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Abstract21

The problem of pattern and scale is a central challenge in ecology [27]. The22

problem of scale is central to community ecology, where functional ecological23

groups are aggregated and treated as a unit underlying an ecological pattern,24

such as aggregation of �nitrogen �xing trees� into a total abundance of a trait25

underlying ecosystem physiology. With the emergence of massive community26

ecological datasets, from microbiomes to breeding bird surveys, there is a need to27

objectively identify the scales of organization pertaining to well-de�ned patterns28

in community ecological data.29

The phylogeny is a sca�old for identifying key phylogenetic scales associ-30

ated with macroscopic patterns. Phylofactorization was developed to objec-31

tively identify phylogenetic scales underlying patterns in relative abundance32

data. However, many ecological data, such as presence-absences and counts,33

are not relative abundances, yet the logic of de�ning phylogenetic scales under-34

lying a pattern of interest is still applicable. Here, we generalize phylofactor-35

ization beyond relative abundances to a graph-partitioning algorithm for traits36

and community-ecological data from any exponential-family distribution.37

Generalizing phylofactorization yields many tools for analyzing community38

ecological data. In the context of generalized phylofactorization, we identify39

three phylogenetic factors of mammalian body mass which arose during the K-40

Pg extinction event, consistent with other analyses of mammalian body mass41

evolution. We introduce a phylogenetic analysis of variance which re�nes our42

understanding of the major sources of variation in the human gut. We employ43

generalized additive modeling of microbes in central park soils to con�rm that44

a large clade of Acidobacteria thrive in neutral soils. We demonstrate how to45

extend phylofactorization to generalized linear and additive modeling of any46

dataset of exponential family random variables. We �nish with a discussion47
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of how phylofactorization produces a novel species concept, a hybrid of a phy-48

logenetic and ecological species concepts in which the phylogenetic scales and49

units of interest are de�ned objectively by de�ning the ecological pattern and50

partitioning the phylogeny into clades based on di�erent contributions to the51

pattern. All of these tools can be implemented with a new R package available52

online.53

Keywords54

Phylofactorization, phylogeny, microbiome, ecological data, big data, graph par-55

titioning, dimensionality reduction56

Introduction57

The problem of pattern and scale is a central problem in ecology [27]. Ecosys-58

tem physiology, species abundance distributions, epidemics, ecosystem services59

of animal-associated microbial communities and more ecological patterns of in-60

terest are often the result of processes operating at multiple scales. Tradition-61

ally, the �scales� of interest are space, time, and levels of ecological organization62

ranging from individuals to populations to ecosystems. Prediction of spatial63

variation over millimeters, meters, or kilometers changes the processes driving64

patterns observed. Predicting climatic and weather patterns over days, years,65

or millennia requires di�erent data, processes and models. Predicting the col-66

lective behavior of a school of �sh requires interfacing individual behavior with67

interaction networks of those individuals [25] whereas predicting the ability of68

a forest to act as a carbon sink requires interfacing weather, nutrient cycles,69
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and competition between trees with di�erent traits, such as nitrogen �xation70

[11]. Understanding emergent infectious diseases requires interfacing processes71

over scales ranging from animal population dynamics, reservoir epizootiology,72

and human epidemiology [37]. Ecological theory requires interfacing phenom-73

ena across scales believed to be important, and continually updating our beliefs74

about which scales are important to interface.75

For a novel or unfamiliar pattern, such as a change in microbial community76

composition along environmental gradients, how can one objectively identify77

the appropriate scales of ecological organization? In macroscopic systems, a78

researcher will use intuition derived from natural history knowledge to determine79

scales of interest. Models of how the presumably important natural history traits80

a�ect the pattern will be constructed, and the goodness of �t to the pattern of81

interest will be used as a metric for the successful identi�cation of ecological82

scales/traits. However, for some patterns, such as the ecosystem physiology of83

the human microbiome, there is limited natural history knowledge to draw on to84

assist the decision of the appropriate scales of interest. There is a need for rules,85

algorithms and laws for the simpli�cation, aggregation, and scaling of ecological86

phenomena.87

A central feature of biological systems is the existence of a hierarchical as-88

semblage of entities, from genes to species, whose relationships and evolutionary89

history can be estimated and organized into a hierarchical tree. The estimated90

phylogeny contains edges along which mutations occur and new traits arise.91

When the phylogeny correctly captures the evolution of discrete, functional eco-92

logical traits underlying a pattern of interest, the phylogeny is a natural sca�old93

for simpli�cation, aggregation, and scaling in ecological systems. Patterns such94

as the change of bacterial abundances following antibiotic exposure, whose func-95

tional ecological traits of antibiotic resistance are laterally transferred, can still96
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be simpli�ed by constructing a phylogeny of the laterally transferred genes, such97

as the beta-lactamases[18], as a natural sca�old for de�ning the entities with98

di�erent responses to antibiotics.99

The phylogeny contains a hierarchy of possible scales for aggregation. Gra-100

ham et al. [17] develop the term �phylogenetic scale� to refer to the depth of the101

