependence. Therefore the set over which the maximum is taken is irrelevant, and T0(d) is
thus proportional to the Heaviside function, which possesses the distributional derivative (16).
The constant k is determined by the size of the discontinuity of T0(d). Continuous dependence
on parameters then implies that as α increases, the resulting derivative decreases away from
positive infinity, since the corresponding derivative for Tα(d) with α > 0 is defined in the
classical sense for α > 0:

∂

∂α

∂

∂d

∣∣∣
d=0

Tα(d) ≤ 0.

The above argument implies that measuring the slope of Tα(d) at d = 0 will give a character-
ization of the phenotypic alteration rate α of the treatment. However, such experiments may be
impractical, as fine-tuning a cell’s sensitivity near complete resistance may be difficult. Alter-
natively, one could analyze the degree of flatness for a relatively large d (so to be sufficiently far
from d = 0) and correlate this measure with α. For example, examining d = 2 in Figure 5(b),
we see that the relative slope of Tα(d) with respect to d should correlate with decreasing α. A
similar argument to the above makes this rigorous, for d sufficiently large. Practical issues still
arise, but this second method does provide a more global method for possibly computing α.
Indeed, slopes at a given d can be approximated by a wider range of secant approximations, as
the result holds for a range of d, as compared to the previously-discussed case when d is near
zero. Furthermore, our focus is largely on the qualitative aspects of α determination (such as
the differences in Figures 3(a) and 4(a)) and determining whether the treatment itself induces
resistance to emerge.

Conclusions and Future Work

In this work, we have analyzed two distinct mechanisms that can result in drug resistance.
Specifically, a mathematical model is proposed which describes both the spontaneous generation
of resistance, as well as drug-induced resistance. Utilizing this model, we contrasted the effect
of standard therapy protocols, and demonstrated that contrary to the work in [48], the rate of
resistance induction may have a significant effect on treatment outcome. Thus, understanding
the dynamics of resistance evolution in regards to the applied therapy is crucial.

To demonstrate that one can theoretically determine the induction rate, we performed
an identifiability analysis on the parameter α, and showed that it can be obtained via a set
of appropriate perturbation experiments on u(t). Furthermore, we presented an alternative
method, utilizing only constant therapies, for understanding qualitative differences between
the purely spontaneous and induced cases. Such properties could possibly be used to design in
vitro experiments on different pharmaceuticals, allowing one to determine the induction rate
of drug resistance without an a priori understanding of the precise mechanism. We do note,
however, that such experiments may still be difficult to perform in a laboratory environment,
as engineering cells with various drug sensitivities d may be challenging. Indeed, this work can
be considered as a thought experiment to identify qualitative properties that the induction rate
α yields in our modeling framework.

Our simple model allows significant insight into the role of random versus induced resistance.
Of course, more elaborate models can be studied by incorporating more biological detail. For
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example, while our two-equation model classifies cells as either sensitive or resistant, not all
resistance is treated equally. Some resistant cancer cells are permanently resistant, whereas
others could transition back to a sensitive state [65]. This distinction may prove to be vitally
important in treatment design. A possible extension of our model is one in which we distinguish
between sensitive cells S, non-reversible resistant cells Rn, and reversible resistant cells Rr:

dS

dt
= r

(
1− V

K

)
S − (εn + εr)S − (αn + αr)u(t)S − du(t)S + γRr, (17)

dRn

dt
= rn

(
1− V

K

)
Rn + εnS + αnu(t)S − dnu(t)Rn, (18)

dRr

dt
= rr

(
1− V

K

)
Rr + εrS + αru(t)S − γRr − dru(t)Rr. (19)

Here V denotes the entire tumor population, i.e.

V := S +Rn +Rr. (20)

In this version of the model, the non-reversible resistant cells Rn can be thought of as
resistant cells that form via genetic mutations. Under this assumption, εn represents the rate
at which spontaneous genetic mutations give rise to resistance, and αn is the drug-induced
resistance rate. This situation can be classified as non-reversible since it is incredibly unlikely
that genomic changes that occur in response to treatment would be reversed by an “undoing”
mutation. Therefore, once cells confer a resistant phenotype through an underlying genetic
change, we assume they maintain that phenotype. This term could also be thought of as
describing resistance that forms via stable epigenetic alterations, or resistance that forms via
some combination of genetic and stable epigenetic changes.

