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Abstract

Understanding the historical events that shaped current genomic diversity has applications in histor-
ical, biological, and medical research. However, the amount of historical information that can be inferred
from genetic data is finite, which leads to an identifiability problem. For example, different historical
processes can lead to identical distribution of allele frequencies. This identifiability issue casts a shadow
of uncertainty over the results of any study which uses the frequency spectrum to infer past demogra-
phy. It has been argued that imposing mild ‘reasonableness’ constraints on demographic histories can
enable unique reconstruction, at least in an idealized setting where the length of the genome is nearly
infinite. Here, we discuss this problem for finite sample size and genome length. Using the diffusion
approximation, we obtain bounds on likelihood differences between similar demographic histories, and
use them to construct pairs of very different reasonable histories that produce almost-identical frequency
distributions. The finite-genome problem therefore remains poorly determined even among reasonable
histories. Where fits to few-parameter models produce narrow parameter confidence intervals, large
uncertainties lurk hidden by model assumption.

1 Introduction

Genetic variation across individuals contains information about the evolutionary and demographic history
of populations. A simple and efficient summary statistic of genomic variation commonly used in inference
studies of population demography is the allele frequency spectrum, describing the proportion of segregating
sites as a function of the population frequency of the derived allele [1, 2, 3, 4, 5, 6]. Several computational
models have been proposed to reconstruct historical population sizes that are consistent with observed
allele frequency spectra [7, 8, 9, 10, 11, 12, 13]. Under the assumption of a neutral Wright-Fisher model,
these inferred histories are often taken to be representative of the effective historical population sizes [14,
15, 16, 11, 17]. They are also used as baseline models to identify regions under selection [18, 19, 20] and
to predict patterns of deleterious variation in human genomes [21, 22, 23].

However, Myers et al. [24] showed that the solution to this inference problem is not unique. To illustrate
this, they constructed a family of distinct demographic histories whose frequency spectra under neutral
Wright-Fisher evolution are identical for any sample size. This poses a serious practical challenge, since a
demographic model that fits well the observed neutral diversity is not guaranteed to be historically accurate
or to provide an appropriate model for deleterious variation.

On the other hand, Bhaskar and Song [25] have argued that the families of demographic models con-
structed by Myers et al. are not biologically realistic, because they require historical population sizes that
oscillate on arbitrarily short time-scales. They proved that we can uniquely reconstruct the underlying
demography from the allele frequency spectrum if (i) we limit our search to historical population sizes
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that are piecewise-continuous functions of time with a given maximum number of oscillations, (ii) we have
enough samples, and (iii) we assume an infinitely long genome [25].

Refs [24, 25] are both correct, but they send different messages regarding the reliability of inferred
histories. Does the problem of identifiability raised by [24] bear on applied inference, or should it be
considered a purely theoretical result about a class of pathological functions with little biological relevance?

In this article, we seek to resolve this question by addressing the identifiability problem in more realistic
scenarios where both sample size and genome length are finite. Recent work by Terhorst and Song [6] has
started to address this question by providing strict bounds on the accuracy of demographic inference based
on the allele frequency spectrum. In particular, they have focused on the possibility of reconstructing
history prior to a bottleneck, which is challenging because of the lost diversity (and thus lost information)
during the bottleneck.

Extending this work to situations with arbitrary demographies, we argue that the problem remains
poorly determined, even without bottlenecks, in the sense that vastly different population histories can
produce statistically indistinguishable allele frequency spectra. Ancient history differences are most difficult
to detect, as expected, but we also explain how the approach of Myers et al. can be modified to construct
well-behaved, practically indistinguishable histories with somewhat more recent differences.

Our arguments are based on two simple observations. First, similar histories should produce similar
frequency spectra. Second, the Myers et al. family of functions may exhibit infinitely fast oscillations, but,
given the extremely small amplitude of these oscillations, they can be replaced by smooth, non-oscillating
functions with tiny effect on the frequency spectrum. Thus macroscopically different histories can produce
microscopic differences in the frequency distribution. These small differences could in principle be detected
given an infinitely long genome, as per the Bhaskar and Song result, but they could not be detected given
a finite genome of realistic length. To prove this, we first produce upper bounds on the differences between
frequency spectra produced by two similar demographic models, and on the likelihood ratio between the
two models given an observed frequency spectrum. Using these bounds and the family of functions given by
Myers et al., we construct a family of plausible demographic histories that are very distinct but practically
indistinguishable.

The main practical message from this study is that any demographic inference study based on the
frequency spectrum must have large zones of uncertainty. These can be detected, in principle, by exploring
the likelihood surface over the space of all possible functions. However, most inference studies use few-
parameter demographic models and estimate parameter uncertainties assuming that these models are
correct. In such studies, an excellent fit with small parameter uncertainties can still mask a model that is
completely wrong.

This paper is organized as follows. We present an intuitive discussion regarding identifiable demogra-
phies in Sec. 2, discussing the properties of the construction of Myers et al. [24]. In Sec. 3, we provide
the preliminary theory necessary for our analysis. We formally derive a bound on the change in the allele
frequency spectrum due to a change in the population size history in Sec. 4, both for infinite and finite
genome length, and discuss the relationship with Terhorst and Song [6].