tree over which we aggregate information from a clade. Functional ecological102

traits often arise at di�erent depths of the tree. Many ecological phenomena may103

be driven by traits not properly summarized or aggregated by �hedge-row� trim-104

ming of the phylogeny along a constant depth, but by identi�cation of multiple105

phylogenetic scales, or grains, underlying an ecological pattern of interest. For106

example, the patterns of vertebrate abundances on land and water are simpli-107

�ed by nested clades: tetrapods, cetaceans, Pinnipeds, etc. Identifying multiple108

phylogenetic scales associated with or driving an ecological pattern of interest109

requires general methods for partitioning the phylogeny into the grains with110

signi�cantly di�erent associations or contributions to the ecological pattern.111

Phylofactorization [51] was developed to identify the phylogenetic scales in112

relative abundance (i.e. compositional) data by iteratively partitioning the phy-113

logeny and constructing variables corresponding to edges in the phylogeny and114

selecting variables which maximize an objective function. Phylofactorization115

of compositional data exploits a common transform from compositional data116

analysis [1], referred to as the isometric log-ratio transform [10, 9], which pro-117

vides a natural way to turn the phylogeny into a set of variables capable of118

identifying di�erences between clades. A coordinate in an isometric log-ratio119

transform aggregates relative abundances within clades by a geometric mean120

and contrasts clades through log-ratios of the clades' geometric mean relative121

abundances. The isometric log-ratio transform is used to identify phylogenetic122

scales capturing large blocks of variation in relative-abundance data, with vari-123
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ables that correspond to edges along which hypothesized functional ecological124

traits arose.125

However, many ecological data are more appropriately viewed as counts, not126

compositions. In this paper, we generalize phylofactorization to broader classes127

of data types by generalizing the logic of phylofactorization and the general128

problem of scale in ecology to a set of three operations: aggregation, contrast,129

and an objective function de�ned by the pattern of interest. With these opera-130

tions, phylofactorization can be de�ned as a graph-partitioning algorithm which131

avoids the nested dependence of hierarchies of clades and controls for previously132

identi�ed phylogenetic scales. Generalizing the operations of aggregation and133

contrast in a phylogenetic graph-partitioning algorithm provides an explicit,134

theoretical framework de�ning place-holders for speci�c operations used a re-135

search endeavor. Furthermore, as points on the surface of a sphere are easily136

represented in spherical coordinates, ecological data at the tips of a phylogeny137

are easily represented with a change of variables made possible by aggregation138

and contrast, a set of variables we call the �contrast basis�. Phylofactorization139

is a versatile tool for identifying the phylogenetic scales underlying ecological140

patterns of interest across a range of patterns and data types.141

After de�ning phylofactorization as a graph-partitioning algorithm, we il-142

lustrate the generality of the algorithm through several examples. First, we143

show that two-sample tests, such as t-tests and Fisher's exact test, are natural144

operations for phylofactorization - they �rst aggregate data from two groups145

through means, contrast the aggregates via a di�erence of means, and have nat-146

ural objective functions de�ned by their test-statistics. We illustrate the use of147

two-sample tests by performing phylofactorization of a dataset of mammalian148

body mass.149

Then, we show how the phylogeny serves as a sca�old for changing variables150
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in biological data through a contrast basis which can be used to identify the151

phylogenetic scales providing low-rank, phylogenetically-interpretable represen-152

tations of a dataset. De�ning the contrast basis allows us to introduce a phyloge-153

netic analog of principal components analysis - phylogenetic components anal-154

ysis - which identi�es edges and dominant, phylogenetic scales di�erentiating155

species and explaining variance in a dataset. We perform phylogenetic compo-156

nents analysis on the American Gut microbiome dataset (www.americangut.org)157

and reveal that some of the dominant clades explaining variation in the Ameri-158

can Gut correspond to clades within Bacteroides and Firmicutes, thereby pro-159

viding �ner, phylogenetic resolution of a known, major axis of variation in160

human gut microbiomes found to be associated with obesity [47], age [31]161

and more. Another phylogenetic factor of variance in the American Gut is162

a clade of Gammaproteobacteria strongly associated with IBD, corroborating163

a recent study's use of phylofactorization to diagnose patients with IBD [49].164

The contrast basis can also be used with regression if the data assumed to165

be approximately normal, log-normal, logistic-normal or otherwise related to166

the normal distribution through a monotonic transformation. We illustrate167

regression-phylofactorization through a generalized additive model analysis of168

how microbial abundances change across a range of pH, Nitrogen, and Carbon169

concentrations in soils. The resulting contrast basis and its �tted values from170

generalized additive modeling yield a low-rank representation of biological big-171

data and translates to clear biological hypotheses aiming to identify the traits172

driving observed non-linear patterns of abundance across pH [39].173

Datasets comprised of non-Gaussian, exponential family random variables174

can still be analyzed through regression-phylofactorization by using the gener-175

alized algorithm and implementing factor-contrasts in a multivariate generalized176

linear model as the contrast operation. We present, and demonstrate the power177
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of, three methods for generalized regression-phylofactorization in exponential178

family data. The �rst method is to use the contrast basis to obtain a low-rank179

approximation of coe�cient matrices in multivariate generalized linear models.180