On the other hand, reversible resistant cellsRr denote resistant cells that form via phenotype-
switching, as described in [65]. Random phenotype-switching in the absence of treatment is
captured in the εrS term. This is consistent (and indeed necessary) to understand the experi-
mental results in [65], where a stable distribution of MDR1 expressions is observed even in the
absence of treatment. The αru(t)S term represents the induction of a drug-resistant phenotype.
Phenotype-switching is often reversible, and therefore we allow a back transition from the Rr

compartment to the sensitive compartment at a non-negligible rate γ [65] (see SI Section B.
Formulated in this way, the model can be calibrated to experimental data and we can further
consider the effects of the dosing strategy on treatment response. We plan to further study this
model in future work.

Overcoming drug resistance is crucial for the success of both chemotherapy and targeted
therapy. Furthermore, the added complexity of induced drug resistance complicates therapy
design, as the simultaneous effects of tumor reduction and resistance propagation confound
one another. Mathematically, we have presented a clear framework for differentiating random
and drug-induced resistance, which will allow for clinically actionable analysis on a biologically
subtle, yet important, issue.
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Supporting Information (SI)

The supplement contains additional results and extensions related to the model (1)-(2) pre-
sented in the main text. Sections include details on the mathematical characteristics of solutions
of system (4)-(5), an extension describing the reversibility of drug resistance, treatment regimes
with normalized dosages, details on structural identifiability, and an expanded discussion on
the maximum critical time Tα(d) (see (14)).

A Fundamental Solution Properties of Resistance Model

For convenience, system (4)-(5) is reproduced below:

dS

dt
= (1− (S +R))S − (ε+ αu(t))S − du(t)S, (S1)

dR

dt
= pr (1− (S +R))R + (ε+ αu(t))S. (S2)

We begin with a standard existence/uniqueness result, as well as the dynamical invariance of
the triangular region

T := {(S,R)|S ≥ 0, R ≥ 0, S +R ≤ 1} . (S3)

Note that T represents the region of non-negative tumor sizes below 1. Biologically, this implies
that all solutions remain physical (non-negative) and bounded above by the carry capacity (non-
dimensionalized to 1 here, generally K in (1)-(2)).

Theorem 1. For any bounded measurable control u : [0,∞) → [0, umax], with umax < ∞, and
(S0, R0) ∈ T , the initial value problem (S1)-(S2),

S(0) = S0, R(0) = R0,

has a unique solution (S(t), R(t)) defined for all times t ∈ R. Furthermore, under the prescribed
dynamics, region T is invariant.

Proof. Existence and uniqueness of local solutions follow from standard results in the theory
of differential equations; see for example Theorem 2.1.1 and 2.1.3 in [5]. Since the vector field

F (S,R, t) :=

(
(1− (S +R))S − (ε+ αu(t))S − du(t)S

pr (1− (S +R))R + (ε+ αu(t))S

)
.

is analytic for (S,R) ∈ R2, the existence of maximal solutions defined for all t ∈ R will follow
from boundedness (see Theorem 2.1.4 in [5]), which we demonstrate below.

Uniqueness implies that solutions remain in the first quadrant for all t ≥ 0. Indeed, we first
note that (0, 0) and (0, 1) are steady states for any control u(t). As S = 0 implies that Ṡ = 0,
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we see that the R-axis in invariant, with R(t)
t→∞−−−→ 1. Similarly, R = 0 implies Ṙ ≥ 0, and

hence all trajectories with (S0, R0) ∈ T remain non-negative for all t. As V = S + R satisfies
the differential equation

V̇ = α(t)(1− V )− β(t),

where α(t) := S(t) + prR(t), β(t) := du(t)S(t) are both non-negative, V0 < 1 ⇒ V (t) < 1.
Thus, if the initial conditions (S0, R0) reside in T , we are guaranteed that (S(t), R(t)) ∈ T for
all time t, as desired.

We now prove that asymptotically the cells will evolve to become entirely resistant. For
simplicity, we assume that the tumor is initially below carrying capacity, although a similar
result holds for V0 > 1.