2 The diffusion approximation and the identifiability problem

The evolution of the allele frequency spectrum P (y, t) for a large randomly mating population with Wright-
Fisher reproduction can be modeled through a diffusion process [26], which we write as

∂

∂t
P (y, t) =

1

2

∂2

∂y2

[
y(1− y)

2N(t)
P (y, t)

]
+ 2N(t)µ δ

(
y − 1

2N(t)

)
(1)

where 0 < y < 1 is the allele frequency in the population, µ is the mutation rate per generation, N(t) is
the size of the population at time t (measured in generations), and δ(·) is the Dirac delta function. We
assume that the population size is large enough that the frequency y can be approximated by a continuous
variable. In this formulation, the first term on the right-hand side describes the effect of genetic drift and
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Figure 1: Two examples of a function which can be used to construct histories with identical frequency
spectra. The present time is at τ = 0, whereas τ > 0 denotes the past. Left panel: The function F2(τ)
constructed by Myers et al. to illustrate the non-identifiability problem. Right panel: The function F3(τ)
discussed here. The insets show close-ups of the behavior of the corresponding functions near the present
time.

the second describes that of new mutations entering the population with initial frequency 1/2N(t). The
diffusion equation can also be written in “genetic” or “diffusion” time, τ(t) =

∫ t
0 dt

′/2N(t′), in which drift
occurs at a constant rate, i.e.,

∂

∂τ
P (y, τ) =

1

2

∂2

∂y2

[
y(1− y)P (y, τ)

]
+
[
2Ñ(τ)

]2
µ δ

(
y − 1

2Ñ(τ)

)
(2)

where Ñ(τ) = N(t(τ)).
The frequency spectrum P (y, τ) depends on Ñ(τ) and therefore contains information about the pop-

ulation size history. The problem of identifiability of demographic histories, raised by [24], is that two
different histories Ñ1(τ) and Ñ2(τ) can lead to identical frequency spectra. Concretely, Myers et al. [24]
considered functions Ñ2(τ) of the form

Ñ2(τ) = Ñ1(τ) + αN0 F (τ) (3)

where α is a constant and N0 denotes the current population size. They showed that histories Ñ1(τ) and
Ñ2(τ) would lead to identical allele frequency spectra if the function F (τ) obeys∫ ∞

0
F (τ) e−λiτdτ = 0 with λi = (i+ 1)(i+ 2)/2 for i ∈ {0, 1, 2, . . . }. (4)

They also showed that such functions exist and constructed an example, F2(τ) =
∫ τ

0 f0(τ − x)f1(x)dx
where f0(τ) = exp(−1/τ2) and f1(τ) =

[
cos(π2/τ) exp(−τ/8)

]
/
√
τ , which is displayed in the left panel of

Fig. 1 (they set α = −9 to ensure that Ñ2(τ) is strictly positive). Since Ñ2(τ) cannot be distinguished
from Ñ1(τ) based on the allele frequency spectrum, the inference problem is poorly determined.

However, Bhaskar and Song [25] pointed out that adding multiples of F2(τ) to any smooth history
Ñ1(τ) leads to unrealistic population histories that oscillate increasingly rapidly as τ → 0+. In fact, they
showed that any function satisfying Eq. (4) must exhibit an infinite number of sign changes. As such,
any population size history function constructed by linear combinations of F (τ) is biologically unrealistic.
They further proved that there is a unique solution to the inference problem in a very general class of
realistic model functions. Thus, their argument offers the reassuring message that histories can, in fact,
be uniquely reconstructed if we limit ourselves to biologically plausible histories and have sufficient data.

But how much data do we need? The oscillations near τ = 0 in F2(τ) are so small that they are
barely noticeable in the inset within the left panel of Fig. 1 [for example, F2(τ = 0.5) ∼ 10−12]. It
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seems unlikely that these minuscule oscillations are relevant to our ability to reconstruct demographic
histories. We expect (and show below) that replacing unrealistic small-amplitude oscillations by a realistic
constant value would have an insignificant effect on the resulting spectrum. The resulting history is very
different from a constant-sized history but would produce a nearly identical spectrum. If we formulate the
inference problem in terms of model likelihoods, the Myers et al. construction shows that the likelihood
surface is exactly flat along some directions in the space of all histories. Bhaskar and Song show that such
flat directions are not present in the space of “reasonable” histories. We show below that the Myers et
al. construction indicates the existence of almost-flat directions in the space of reasonable histories. For
this reason, we cannot practically reconstruct history from the finite frequency spectrum alone.

The existence of almost-flat likelihood directions is not particularly surprising. Very ancient events
are expected to leave few traces in the present-day allele frequency spectrum, and we cannot hope to
reconstruct them from finite genetic data. In fact, the expansions and bottlenecks in the construction
of Myers et al. (which are visible in the left panel of Fig. 1 and on Fig. 3) are ancient enough (tens of
thousands of generations ago in a population of size 10,000) that they would have no statistically discernible
individual effect on the present spectrum (see Appendix C).

To investigate whether the Myers et al. construction can provide us with ‘unexpected’ flat directions in
the likelihood surface, we consider another instance of F (τ) with larger-amplitude oscillations near τ = 0
and a more recent strong bottleneck, while still satisfying the orthogonality condition given in Eq. (4). We
construct this function by following the prescription of Myers et al. [24] and performing the convolution of
f1(τ) given above with f0(τ) = 1− exp

[
− 25(τ − 1

2)2
]
, i.e.,

F3(τ) =

∫ τ

0

(
1− exp

{
− 25

[
(τ − x)− 1

2

]2}) cos(π2/x) exp(−x/8)√
x

dx . (5)

The function F3, depicted in the right panel of Fig. 1, has more prominent oscillations closer to the present
time (τ = 0) compared to F2(τ) constructed by Myers et al., as can be seen in the two insets. For example,
F3(τ = 0.5) ∼ 10−2 whereas F2(τ = 0.5) ∼ 10−12.

To investigate the measurable effect of the fine-scale oscillations on the expected frequency spectrum,
we first consider the piecewise-continuous function

F3c(τ) =

{
0 for τ ≤ c
F3(τ) for τ > c

(6)

where we have introduced a cutoff c < 1 to remove the high-frequency oscillations near present in F (τ)
given by Eq. (5). We numerically study the effect of this cutoff on the allele frequency spectrum. We use
∂a∂i [3] to compare the simulated expected allele frequency spectra of two demographies, one given by a
constant population size

Ñconst(τ) = N0 (7)

and one constructed using the truncated function defined in Eq. (6),

Ñ3c(τ) = N0 [1− 5F3c(τ)]. (8)

By construction, histories Ñconst(τ) and

Ñ3(τ) = N0 [1− 5F3(τ)] (9)

produce identical expected frequency spectra. Moreover, histories Ñ3(τ) and Ñ3c(τ) differ only for 0 ≤ τ ≤
c, the region dominated by the infinitely fast but small-amplitude oscillations. Given the small difference
between these two population size histories, we expect the difference between the frequency spectra to
be small as well. Fig. 2 shows simulated differences for different values of cutoff c. The left panel shows
the expected allele frequency spectrum, highlighting the fact that different values of c produce practically
indistinguishable frequency spectra, whereas the right panel depicts the relative change in the expected
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Figure 2: The effect of the cutoff c on the allele frequency spectrum, for c ∈ {0.5, 0.4, 0.3, 0.2, 0.1}. Simula-
tions are done with ∂a∂i for a sampled population of size 400, and the plots are in log-log scale. Left panel:
Practically identical allele frequency spectra of population histories Ñc(τ) given by Eq. (8) for different
values of c shown above. Right panel: Relative difference in the frequency spectra of Ñc(τ) and Ñconst(τ)
(that is, |Pc − Pconst| /Pconst) for different values of c.

frequency spectrum as a result of the introduction of the cutoff threshold. As expected, decreasing the
value of c lead to smaller relative errors.

By eliminating the highly oscillatory part of the demographic model introduced in Ref. [24], one there-
fore arrives at a history which is biologically plausible and which leads to an allele frequency spectrum that
is almost indistinguishable from that of the original history. To investigate whether such small differences
could nevertheless allow for model identification given a large enough sample size, we next obtain analytical
upper bounds on the difference in likelihoods between histories that are close enough to each other. Using
this bound, we generalize the process described above to construct biologically realistic but very different
histories that produce practically indistinguishable histories.

Given a realistic demographic history Ñ1(τ), we use the prescription of Myers et al. to generate a
new history Ñ3(τ) whose allele frequency spectrum is identical to that of Ñ1(τ). We then construct a
biologically realistic history Ñ3c(τ) such that |Ñ3c(τ) − Ñ3(τ)| < ε Ñ3(τ) for all τ and a small ε. Finally,
we use the bounds derived below to guarantee that Ñ3c(τ) is practically indistinguishable from Ñ1(τ) for
arbitrary sample sizes.

3 Solving the diffusion equation

Before deriving the bounds discussed above, we first provide theoretical background and an overview of
the derivation of Myers et al. in Ref. [24] which will form the basis of our calculations.

To solve the diffusion equation, we first consider K(y, τ1|x, τ0), the probability density that an allele
whose frequency was x at a time τ0 has frequency y at a later time τ1. In other words, K(y, τ1|x, τ0) is the
Green’s function for Eq. (2) and, therefore, satisfies

∂

∂τ1
K(y, τ1|x, τ0) =

1

2

∂2

∂y2

[
y(1− y)K(y, τ1|x, τ0)

]
+ δ(y − x)δ(τ1 − τ0) (10)

for 0 < x, y < 1. The solution to this equation is given by [26, 24]

K(y, τ1|x, τ0) = Θ(τ1 − τ0)x(1− x)

∞∑
i=0

Ji(x)Ji(y)

Xi
exp[−λi(τ1 − τ0)] (11)
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where Θ(·) is the Heaviside step function, λi = (i+1)(i+2)/2, and Ji(·) are expressed in terms of the Jacobi

polynomials as Ji(x) = P
(1,1)
i (2x − 1) and are orthogonal according to

∫ 1
0 x(1 − x)Ji(x)Jj(x)dx = Xi δij

with Xi = (i+ 1)/[(i+ 2)(2i+ 3)]. Because K(y, τ1|x, τ0) is the Green’s function for Eq. (2), one can write
the solution to Eq. (2) as

P (y, τ1) =

∫ 1

0
dx

∫ ∞
−∞

dτ0

{
µ
[
2Ñ(τ0)

]2
δ

(
x− 1

2Ñ(τ0)

)}
K(y, τ1|x, τ0)

=

∫ ∞
−∞

dτ0 µ
[
2Ñ(τ0)

]2
K
(
y, τ1

∣∣1/[2Ñ(τ0)], τ0

)
. (12)

In other words, the present-day frequency spectrum can be obtained by integrating contributions from
mutations that appeared at time τ0.

To proceed further, following Myers et al. [24], one can Taylor expand K(y, τ1|x, τ0) around x = 0 to find
K(y, τ1|x, τ0) = xQ(y, τ1 − τ0) Θ(τ1 − τ0) +O(x2) for small x where Q(y, τ) =

∑∞
i=0[Ji(0)/Xi]Ji(y) e−λiτ .

Therefore, assuming a large population size (i.e., minτ0 [Ñ(τ0)]� 1) leads to

P (y, τ1) ' 2µ

∫ τ1

−∞
dτ0 Ñ(τ0)Q(y, τ1 − τ0). (13)

To simplify notation, we now measure time backwards from present (that is, τ1 = 0 and τ0 = −τ),
define P (y) = P (y, τ1 = 0), consider the rescaled population size ñ(τ) = Ñ(−τ)/N0, and, without loss of
generality, measure the frequency spectrum in units of 2µN0. Hence, Eq. (13) becomes

P (y) =

∫ ∞
0

dτ ñ(τ)Q(y, τ). (14)

This is equivalent to Eq. (13) of Ref. [24], which defined the frequency spectrum up to an arbitrary constant.
Using the expansion of Q(y, τ), one finds P (y) =

∑∞
i=0 diJi(y) where

di =
Ji(0)

Xi

∫ ∞
0

ñ(τ) e−λiτdτ. (15)

For example, a population with constant size N0 has P (y) = 2/y and di = 2Ji(0)(2i+ 3)/(i+ 1)2.
The function F2(τ) defined in Ref. [24] was designed to ensure that the coefficients {di}, and therefore

the frequency spectrum, are unaffected by the change in population history shown in (3). This condition
leads to orthogonality condition (4) and the identifiability problem. In the next section, we investigate
what happens when condition (4) is met only approximately, as happens when we construct a smoothed
version of function F (τ).

4 Bounds on the change in the frequency spectrum and likelihood

We now bound the difference between two allele frequency spectra resulting from two different histories.
Consider two histories, given by ñ′(τ) and ñ(τ), and their resulting frequency spectra, P ′(y) and P (y)
respectively. Using Eq. (14), we can write

P ′(y)− P (y) =

∫ ∞
0

dτ
[
ñ′(τ)− ñ(τ)

]
Q(y, τ) (16)

for the difference between the two allele frequency spectra. Let δñ(τ) = ñ′(τ)− ñ(τ) denote the difference
between the two histories. Because Q(y, τ) ≥ 0, we find

∣∣P ′(y)− P (y)
∣∣ =

∣∣∣∣∫ ∞
0

dτ δñ(τ)Q(y, τ)

∣∣∣∣ ≤ ∫ ∞
0
|δñ(τ)|Q(y, τ) dτ. (17)
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Figure 3: Population history Ñ2(τ) derived by Myers et al. (red, smooth) and its piecewise-constant
approximation Ñpw

2 (τ) (black, piecewise-defined) with p = 35 pieces. Physical times corresponding to the
indicated genetic times are presented in units of 2N0 generations. The time axis is not linear in physical
time.

If there exists a small ε for which
|ñ′(τ)− ñ(τ)| < ε ñ(τ) (18)

for all τ ≥ 0, then ∣∣P ′(y)− P (y)
∣∣ < εP (y). (19)

Therefore, ε also determines the upper bound on the difference between the two frequency spectra.
As an example, define F pw

3 (τ) to be an approximation of the function F3(τ) by p piecewise-constant
segments for τ > c and set F pw

3 (τ) = 0 for τ ≤ c where c is an arbitrary, small number. Then consider
the population size history given by the function Ñpw

3 (τ) = N0 [1 − 9F̃ pw
3 (τ)]. This approximates the

original model of Myers, and the approximation can be made arbitrarily accurate by choosing a large
but finite number of pieces et al. (see Fig. 3). Equation (19) tells us that the allele frequency spectrum
from the approximate, piecewise-constant history can be made arbitrarily close to the history constructed
by Myers et al. and, therefore, and thus also close to that of a history with constant population size.
In short, we have shown that two biologically reasonable but very distinct histories Ñconst(τ) = N0 and
Ñpw

3 (τ) = N0 [1 − 9F̃ pw
3 (τ)], which belong to the same piecewise-constant family of functions and whose

difference has a finite number of sign changes, lead to very similar allele frequency spectra. Our ability
to detect the differences in the two spectra will therefore depend on the sample size and the length of the
genome.

For a finite sample of size M and an infinite genome, the expected allele frequency spectrum becomes

φM,i =

∫ 1

0

(
M

i

)
yi(1− y)M−iP (y) dy for i ∈ {1, 2, . . . ,M − 1} (20)

with φM,i representing the number of loci where i out of M chromosomes in the sample have a derived
allele. For a finite genome with S unlinked polymorphic loci in the sample of size M , we can compute a
likelihood by assuming that allele frequencies are distributed according to the Poisson distribution [27, 3].
The likelihood L({φM,i}) of the frequency spectrum (and of the history that generated it) equals the
probability distribution for the observed allele frequencies spectrum {mi}:

L({φM,i}) = pM,S({mi}|{φM,i}) =
M−1∏
i=1

e−φM,i (φM,i)
mi

mi!
(21)
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where S =
∑M−1

i=1 mi is the number of segregating sites.
Armed with this result, we can compare the likelihoods of two models originating from two very close

population size histories.
First, we calculate a bound on the change in the expected finite–sample allele frequency spectrum for

any two histories that are similar according to condition (18). We write the change in the allele frequency
spectrum as δφM,i = φ′M,i − φM,i =

∫ 1
0

(
M
i

)
yi(1− y)M−i

[
P ′(y)− P (y)

]
dy. Using Eq. (19), we find

|δφM,i| < εφM,i. (22)

Equations (22) and (19) provide tight bounds, since there exist two population size histories that fulfil
these bounds, namely ñ′(τ) = (1 + ε) ñ(τ) and ñ′(τ) = (1 − ε) ñ(τ). These bounds follow from the fact
that finite and infinite-sample frequency spectra can be computed as integrals of the population history
function with a positive kernel.

To compute the bound in likelihood differences between two models, we want to use the fact that one
of the spectra φM,i is optimal, in the sense that it is expected according to the maximum-likelihood history
ñ(τ). Technically, we further require that ñ(τ) is not on the boundary of allowed histories, in the sense
that, for γ small enough, ñ(τ)± γ(ñ′(τ)− ñ(τ)) are acceptable histories, and thus with a likelihood worse
than that of ñ(τ).

Under these conditions, Appendix A shows that the difference in likelihood obeys the tight bound

|δ lnL| < 1

2
Sε2 +O

(
ε3
)
. (23)

The same result holds if we use a multinomial distribution for allele frequencies rather than a Poisson
random field (see Appendix B).

Because ñ(τ) maximizes the likelihood, the quadratic form of the bound was expected. However, the
prefactor allows for specific predictions. Suppose that the maximum-likelihood estimate is the constant
population size Ñconst(τ) = N0 (i.e., ñ(τ) = 1). We ask whether this can be distinguished from the history
Ñ3c(τ) obtained by removing the recent fast oscillations from Ñ3(τ) up to c = 0.028556. The expected
number of segregating sites for a sample of size M according to the constant history is S ' 4µN0 lnM.

The difference in population size history provided induced by the flattening corresponds to ε = 10−4.
To determine whether Ñconst(τ) and Ñ3c(τ) are distinguishable, we consider |δ lnL| ∼ 2 as the minimal

difference in likelihood to enable reliable distinction between the two models. Assuming a uniform prior
on the constant and variable models, P (Ñconst(τ)) = P (Ñ3c(τ)) = 1

2 , a Bayesian estimate for model

posteriors is bounded as 1
1+e|δ lnL|

≤ P (Ñ3c(τ)|m) ≤ 1
1+e−|δ lnL|

. In other words, |δ lnL| < 2 means that

0.12 ≤ P (Ñ3c(τ)|m) ≤ 0.88: If Ñ(τ) = N0 is the maximum likelihood estimate, we cannot rule out
Ñ(τ) = Ñ3c(τ).

Taking |δ lnL| ∼ 2 as the measure of a detectable change in the log-likelihood and using a genome-wide
mutation rate of µ ' (1.4×10−8 bp−1gen−1)×(3.6×109 bp) = 50 gen−1 [11], we find that for N0 = 10,000,
the sample size M needed to distinguish these two models is approximately 1043, which is much larger than
the current human population size. Similarly, given a sample of size of the entire population of 10,000 and
a per-locus mutation rate of 1.4× 10−8 bp−1gen−1, we would need a genome with length L > 3.8× 1010 to
identify the two spectra. This is longer than the human genome. There simply is not enough data in the
human genome to allow us to resolve the difference between the two models, leaving aside the fact that for
such large sample sizes and small effects, failures of the diffusion approximation might have a much larger
effect than the differences that we are trying to detect between the population histories [28].

4.1 Comparison with the findings of Terhorst and Song

Terhorst and Song also proposes bounds on identifiability with finite genomes [6] and bounds on identifiabil-
ity that are independent of sample size. Specifically, it shows that any estimator of the demographic history
that is based on the frequency spectrum has an expected worst-case error proportional to 1/ log(S), i.e.,
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there exists a demographic history ñ(τ) for which the expected τc-truncated error Eñ
[∫ τc

0 |n̂(τ)− ñ(τ)|dτ
]

between the true history and inferred history n̂(τ) is proportional to 1/ logS. In a sense, this appears to
be stricter and more pessimistic than our bound: for a given difference in likelihood, our detectable error
threshold scales as 1/

√
S, which decreases much faster in a long genome.

The bounds have quite different interpretation, however: we are asking about the best we can possibly
do, whereas Ref. [6] considers the worst-case scenario. In other words, we show that any two histories
within an error range are indistinguishable, whereas Ref. [6] shows that there exist histories which are
indistinguishable for a given error threshold.