The second is a reduced rank regression model in which a phylogenetic factor,181

an explanatory variable indicating which side of an edge a species is found, is182

incorporated into regression and used to de�ne objective functions based on183

the deviance or the magnitude of the coe�cients for the factor-contrast. The184

third method aggregates exponential family data within clades to marginally185

stable distributions within the exponential family, and then performs a two-186

variable multivariate regression with a factor contrast as used in the second187

method. We simulate the asymptotic power of the last two methods, demon-188

strating that marginally-stable aggregation and factor-contrasts are a viable189

method for phylofactorization through generalized linear and additive models.190

We �nish with a discussion of the challenges, and opportunities, for future devel-191

opment of phylofactorization, and provide an R package - phylofactor - available192

at https://github.com/reptalex/phylofactor.193

Phylofactorization194

Which vertebrates live on land, and which vertebrates live in the sea (Figure195

1a)? Most children have enough natural history knowledge to say ��sh live in the196

sea�, thus correctly identifying one of the most important phylogenetic factors of197

land/sea associations in vertebrates. The statement ��sh live in the sea� can be198

mathematically captured by noting that one edge in the vertebrate phylogeny199

separates ��sh� from �non-�sh� (Figure 1b). Partitioning the phylogeny along200

the edge basal to tetrapods can separate our species fairly well by land/sea asso-201

ciations. An algorithm for identifying that edge by land/sea associations alone,202
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without requiring detailed knowledge of macroscopic life and morphological and203

physiological traits, can correctly identify an edge along which functional ecolog-204

ical traits and life-history traits arose. Controlling for the previously identi�ed205

edge, one might be able to identify the edges basal to Cetaceans and Pinnipeds,206

tetrapods which live in the sea (Figure 1b). Three edges can capture most of207

the variation in land/sea associations across potentially thousands of vertebrate208

species.209
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Figure 1: Phylofactorization aims to generalize the logic of how to simplify phylogenetically-

structured datasets. (A) A dataset of vertebrate land/water associations can be simpli�ed by

partitioning the tree into the edges along which major traits arose. (B) The �rst phylogenetic factor

of vertebrate land/water associations is the edge along which tetrapods arose - an edge along which

lungs and limbs evolved that allowed colonization of land. Downstream factors can re�ne the original

partitioning, and include the Cetaceans and Pinnipeds, among other edges along which adaptation

to aquatic life arose among tetrapods. (C) Phylogenetic factorization generalizes this same logic

for phylogenetically-structured data in which traits might not be known or their evolution easily

modeled, including traits like a non-linear relationship between abundance and an environmental

gradient. Phylogenetically-structured data can be partitioned through operations of aggregation and

contrast. Pure aggregations (blue) are total abundances of a clade, whereas contrast (green/red) are

statements of di�erences between two clades. Low-rank, phylogenetically-interpretable predictions

of our data can be obtained through a mixed basis of a series of aggregations and contrasts, or a

�contrast basis� in which there is a global aggregate partitioned in subsequent contrasts.
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Ancestral state reconstruction of habitat association provides a well-known210

means of making such inferences. However, sometimes the desired �traits� and211

ecological patterns of interest are more complicated and their ancestral state re-212

construction dubious. For instance, how can we identify the phylogenetic scales213

of changes in microbial community composition along a pH gradient, allow-214

ing possible non-linear associations that could be detected through generalized215

additive modeling? Answering such a question through ancestral state recon-216

struction requires conceiving and analyzing an evolutionary model of how the217

generalized additive models of pH association evolve along a tree. Phylofactor-218

ization aims to generalize the phylogenetic logic used for land/sea associations219

in order to identify phylogenetic scales for more complicated functional traits220

and ecological patterns, for which an evolutionary model would be dubious.221

Phylogenetic factorization generalizes the logic of land/sea associations through222

a graph partitioning algorithm iteratively identifying edges in the phylogeny223

along which meaningful di�erences arise (Figure 1c).224

General Algorithm225

Phylofactorization requires a set of phylogenies, rooted or unrooted graphs with226

no cycles, containing and connecting the units of interest in our data (the �units�227

can be species, genes or operons other evolving units of interest). Phylofactor-228

ization can be done using disjoint sub-graphs, such as viral phylogenies for229

which there are not clear common ancestors, and the sub-phylogenies can either230

be kept separate or joined at a polytomous root. The phylogeny may have an231

arbitrary number and degree of polytomies, and can even be a star graph.232

Let [x]i,j be the data for species i = 1, ...,m in sample j = 1, ..., n. Let233

xR,j be the vector of a subset of species, R, in sample j. Let Z be the n × p234

matrix containing p additional meta-data variables for each sample. Let T be235
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the phylogenetic tree and let edge e partition the phylogeny into disjoint groups236