Theorem 2. For any bounded measurable control u : [0,∞) → [0, umax], with umax < ∞, and
initial conditions (S0, R0) ∈ T , solutions of system (S1)-(S2) will approach the steady state
(S,R) = (0, 1):

(S(t), R(t))
t→∞−−−→ (0, 1).

Proof. From Theorem 1, we have that 0 ≤ S(t) +R(t) ≤ 1, so that (S2) implies

dR

dt
≥ 0.

As 0 ≤ R(t) ≤ S(t) +R(t) ≤ 1, R(t) must converge, so that there exists 0 ≤ R∗ ≤ 1 such that

R(t)
t→∞−−−→ R∗.

By uniqueness, for all admissible controls u(t), the line R = R∗ is attracting and invariant, and
thus the corresponding sensitive component S(t) along this line must satisfy

pr (1−R∗ − S(t))R∗ + (ε+ αu(t))S(t) ≡ 0. (S4)

Since ε > 0 and u(t) ≥ 0, and both terms on the left-hand side of (S4) are non-negative, this is
only possible if S(t) ≡ 0, R∗ = 1. Hence the line R = R∗ is in actuality the point (S,R) = (0, 1),

so that (S(t), R(t))
t→∞−−−→ (0, 1) for all (S0, R0) ∈ T , as desired.

B Reversible phenotype switching

In the model analyzed in this work (system (4)-(5)), we assumed that resistance is non-
reversible. However, experiments suggest [64] that phenotypic alterations are generally un-
stable, and hence a non-negligible back transition exists. In this appendix, we demonstrate
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that an extension of our model to include this phenomenon does not change the qualitative
results presented previously, at least for parameter values consistent with experimental data.

To model reversible drug resistance, we include a constant per-capita transition rate from
the resistant compartment R back to the wild cell-type S. Denoting this rate by γ, we obtain
the system

dS

dt
= (1− (S +R))S + γR− (ε+ αu(t))S − du(t)S, (S5)

dR

dt
= pr (1− (S +R))R + (ε+ αu(t))S − γR. (S6)

We first consider an appropriate value of the rate γ. Note that in the absence of treatment
(u(t) ≡ 0), the system becomes

dS

dt
= (1− (S +R))S + γR− εS (S7)

dR

dt
= pr (1− (S +R))R + εS − γR. (S8)

Note that the tumor volume V (t) = S(t) +R(t) satisfies the equation

V̇ = (S + prR)(1− V ), (S9)

which is non-decreasing (recall Theorem 1). This implies that the system approaches a steady-
state (S∗, R∗), which can be easily computed as

(S∗, R∗) =

(
γ

γ + ε
,

ε

γ + ε

)
. (S10)

Note that (S10) lies on the line V = 1.
Pisco and colleagues [64] measure a 1 − 2% subpopulation of clonally derived HL60 cells

which consistently express high levels of MDR1, which we equate with the resistant population
R. Using the 2% upper bound, this then implies that

S∗ = 0.98, R∗ = 0.02. (S11)

Solving equations (S10) with the above values then determines the ratio γ
ε
:

γ

ε
= 49. (S12)

We now repeat the constant vs. pulsed experiments discussed in the main text, but for
the reversible system (S5)-(S6). Parameter values are taken again as in Table 1, and γ is
determined via (S12). Results are presented in Figure S1, and should be compared to Figure 2.
Note that the same qualitative (and indeed quantitative) conclusions hold: constant therapy
improves response time compared to pulsing when α = 0, while the reverse is true for α = 10−2.
Thus, including instability of the resistant cell subpopulation still implies that knowledge of the
resistance-induction rate α for a chemotherapy is critical when designing therapies. We note
that precise agreement of Figures S1 and 2 is due to the small values taken for ε and hence γ.
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Figure S1: Comparison of treatment efficacy for phenotype-preserving (α = 0) and resistance-
inducing (α = 10−2) drugs, where resistance is reversible. Left column indicates treatment
strategy, while right indicates corresponding tumor volume response. Note that the dashed
red line in the right column indicates the tumor volume representing treatment failure, Vc. (a)
Constant and pulsed therapies after tumor detection for α = 0. (b) Responses corresponding
to treatment regimens in (a). (c) Constant and pulsed therapies after tumor detection for
α = 10−2. (d) Responses corresponding to treatment regimens in (c).

C Treatment comparison for equal AUC

Here we provide an analogous comparison of treatment outcomes between constant and pulsed
therapy as in the main text. However, treatment magnitudes uon,c and uon,p are chosen such
that

∫ td+∆ton+∆toff

td

uc(t) dt =

∫ td+∆ton+∆toff

td

up(t) dt, (S13)
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which is equivalent to the conservation of total administered dose between both strategies over a
single pulsing cycle. In (S13), uc(t) and up(t) denote the constant and pulsed therapy schedules,
respectively. The constant therapy magnitude uon,c is fixed (arbitrarily) at 0.5, which by (S13)
implies that uon,p = 5. We also adjust ∆ton = 0.5,∆toff = 4.5, and all other parameter values
remain as in Table 1.
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Figure S2: Treatment dynamics for phenotype-preserving drug (α = 0). Left column indicates
treatment strategy, while right indicates corresponding population response. (a) Constant
treatment after tumor detection. (b) Response to constant treatment. Note that at the time
of treatment failure, the tumor is essentially entirely resistant. (c) Pulsed therapy after tumor
detection. (d) Response to pulsed therapy. Note that the treatment fails much earlier than for
the constant dosage, and that the tumor is primarily drug sensitive.

Results of the simulations are presented in Figures S2 and S2. Note that here Figure S2
displays the results for the phenotype-preserving drug (α = 0), while Figure S3 represents the
resistance-inducing drug (α = 10−2). Each drug is simulated for the two distinct strategies; each
strategy is represented in the left column of the respective figures. The right column illustrates
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Figure S3: Treatment dynamics for resistance-inducing drug (α = 10−2). Left column indicates
treatment strategy, while right indicates corresponding population response. (a) Constant
treatment after tumor detection. (b) Response to constant treatment. Note that at the time of
treatment failure, the tumor is essentially entirely resistant. Similar dynamics to Figure 2(b),
although with a shorter survival time. (c) Pulsed therapy after tumor detection. (d) Response
to pulsed therapy. Note that here, in contrast to case of a phenotype-preserving drug as shown
in Figure S2, pulsed therapy exhibits a longer survival time.

the population response, for both the individual populations (sensitive S and resistant R cells),
as well as for the total tumor volume V = S+R. As previously discussed, treatment is continued
until a critical tumor size Vc is obtained, and the corresponding time tc is utilized as measure
of treatment efficacy, with a larger tc indicating a better response.

Our results are qualitatively in agreement with those presented in the main text (Figure 2),
where no preservation of total administered drug (AUC) was considered. Specifically, we observe
a superior response with constant therapy for the phenotype-preserving drug (α = 0), while
the situation is reversed for the resistance inducing drug (α = 10−2).

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/235150doi: bioRxiv preprint 

https://doi.org/10.1101/235150


D Identifiability analysis

In this section, we provide additional details on the theoretical identifiability of model param-
eters. As mentioned in the main text, all higher-order derivatives at initial time t = 0 may
be calculated in terms of the initial conditions (S(0), R(0)) and the control function u(t). For
example, for an arbitrary system

ẋ(t) = f(x(t), u(t)),

with external control u(t), the second derivative ẍ may calculated using the chain rule:

ẍ = Jf (x, u)f +∇uf(x, u)u̇,

where Jf (x) is the Jacobian matrix of f , evaluated at state x and control u. If x(0) = x0 is
known, the above expression is a relation among parameters, together with u and u̇ evaluated
at time t = 0. An analogous statement holds for a measurable output y = h(x), but will involve
the Jacobian of h as well. Concretely, for the model of induced drug resistance (4)-(5), first
derivatives of the tumor volume may be calculated as

V ′(0) = S ′(0) +R′(0),

= ((1− (S +R))S − (ε+ αu(t))S − du(t)S)

+ (pr (1− (S +R))R + (ε+ αu(t))S)
∣∣∣
t=0
,

= (1− S0)S0 − du(0)S0,

for any control u(t) (recall that R(0) = 0). Similarly, for the second derivative, we compute:

V ′′(0) = S0

(
1−S0 − (ε+ d)u(0)

)(
1− 2S0 − du(0)

)
+ S0

(
αu(0) + ε

)(
pr − S0(1 + pr)

)
− dS0u̇(0).

Using such expressions (or, more precisely, the Lie derivatives of the vector field, see [72]) for the
controls in (8), one is able to obtain a set of equations between the set of Yi, i = 0, 1, . . . , 7 and
the parameters d, ε, pr, and α. Solving these equations allows us to determine the parameters
with respect to the measurable quantities. The algebraic solution is system (9)-(12).

E Analysis of critical time Tα(d)

We provide a qualitative understanding of the properties of Tα(d), the maximum time, across
all constant dosages, for the tumor to reach size Vc. This appendix is designed to explain the
basic properties discussed in the In Vitro Identifiability section of the main text.

We first note that Tα(d) is achieved at a medium dosage uc. More precisely, we describe
the qualitative properties of Figures 3(a) and 4(a). Fix a drug sensitivity d. For small u, the
sensitive subpopulation is not sufficiently inhibited, and hence expands rapidly to cross the
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threshold Vc, with an essentially homogenous population of sensitive cells. Indeed, as u → 0,
the dynamics of (S1)-(S2) approach those of

dS̃

dt
=
(

1− (S̃ + R̃)
)
S̃, (S14)

dR̃

dt
= pr

(
1− (S̃ + R̃)

)
R̃, (S15)

for small finite times, as ε� 1. Trajectories of (S14)-(S15) remain on the curve

R(S) =
R0

Spr0

Spr

as the solution approaches the line S + R = 1. The critical time tc is then determined by the
intersection of this curve with S+R = Vc, and hence has sensitive population Sc at tc given by
the unique solution in the first quadrant of

Sc +
R0

Spr0

Sprc = Vc.

As R0 � 1 (since ε� 1), Sc ≈ Vc, as claimed. Time tc is thus small for small u.
Increasing values of u imply tc to also increase, since the overall growth rate of the sensitive

cells is decreased. However, there exists a critical dose uc such that sensitive cells alone are not
able to multiply sufficiently to attain Vc, so that the critical volume must have non-negligible
contributions from the resistant fraction. This then leads to the bifurcation apparent in Fig-
ures 3(a) and 4(a). We can even approximate the critical dosage maximizing tc, as Vc must be
an approximation for the carrying capacity of the sensitive cells:

SK ≈ Vc.

By examining the right-hand side of (S1), and assuming that the dynamics of the resistant
population are negligible (which is accurate in the early stages of treatment; see Figures 2(b)
and 3(b)) we see that the dose yielding the maximum temporal response should be

uc ≈
1− ε− Vc
α + d

. (S16)

That is, the dosage where Tα(d) is obtained is given approximately by the expression in (S16).
For a sample numerical comparison of the predicted formula (S16) and a numerical optimization
over a range of drug sensitivities d, see Figure S4. Note that in actuality, SK < Vc, as the
resistant dynamics cannot be ignored entirely. Thus, the precise value of uc will be smaller
than that provided in the previous formula, as we numerically observe. Lastly, uc decreases
with increasing values of parameter d, and thus requires an increasingly fine discretization to
numerically locate the maximum value. Hence, some numerical error is observed in Figure 4(b).
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Figure S4: Dose yielding maximal response time Tα(d) computed numerically, as well as the
approximation given by (S16). All parameters appear as in Table 1, and α = 10−2. The
numerical maximum is computed over a discretization of constant dosage procedures u(t) ≡ u,
for u ∈ [0, 5], with a mesh size ∆u = 0.005.

Lastly, as u is increased further, the dosage becomes sufficiently large so that the inhibition
of S via therapy implies that S cannot approach the critical volume Vc, and hence Vc is again
reached by an essentially homogeneous population, but of resistant cells. Since resistant cells
divide at a slower rate (pr < 1), the corresponding time tc is smaller. For a schematic of the
three regimes described above, see Figure S5.
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Figure S5: Schematic demonstrating dynamics of variation in tc on dosage u. Sensitive cell
population plotted as a function of time, for three representative doses. For u < uc, sensitive
cells grow and reach Vc in a short amount of time. As u → u−c , the sensitive population
approaches its approximate carrying capacity of Vc, but subsequently decreases due to the
dynamics of resistance. Here tc is maximized, as the sensitive population spends a large amount
of time near Vc. For u > uc, the sensitive population is eliminated quickly, and Vc is obtained
by a primarily resistant population.
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