This is an important difference. The 1/ logS bound relies on constructing a set of histories that
change with S by assuming the existence of a historical bottleneck whose size ε decreases as 1/ log(S).
Intuitively, a tighter bottleneck limits our ability to see through the bottleneck into previous history by
reducing observable diversity. In fact, we can use the Terhorst and Song formalism to obtain even more
conservative bounds by making the bottleneck size ε decrease faster than 1/ log(S). At that rate, the
amount of information lost to the narrower bottleneck will not be compensated for fast enough by the
increasing S. Thus differences in histories prior to the bottleneck can be made practically unconstrained
for a given S. In the Terhorst and Song notation, we could choose δ = (M − ε)/J in their Equation 21,
then make ε arbitrarily small (specifically, for an arbitrarily small constant ν, we can choose ε small enough
such that sJ δ

ε log(2)e
−τB/ε < ν ), leading to a bound

inf
η̂

sup
η∈FIJ

Eη||η̂n,s − η||1,T ≥
τAM(1− 8(1+ν)

J )

16
,

where τ , M and J are parameters defining the family of functions considered in Ref. [6]. Selecting J ≥ 9,
and ν � 1, this bound is positive and independent of S. It is also stricter than the 1/ log(S) bound of
Terhorst and Song. The 1/ logS convergence of Ref. [6] is therefore correct, but a consequence of the
particular choice of the scaling of the bottleneck size. In general, worst-case bound are dominated by
unconstrained histories with very tight bottlenecks. It is not clear that these are the most relevant for
practical inference.

Ref. [6] also presents, in Theorems 4 and 7, bounds given a fixed bottleneck size, which are more readily
compared with the bounds presented here. In that case, the bound on the expected error decreases as 1/S.
Thus this minimax bound from [6] is less strict for long genomes than the best-case bound presented here,
while being valid for a much wider range of estimators. There are many differences in the specific families
of functions and estimators and the bounding strategies presented here and in [6] that could explain this
difference in convergence rate.

From a practical perspective, the bound obtained here does provide a simple, clear, and practical
bound for likelihood-based estimation which we could use directly to estimate the possible effect of minor
fluctuations in population histories.

5 Conclusion

Demographic histories inferred from genetic data help us understand human history, evolution, and the
distribution of deleterious variants. For this reason, unacknowledged errors in inference can lead to flawed
conclusions in many downstream interpretations. The work of Myers et al. highlighted an uncontrolled
source of potential error and led to more cautious interpretation of demographic inference studies [25, 5, 6].
However, it did not provide a strategy to quantify or limit this uncertainty. Bhaskar and Song [25] suggests
that the uncertainty may not be as large as suggested by Myers et al., once we limit our attention to
biologically realistic functions.

Even though the limitation to biologically realistic functions does resolve the identifiability problem
in an idealized setting, we showed that it has little bearing on practical inference; because the genome
is finite, we still do not have the statistical power to distinguish between vastly different histories. The
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work of Bhaskar and Song (and that of Terhorst and Song [6]) provides, in principle, a systematic way of
assessing the uncertainty by considering very general families of possible histories. This is computationally
demanding, however, and many studies continue to consider histories parameterized by a small number of
parameters.

The main practical message from the present work is that is any inference that identifies a demographic
history with high precision based on human data must rely on strong implicit or explicit assumptions, and
is missing out smooth, biologically realistic alternatives. Low parameter uncertainties should be taken
as a warning sign rather than a reassurance that uncertainties have been taken into account. To ensure
that downstream analyses do not depend strongly on these uncertainties, validation over multiple histories
consistent with the data is necessary.
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A Bounds on the change in log-likelihood: Poisson formulation

In this section, we derive the change in log-likelihood of a demographic model as a result of a change
in the population size history. Given the allele frequency spectrum P (y), the expected allele frequency
spectrum in a sample of M individuals is φM,i =

∫ 1
0

(
M
i

)
yi(1 − y)M−iP (y) dy for i ∈ {1, 2, . . . ,M − 1}.

In a finite genome with S =
∑M−1

i=1 mi unlinked polymorphic loci in the sample of size M , we assume
that the probability of observing frequency distribution {mi} is a product of Poisson distributions, i.e.,

pM,S({mi}|{φM,i}) =
∏M−1
i=1

e
−φM,i (φM,i)

mi

mi!
where

∑M−1
i=1 mi = S, the number of segregating sites. We

write the difference in log-likelihood between the two models as

δ lnL = ln pM,S({mi}|{φ′M,i})− ln pM,S({mi}|{φM,i})

=

M−1∑
i=1

[(
−1 +

mi

φM,i

)
δφM,i −

1

2

mi

(φM,i)2
(δφM,i)

2 +O
(

(δφM,i/φM,i)
3
)]
. (24)

We now assume that φM,i is the frequency spectrum obtained by maximizing the likelihood function
L with respect to the model ñ(τ); in other words, we compute the change in likelihood for models close
to the maximum likelihood model. We wish to use this condition to set the linear term in δφM,i to zero.
To this end, first note that φM,i is a linear functional of ñ(τ): we can relate finite changes δñ(τ) in the
demographic model to changes {δφM,i}i=1,...,M in the frequency spectrum as

δφM,i =

∫
δφM,i

δñ(τ)
δñ(τ)dτ (25)

where the functional derivative

δφM,i

δñ(τ)
=

∫ 1

0
dy

δφM,i

δP (y)

δP (y)

δñ(τ)
=

∫ 1

0
dy

(
M

i

)
yi(1− y)M−iQ(y, τ) (26)

is independent of δñ(τ).

If the linear term
∑M−1

i=1

(
−1 + mi

φM,i

)
δφM,i is not zero, we can construct a history ñ(τ) + γδñ(τ), for

a small constant |γ| ≤ 1, with a better likelihood than ñ(τ). This is a contradiction, and the linear term
must be zero, unless the history ñ(τ) + γδñ(τ) is not a valid demographic model. This can happen if
ñ(τ) is constrained at the boundary of allowed histories, for example if ñ(τ0) = 0 for some τ0, or if the
space of allowed ñ(τ) is nonlinear such that two histories can be close to each other without intermediate
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histories being allowed. Our result therefore requires that histories of the form ñ(τ) + γδñ(τ) are valid for
γ sufficiently small.

Assuming that this condition is respected, we have
∑M−1

i=1

(
−1 + mi

φM,i

)
δφM,i = 0 and we can write

δ lnL = −1

2

M−1∑
i=1

mi

[(
δφM,i

φM,i

)2

+O
(

(δφM,i/φM,i)
3
)]

. (27)

Therefore, we find

|δ lnL| ≤ 1

2

M−1∑
i=1

mi

[(
|δφM,i|
φM,i

)2

+O
(

(|δφM,i| /φM,i)
3
)]

(28)

which, with Eq. (22) and the definition of S, becomes

|δ lnL| < 1

2
Sε2 +O(ε3). (29)

Here S =
∑

imi is an observed random variable and the result holds independently of the particular
random realization of the mi. A similar bound can be obtained using Fisher Information:

A.1 Fisher Information estimate of parameter variance

If we parameterize the demographic history as nλ(τ) = ñ(τ)+λ(ñ′(τ)− ñ(τ)), we can estimate the variance
of parameter λ using Fisher’s information matrix

Iλ = Eλ

[(
∂ lnL
∂λ

)2
]
,

where the expectation is taken at fixed λ over the possible observations.
Computing derivatives as above, and using the assumption that the mi are independent with mean and

variance φM,i, we find

Iλ=0 = Eλ

(∑
i

(−1 +
mi

φM,i
)
∂φM,i

∂λ

)2


=
∑
i

Eλ

[
(−1 +

mi

φM,i
)2

](
∂φM,i

∂λ

)2

=
∑
i

Eλ
[
(mi − φM,i)

2
] 1

φ2
M,i

(
∂φM,i

∂λ

)2

=
∑
i

1

φM,i

(
∂φM,i

∂λ

)2

(30)

Since φ is a linear functional of ñ(τ) and a linear function of λ, we find
∂φM,i
∂λ = δφM,i, the difference

in frequency spectra generated by histories ñ′(τ) and ñ. Thus

Iλ=0 =
∑
i

φM,i

(
δφM,i

φM,i

)2

By virtue of Equation (22), we can bound this by

Iλ=0 ≤
∑
i

φM,iε
2 = E[S]ε2.

By Fisher’s theorem, if λ = 0, the MLE estimator λ̂ is asymptotically distributed with variance I−1
λ=0. The

bound on the log-likelihood discussed in the text roughly corresponds to asking that the standard deviation

σλ̂ =
√
I−1
λ=0 = 1

E[S]ε2
< 1/2, such that λ = 1 lies just outside a 95% confidence interval.
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B Bounds on the change in log-likelihood: Multinomial formulation

In this Appendix, we rederive the change in log-likelihood of the model as a result of a change in the
population size history using a different distribution for the allele frequencies.

As discussed above, given the allele frequency spectrum P (y), the expected allele frequency spectrum in
a sample of M individuals is φM,i =

∫ 1
0

(
M
i

)
yi(1− y)M−iP (y) dy for i ∈ {1, 2, . . . ,M − 1}. We now assume

that in a finite genome with S =
∑

imi unlinked polymorphic loci in the sample of size M , the distribution

of population frequencies is multinomial, i.e., pM,S({mi}|{φ̄M,i}) =
(

S
m1m2 ...mM−1

)∏M−1
i=1 (φ̄M,i)

mi where

φ̄M,i = φM,i/
∑M−1

i=1 φM,i is the normalized allele frequency spectrum. In other words, each locus is drawn
independently from the expected distribution φ̄M,i. Hence, the log-likelihood difference between the two
models becomes

δ lnL = ln pM,S({mi}|{φ̄′M,i})− ln pM,S({mi}|{φ̄M,i})

=

M−1∑
i=1

mi ln

(
φ̄′M,i

φ̄M,i

)
=

M−1∑
i=1

mi ln

(
1 +

δφ̄M,i

φ̄M,i

)

=
M−1∑
i=1

mi

[
δφ̄M,i

φ̄M,i
− 1

2

(
δφ̄M,i

φ̄M,i

)2

+O
(

(δφ̄M,i/φ̄M,i)
3
)]

(31)

where, in the last step, we used the Taylor expansion ln(1 + x) ' x− x2/2 +O(x3) for x� 1.
We now transform the functional dependence of δ lnL from δφ̄M,i (change in the normalized frequency

spectrum) to δφM,i (change in the unnormalized frequency spectrum). Let h = f/g where f , g, and h are
three functions. For small changes in f and g, we can write the corresponding change in h as

h+ δh =
f + δf

g + δg
=
f

g

(
1 + δf/f

1 + δg/g

)
= h

[
1 + δf/f

][
1− δg/g + (δg/g)2 −O

(
(δg/g)3

)]
(32)

where we have Taylor expanded the denominator up to second order. We find

δh/h = δf/f − δg/g − δfδg/(fg) + (δg)2/g2 +O
(

(δf, δg)3
)

=
(
δf/f − δg/g

)(
1− δg/g

)
+O

(
(δf, δg)3

)
. (33)

Now, let us substitute f → φM,i and g →
∑M−1

j=1 φM,j (that is, h → φ̄M,i). Therefore, the relative change
in normalized frequency, up to second order, becomes

δφ̄M,i

φ̄M,i
=

(
δφM,i

φM,i
−
∑M−1

j=1 δφM,j∑M−1
j=1 φM,j

)(
1−

∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)
+O

(
(δφM,i/φM,i)

3
)
. (34)

Substituting Eq. (34) into Eq. (31) leads to the series expansion of δ lnL in powers of δφM,i. We formally

represent this expansion as δ lnL = δ(1) lnL+ δ(2) lnL+O
(

(δφM,i/φM,i)
3
)

where

δ(1) lnL =

M−1∑
i=1

mi

(
δφM,i

φM,i
−
∑M−1

j=1 δφM,j∑M−1
j=1 φM,j

)
(35)
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and

δ(2) lnL = −
M−1∑
i=1

mi

[(
δφM,i

φM,i
−
∑M−1

j=1 δφM,j∑M−1
j=1 φM,j

)(∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)
+

1

2

(
δφM,i

φM,i
−
∑M−1

j=1 δφM,j∑M−1
j=1 φM,j

)2 ]

= −1

2

M−1∑
i=1

mi

(
δφM,i

φM,i
−
∑M−1

j=1 δφM,j∑M−1
j=1 φM,j

)(
δφM,i

φM,i
+

∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)

= −1

2

M−1∑
i=1

mi

(δφM,i

φM,i

)2

−

(∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)2
 (36)

are, respectively, the first- and second-order changes in the log-likelihood expressed in terms of changes in
the unnormalized frequency spectrum.

Next, we relate the relative change in the normalized frequency spectrum, given by Eq. (34), to a change
in the demographic model. As shown in Appendix A, the change in frequency spectrum δφM,i depends
only linearly on the change in the demographic model δñ(τ). This fact allows us to use Eqs. (31), (34), and
(25) to derive the change in the log-likelihood function in terms of the change in the demographic model.
In other words, δ(1) lnL and δ(2) lnL also represent respectively the first- and second-order changes in the
log-likelihood as a result of a small change in the demographic model δñ(τ).

We now assume, as we did in Appendix A, that φM,i is the frequency spectrum obtained by maxi-
mizing the likelihood function L with respect to the model ñ(τ). Therefore, the first-order change in the
log-likelihood function δ(1) lnL due to the change δñ(τ) around the best-fit model should vanish at the
extremum, that is, δ(1) lnL = 0, and using Eq. (36), we can write

δ lnL = δ(2) lnL+O
(

[δñ(τ)/ñ(τ)]3
)

= −1

2

M−1∑
i=1

mi

(δφM,i

φM,i

)2

−

(∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)2


︸ ︷︷ ︸
∆i

+O
(

[δñ(τ)/ñ(τ)]3
)
. (37)

To derive the bounds on the change in log-likelihood, we now find the following bounds on ∆i (defined in
the previous equation)

|∆i| =

∣∣∣∣∣∣
(
δφM,i

φM,i

)2

−

(∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)2
∣∣∣∣∣∣ ≤ max

(δφM,i

φM,i

)2

,

(∑M−1
j=1 δφM,j∑M−1
j=1 φM,j

)2


≤ max

( |δφM,i|
φM,i

)2

,

(∑M−1
j=1 |δφM,j |∑M−1
j=1 φM,j

)2
 . (38)

Using Eq. (22), both terms on the right-hand side are smaller than ε2, so we can write

|∆i| < ε2. (39)

Finally, substituting (39) in Eq. (37) leads to the bound on the change in log-likelihood function

|δ lnL| < 1

2
Sε2 +O

(
ε3
)

(40)

which is identical to that derived using the Poisson distribution for the frequencies.
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C Effect of bottlenecks

Here, we investigate the effect of the existence of a bottleneck in the demography, e.g., one given by (8),
on the resulting allele frequency spectrum. Our motivation is to determine whether a bottleneck would
leave a measurable impact on the present-day allele frequency spectrum given the timing (recent or past)
of the bottleneck. In Fig. 4, we show (black, solid line) a demographic history constructed from the history
given in Eq. (8), with the cutoff c = 0.5, by removing all bottlenecks; the original history is shown in
red, dashed line. The resulting frequency spectrum (obtained using ∂a∂i), shown in Fig. 5, indicates that
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Figure 4: A population size history Ñnb
3 (τ) derived by removing bottlenecks from Ñ3c(τ) for c = 0.5

with the bottlenecks removed. Removed bottlenecks in the original history are plotted in blue (dotted
lines). Physical times corresponding to the indicated genetic times for Ñ3c(τ) are presented in units of 2N0

generations. The time axis is not linear in physical time.

removing the recent bottlenecks (which are more recent compared to those in the example presented in
Myers et al. [24]) indeed leaves a detectable effect on the spectrum, especially for the common variants.
Performing the same analysis using the example given by Myers et al. [24] leads to negligible difference in
the frequency spectrum (results not shown for brevity), mainly due to the fact that the bottlenecks are in
distant past and have no discernible effect on the frequency spectrum observed at present.
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