R and S. Phylofactorization requires:237

• An aggregation function, A (xR,j , T ) which aggregates any subset, R, of238

species239

• A contrast function, C (A (xR,j , T ) , A (xS,j , T ) , T , e) which contrasts the240

aggregates of two disjoint subsets of species, R and S, possibly using241

information from the tree T and edge, e.242

• An objective function, ω(C,Z).243

With these operations, phylofactorization is de�ned iteratively as a special case244

of a graph partitioning algorithm (Figure 2). The steps of phylofactorization245

are:246

1. For each edge, e, separating disjoint groups of species Re and Se within the247

sub-tree containing e, compute Ce = C (A (xRe,j , T ) , A (xSe,j , T ) , T , e)248

2. compute edge objective ωe = ω(Ce,Z) for each edge, e249

3. Select winning edge e∗ = argmax
e

(ωe)250

4. Partition the sub-tree containing e∗ along e∗, forming two disjoint sub-251

trees.252

5. Repeat 1-5 until a stopping criterion is met.253

Unlike more general graph-partitioning algorithms, phylofactorization does not254

impose a balance constraint - it does not require that the partitions have a simi-255

lar size or weight. Furthermore, phylofactorization, by working with phylogenies256

or graphs without cycles is centered around aggregation and contrast as princi-257

ple operations for de�ning scales and units of organization. Phylofactorization258

is limited to contrasts of non-overlapping groups. The incorporation of the tree,259
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T , in the contrast function encompasses a class of ancestral state reconstruction260

reconstruction methods. Ancestral state reconstruction with non-overlapping261

contrasts can be done with time-reversible models of evolution; in this case,262

phylofactorization contrasts the root ancestral states obtained in which the two263

nodes adjacent an edge are considered roots of the subtrees separated by an264

edge.265

The edges, e∗ and their contrasts, Ce, are interchangeably referred to as266

the �phylogenetic factors� due to their correspondence to hypothesized latent267

variables (traits) and their ability to construct basis elements that allow ma-268

trix factorization [51]. It's possible to de�ne objective functions through pure269

aggregation, but we limit our focus to contrast-based phylofactorizations which270

identify edges along which meaningful di�erences arose for reasons discussed271

later in the section on the �contrast basis�.272
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Figure 2: Phylofactorization is a graph partitioning algorithm. De�ning an objective function,

ω, of a contrast of species separated by an edge allows one to iteratively partition the phylogeny

along edges maximizing the objective function (1st iteration). After partitioning the phylogeny, the

objective functions are re-computed to contrast species in the same sub-tree separated by an edge.

Edge B in the �rst iteration contrasted mammals from non-mammals, but in the second iteration it

contrasts mammals from non-mammals, excluding raptors (partitioned in the �rst iteration). The

result of k iterations of phylofactorization is a set of k+1 bins of species with similar within-group

behavior. A particularly useful case is �regression-phylofactorization�. Regression-phylofactorization

is implemented by de�ning contrasts through the contrast basis (Figure 1c) and de�ning an objec-

tive function through regression on the component scores of each candidate contrast basis element.

Regression-phylofactorization is a �exible way to search for clades with similar patterns of associ-

ation with environmental meta-data while also obtaining low-rank, phylogenetically-interpretable

representations of a data matrix.
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The result of phylofactorization after t iterations is a set of t inferences on273

edges or links of edges. Links of edges occur following a previous partition,274

when two adjoining edges separate the same two groups in the resultant sub-275

tree. Partitioning the phylogeny along t edges results in t + 1 bins of species,276

referred to as �binned phylogenetic units�. In general, the problem of maximizing277

some global objective function, ω(e∗1, ..., e
∗
t ), for a set of t edges, {e∗1, ..., e∗t }, is278

NP hard [6]. However, stochastic searches of the space of possible partitions,279

via a stochastic computation of ωe in step 2 or a weighted draw of e∗ in step 3,280

may better maximizing a global objective function for general graph-partitioning281

algorithms such as phylofactorization [32, 20, 23].282

Generalizing aggregation, contrast, and objective functions allows researchers283

several junctures to de�ne and interpret meaningful quantities and outcomes284

from data analysis. Explicit decisions about aggregation formalize how a re-285

searcher would summarize data from an arbitrary set of species. Explicit de-286

cisions about contrast formalize how a researcher di�erentiates two arbitrary,287

disjoint groups of species - these common operations form an organizational288

framework for ecologists studying phylogenetic scales. Aggregation can be done289

through many operations, including but not limited to addition, multiplication,290

generalized means, and maximum likelihood estimation of ancestral states un-291

der models of trait di�usion away from the focal node. Likewise, examples of292

contrasts are di�erences, ratios, various two-sample tests, and more complicated293

metrics of dissimilarity such as the deviance of a factor contrast in a generalized294

additive model. Researchers must decide for themselves how best to aggregate295

information in groups of species, contrast two groups, and decide which group296

maximizes the objective for a research goal pertaining to a particular ecolog-297

ical pattern. Doing so allows objective, a priori de�nitions of what makes an298

informative phylogenetic scale, and the operations chosen are integrated into a299
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broader theoretical framework of phylofactorization.300

Below, we run through several examples aimed to develop the generality301

and illustrate the results from phylofactorization. These examples were run302

using the R package �phylofactor�, using relevant functions for analyzing and303

visualizing phylogenies from the R packages ape [36], phangorn [43], phytools304

[40], and ggtree [52]. Scripts and datasets for every analysis are available in the305

supplemental materials.306

Example 1: two-sample tests and mammalian body-mass307

phylofactorization308

If the data are a single vector of observations, x, similar to the land/sea as-309

sociations of vertebrates, phylofactorization can be implemented through stan-310

dardized tests for di�erences of means or rate parameters in the two sets of311

species, R and S. Two-sample tests may bias away from the tips and towards312

the interior edges of the phylogeny due to increased power of two-sample tests313

of more equally-sized samples.314

For example, a dataset of mammalian body mass from PanTHERIA [24]315

and the open tree of life using the R package �rotl� [33]. A single vector of data316

assumed to be log-normal can be factored based on a two-sample t-test (Figure317

3a). In this case, A(xR) = log(xR) is the arithmetic mean of the log-body-mass;318

we use the contrast operation319

C =
|A(xR)−A(xS)|√

1
r + 1

s

(1)

and the objective function ωe = Ce - this is the two-sample t-test with the320

assumption of constant variance. Maximization of the objective function yields321

edges with the most signi�cant di�erence in body mass of organisms on di�erent322
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sizes of the tree.323

The �rst �ve phylogenetic factors of mammalian body mass in these data are324

Euungulata, Ferae, Laurasiatheria (excluding Euungulata and Ferae), a clade325

of rodent sub-orders Myodonta, Anomaluromorpha, and Castorimorpha, and326

the simian parvorder Catarrhini. Five factors produce six binned phylogenetic327

units of species with di�erent average body mass (Figure 3a). The most sig-328

ni�cant phylogenetic partition of mammalian body mass occurs along the edge329

basal to Euungulata, containing 296 species with signi�cantly larger body mass330

than other mammals. The second partition corresponds to Ferae, containing 242331

species which have body masses larger than other mammals, excluding Euungu-332

lata. The third partition corresponds to 864 remaining species in Laurasiathe-333

ria, excluding Euungulata and Ferae, which contains Chiroptera, Erinaceomor-334

pha, and Soricomorpha. These mammals have lower body mass than non-335

Laurasiatherian mammals. The fourth partition identi�es three rodent sub-336

orders comprising 926 species with lower body mass than non-Laurasiatherian337

mammals. Finally, 106 species comprising the Simian parvorder Catarrhini338

are factored as having higher body mass than the remaining mammals. These339

factors are fairly robust: 3000 replicates of stochastic Metropolis-Hasting phylo-340

factorization, drawing edges in proportion to Cλ with λ = 6 (producing a 1/4341

probability of drawing the most dominant edge) could not improve upon these342

5 factors.343

The �rst two phylogenetic factors of mammalian body size partition the344

mammalian tree at deep edges with ancestors near the K-Pg extinction event,345

corroborating evidence of ecological release [2, 3] and the exponential growth346

of maximum body sizes following the K-Pg extinction event [46] for these two347

dominant clades. The crown group of modern Euungulata are thought to have348

originated in the late Cretaceous [53] and its representatives may have expanded349
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into previously dinosaur-occupied niches during the rapid evolution of body350

size in mammals immediately after the K-Pg extinction event at the Creta-351

ceous/Paleogene boundary [45]. Cope's rule posits that lineages tend to in-352

crease in body size over time, and a recent study [4] con�rms Cope's rule and353

found that mammals have, along all branch lengths in their phylogeny, tended354

to increase in size. The phylogenetic factors of mammalian body size discovered355

here illustrate an important feature of phylofactorization: correlated evolution356

within a clade, such as a consistently high body-size increase among lineages in357

a clade, can cause the edge basal to a clade to be an important partition for358

capturing variance in a trait. A more robust phylofactorization may be done359

through iterative ancestral-state reconstruction of the roots of subtrees parti-360

tioned by each edge (where the subtrees are re-rooted at the nodes adjacent361

the edge), but this unsupervised phylogenetic factorization body masses in 3374362

mammals takes 15 seconds on a laptops and yields partitions which simplify the363

story of mammalian body-mass variation to a set of 5 edges forming 6 binned364

phylogenetic units.365

Two-sample tests can be used for phylogenetic factorization of any vector of366

trait data. For another example, Bernoulli trait data, such as presence/absence367

of a trait, can be factored using Fisher's exact test that there is the same368

proportion of presences in two groups, R and S. In this case, the aggregation369

operation A(xR) =
∑
i∈R xi counts the number of successes in group R, the370

contrast operation is the computation of the P-value using Fisher's exact test371

and the contingency table372

Successes Failures Total

A(xR) r −A(xr) r

A(xS) s−A(xS) s

A(xR) +A(xS) r + s− (A(xr) +A(xS)) r + s

and an objective function can be de�ned as the inverse of the P-value from373
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Fisher's exact test, ωe = |C−1e |. The phylofactorization of vertebrates by374

land/water association in Figure 1, using an ad-hoc selection of vertebrates for375

illustration, was performed using Fisher's exact test, and the factors obtained376

correspond to Tetrapods, Cetaceans, and Pinnipeds. Unlike the phylofactoriza-377

tion of mammalian body mass, all three factors obtained from phylofactorization378

of vertebrate land/water association correspond to a set of traits. Tetrapods379

evolved lungs and limbs which allowed them to live on land. Cetaceans evolved380

�ns and blowholes, and Pinnipeds evolved �ns, all traits adaptive to life in the381

water.382

Two-sample tests are used when partitioning a vector of traits. Phylofac-383

torization of body mass and land/water associations illustrate two potential384

evolutionary models under which edges are important: correlated evolution of385

members of a clade and punctuated equilibria. More complicated methods for386

phylofactorization can keep these cases in mind when interpreting the edges387

identi�ed: they may correspond to traits, or they may correspond to ancient388

(and possibly ongoing) evolutionary processes common within a clade, such389

as ecological release or niche partitioning. When the objective function from390

two-sample tests has a well-de�ned null distribution, the uniformity of the dis-391

tribution of P-values from two-sample tests can used to de�ne a stopping criteria392

as discussed later (see: �stopping criteria�).393

Example 2: Contrast basis and phylogenetic components394

analysis395

For datasets with multiple samples of the same feature, such as abundance data396

for a set of species across a range of habitats, the phylogeny provides a natu-397

ral sca�old for low-rank, phylogenetically interpretable approximations of the398

data. One reliable algorithm for producing phylogenetically-interpretable low-399
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rank approximations of data is to construct basis elements through aggregation400

and contrast vectors (Figure 1c). An aggregation basis element for a group401

Q = R ∪ S can be constructed through a vector whose ith element is402

vAQ,i =


a i ∈ Q

0 otherwise

(2)

and such aggregation basis elements can be subsequently partitioned with a403

contrast vector404

vCR|S ,i =


b i ∈ R

−c i ∈ S

0 otherwise

(3)

where b > 0 and c > 0. By meeting the criteria

rb− sc = 0 (4)

rb2 + sc2 = 1 (5)

, one can ensure that vAQand vCQ are orthogonal and with unit norm. These

criteria are satis�ed by

b =

√
s

r (r + s)
(6)

c =

√
r

s (r + s)
. (7)

In this case, the aggregation and contrast operations for sample j are

A(xR,j) = x̄R,j

C (A(xR,j), A(xS,j)) =

√
rs

r + s
(x̄R,j − x̄S,j) . (8)
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where x̄R,j is the sample mean of species in group R and sample j. Projecting405

a dataset onto vCR|S yields coordinates which are a standardized di�erence of406

means: the absolute value of the projection of a single multi-species sample407

onto a contrast vector yields the two-sample t-statistic from equation (1). The408

contrast vector is comprised of two sub-aggregations of opposite sign, one for409

group R and the other for group S. By ensuring criterion (4), the groups aggre-410

gated within a contrast vector can be subsequently partitioned with additional,411

orthogonal contrast vectors splitting each group R and S. Maintaining criterion412

(5), the aggregation and contrast vectors de�ned here can be used to construct413

an orthonormal basis for describing data containing our species, xj ∈ Rm, by414

de�ning a set of q ≤ m orthogonal aggregation vectors corresponding to disjoint415

sets of species Ql such that the entire set of aggregations,
⋃l=q
l=1Ql = {1, ..., n},416

covers the entire set of m species. Then, m − q contrast vectors partitioning417

the aggregations and the sub-aggregations within contrast vectors can complete418

the basis (Figure 1c). Of note is that, as de�ned in equations (2) and (3), the419

span of any aggregate and its contrast is equal to the span of the contrasts'420

sub-aggregates, i.e. for R ∪ S = Q,421

span
(
vAQ ,vCR|S

)
= span (vAR ,vAS ) (9)

(Figure 1c) and the two natural ways of changing variables with the phylogeny,422

an aggregate of species and its orthogonal contrast (grouping species and parti-423

tioning the group) or two orthogonal aggregates (two disjoint groups of species),424

are rotations of one-another. Aggregation and contrast vectors translate the no-425

tion of phylogenetic scale and group-di�erences into a basis that can be used to426

analyze community ecological data.427

Pure aggregation vectors as de�ned in equation (2) can be de�ned a priori428

based on traits or clades of species thought to be important for the question429
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at hand (e.g. aggregate �terrestrial� and �aquatic� animals), or de�ned by the430

data through myriad clustering algorithms or phylofactorization based purely on431

aggregation by converting steps (1) and (2) in the phylofactorization algorithm432

into a single step: maximizing an objective function of the aggregate of a clade.433

A special case occurs when data are compositional [1], in which case the sum434

of any sample across all species in the community will equal 1 and thus the435

data are constrained by an aggregation element - the aggregate of all species436

- which can only be subsequently contrasted. Phylofactorization via contrasts437

of log-relative abundance data allows one to construct an isometric log-ratio438

transform, a commonly used and well-behaved transform for the analysis of439

compositional data [10, 9, 44]. Since the span of an aggregate and its contrast440

is equal to the span of the contrasts' two aggregates (equation 9), we simplify441

construction of the basis by considering, from here on out, only the �contrast442

basis� in which the an initial aggregate of all species is then partitioned with a443

series of contrasts.444

An orthonormal basis, including one constructed via aggregation and con-445

trast vectors, enables researchers to partition the variance captured by each of446

a set of orthogonal directions corresponding to discrete, identi�able features in447

the phylogeny. Using the phylofactorization algorithm, a datasetX = [x]i,j can448

be summarized by de�ning the objective function449

ωe = Var
[
vTCeX

]
(10)

where vCe is the contrast vector from (3) corresponding to the sets of species,450

R and S, split by edge e. Phylofactorization by variance-maximization yields a451

phylogenetic decomposition of variance, referred to as �phylogenetic components452

analysis� or PhyCA. PhyCA is a constrained version of principal components453

analysis, allowing researchers to focus only on the loadings, vCe , corresponding454
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to contrasts of species separated by an edge.455

The variance of component scores, ye = vTCeX, can be easily understood if456

the data [xi,j ] are assumed to be Gaussian. The component score for sample j,457

ye,j , can be written as458

ye,j =

√
rs

r + s
(x̄R,j − x̄S,j) (11)

where x̄R,j is the sample mean of xi,j for i ∈ R and x̄S,j is the sample mean of459

xi.j for i ∈ S. The variance of the component score across all samples j = 1, ..., n460

is461

Var[ye] =
rs

r + s
(Var [x̄R] + Var [x̄S ]− 2Cov [x̄R, x̄S ]) . (12)

The variance of ye increases through a combination of variances in aggregations462

of groups R and S across samples (x̄R and x̄S , respectively) and a high negative463

covariance between aggregations for groups R and S across samples. Species464

with a negative covariance may be competitively excluding one-another or may465

be di�erentiated due to a trait which arose along edge e which causes di�erent466

habitat associations or responses to treatments. Edges extracted from PhyCA467

are edges along which putative functional ecological traits arose di�erentiating468

the species in R and S in the dataset of interest.469

Phylogenetic Components of the American Gut To illustrate, we per-470

form PhyCA to identify 10 factors from a sub-sample of the American Gut471

dataset and the greengenes phylogeny [8] containing m = 1991 species and n =472

788 samples from human feces (Figure 3b). The American Gut dataset was �l-473

tered to only fecal samples with over 50,000 sequence counts and, for those sam-474

ples, otus with an average of more than one sequence count per sample. After475

performing PhyCA, each identi�ed resulting component score, ye∗ , is assessed476

for a linear association with seven explanatory variables: types_of_plants (a477
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question asking participants how many types of plants they've eaten in the past478

week), age, bmi, alcohol consumption frequency, sex, antibiotic use (ABX), and479

in�ammatory bowel disease (subset_ibd) (Figure 3b). The raw P-values are480

presented below, but for a reference, the P-value threshold for a 5% family-wise481

error rate is 7.1× 10−4.482

The �rst factor splits 1229 species of Firmicutes from the remainder of mi-483

crobes. The component score for the �rst factor, ye∗1 , is strongly associated with484

antibiotic use (P=3.6 × 10−4), with dramatic decreases in relative abundance485

in patients who have taken antibiotics in the past week or month. The second486

factor identi�es 217 species of several genera of Lachnospiraceae, a clade con-487

tained within the Firmicutes, strongly associated with age (P=1.2×10−15) and488

bmi (P=3.2× 10−6) and alcohol (P=6.4× 10−3). The third factor is a clade of489

81 Bacteroides most strongly associated with types_of_plants (P=2 × 10−9).490

By identifying a clade of Bacteroides as a major axis of variation, factors 1491

and 3 re�ne the Firmicutes to Bacteroidetes ratio commonly used to describe492

variation in the gut microbiome and found associated with obesity and other493

disease states [28, 7]. It's been found that the Firmicutes/Bacteroidetes ratio494

changes with age [31], but the picture from phylofactorization is more nuanced:495

the large clade of Firmicutes in the �rst factor does not change with age, but496

the Lachnospiraceae within that clade decrease strongly with age relative to497

the remaining Firmicutes, while the Bacteroides show only a moderate decrease498

with age. The strong decrease with age in Lachnospiraceae is found in a few499

other clades within the Firmicutes: the 4th factor identi�ed a clade of Firmi-500

cutes of the family Ruminococcaceae strongly associated with types of plants501

(P=3.6 × 10−5), sex (P=5.9 × 10−4) and decreasing with age (P=9.2 × 10−4),502

and the 5th factor identi�ed a group of Firmicutes of the family Tissierellaceae503

that decrease strongly with age (P=1.9× 10−5).504
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Figure 3: Phylofactorization with contrast basis. (A) The contrast basis de�nes variables sim-

ilar to t-statistics, and maximizing the projection of data onto the contrast basis can identify

phylogenetic factors. Five iterations of phylofactorization on a dataset of mammalian log-body

mass yields �ve clades with very di�erent body masses. (B) Maximizing the variance of com-

ponent scores, ye, of log-relative abundance data produces a �phylogenetic components analysis�

(PhyCA) of the American Gut dataset. The most variable clades cover a range of phylogenetic

scales. Downstream analysis of component scores tested associations with meta-data - plotted are

linear predictors against relevant meta-data; the plot of Lachnospiraceae includes the raw data

as black dots. (C) More complicated methods can be used, such as generalized additive mod-

eling with ye. Using the central park soils dataset, ye of log-relative abundances, the model

ye ∼ s(log(Carbon)) + s(log(Nitrogen)) + s(pH), and the objective of maximizing the explained

variance, we obtained the same 4 factors obtained using generalized linear modeling in the original

data, including the misnomer group of Chloracidobacteria that don't thrive in low pH environ-

ments. The relative importance of pH in the generalized additive models and exact clades with

a high amount of variance explained by pH allows a projection of 3000 species into 5 BPUs for

clear visualization of a dominant feature of how soil bacterial communities change along a key

environmental gradient.
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The sixth factor is a small group of 5 OTUs of Prevotella copri strongly as-505

sociated with types_of_plants (P=2.8× 10−4) and in�ammatory bowel disease506

(P=2.5× 10−3). Previous studies have found that Prevotella copri abundances507

are correlated with rheumatoid arthritis in people and innoculation of Prevotella508

copri exacerbates colitis in mice. Consequently, Prevotella copri is hypothesized509

to increase in�ammation in the mammalian gut [42], and the discovery of Pre-510

votella copri as one of the dominant phylogenetic factors of the American Gut, as511

well as the discovery of its association with IBD, corroborates the hypothesized512

relationship between Prevotella copri and in�ammation. Likewise, the seventh513

factor is a clade of 41 Gammaproteobacteria of the order Enterobacteriales also514

associated with types_of_plants (P=6.7 × 10−8) and weakly associated with515

in�ammatory bowel disease (P=0.022). Gammaproteobacteria were used as516

biomarkers of Crohn's disease in a recent study [49] and their associations with517

IBD in the American Gut project corroborates the possible use of Gammapro-518

teobacterial abundances for detection of IBD from stool samples. Summaries of519

the models for all factors' component scores are in the supplemental information.520

Example 3: Compositional, log-normal and Gaussian regression-521

phylofactorization522

Phylogenetic contrast vectors can be used to de�ne more complicated objective523

functions for data assumed to be Gaussian or easily mapped to Gaussian, such524

as logistic-normal compositional data or log-normal data. Conversion of the525

data to an assumed-Gaussian form can then allow one to perform least-squares526

regression using ye as either an independent or dependent variable. Rather527

than performing PhyCA and subsequent regression, one can choose phylogenetic528

factors based on their associations with meta-data of interest.529

Maximizing the explained variance from regression identi�es clades through530
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the product of a high contrast-variance from equation (10) and the percent531

of explained-variance from regression - such clades can capture large blocks532

of explained variance in the dataset. Another common objective function is533

the deviance or F -statistic from regression which identi�es clades with more534

predictable responses - such clades can be seen as bioindicators or particularly535

sensitive clades, even if they are not particularly large or variable clades in536

the data. Regression-phylofactorization can use the component scores as an537

independent variable, as was used in the phylofactorization-based classi�cation538

of Crohn's disease [49]. For multiple regression, one can use the explanatory539

power of the entire model, or a more nuanced objective function of a subset of540

the model. More complicated regression models can be considered, including541

generalized additive models.542

To illustrate the �exibility of regression phylofactorization to identify phy-543

logenetic scales corresponding to nonlinear patterns of abundance-habitat asso-544

ciations, we perform a generalized additive model analysis of the Central Park545

soils dataset [39] analyzed previously using a generalized linear model. To iden-546

tify non-linear associations between clades and pH, