Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

On the decidability of population size histories from finite allele frequency spectra

Soheil Baharian, Simon Gravel
doi: https://doi.org/10.1101/235317
Soheil Baharian
1Department of Human Genetics, McGill University, Montreal, QC, Canada
2McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon Gravel
1Department of Human Genetics, McGill University, Montreal, QC, Canada
2McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Understanding the historical events that shaped current genomic diversity has applications in historical, biological, and medical research. However, the amount of historical information that can be inferred from genetic data is finite, which leads to an identifiability problem. For example, different historical processes can lead to identical distribution of allele frequencies. This identifiability issue casts a shadow of uncertainty over the results of any study which uses the frequency spectrum to infer past demography. It has been argued that imposing mild ‘reasonableness’ constraints on demographic histories can enable unique reconstruction, at least in an idealized setting where the length of the genome is nearly infinite. Here, we discuss this problem for finite sample size and genome length. Using the diffusion approximation, we obtain bounds on likelihood differences between similar demographic histories, and use them to construct pairs of very different reasonable histories that produce almost-identical frequency distributions. The finite-genome problem therefore remains poorly determined even among reasonable histories. Where fits to few-parameter models produce narrow parameter confidence intervals, large uncertainties lurk hidden by model assumption.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted December 18, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
On the decidability of population size histories from finite allele frequency spectra
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
On the decidability of population size histories from finite allele frequency spectra
Soheil Baharian, Simon Gravel
bioRxiv 235317; doi: https://doi.org/10.1101/235317
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
On the decidability of population size histories from finite allele frequency spectra
Soheil Baharian, Simon Gravel
bioRxiv 235317; doi: https://doi.org/10.1101/235317

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4684)
  • Biochemistry (10361)
  • Bioengineering (7675)
  • Bioinformatics (26337)
  • Biophysics (13529)
  • Cancer Biology (10686)
  • Cell Biology (15440)
  • Clinical Trials (138)
  • Developmental Biology (8497)
  • Ecology (12821)
  • Epidemiology (2067)
  • Evolutionary Biology (16862)
  • Genetics (11399)
  • Genomics (15478)
  • Immunology (10617)
  • Microbiology (25219)
  • Molecular Biology (10223)
  • Neuroscience (54473)
  • Paleontology (401)
  • Pathology (1668)
  • Pharmacology and Toxicology (2897)
  • Physiology (4342)
  • Plant Biology (9247)
  • Scientific Communication and Education (1586)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1466)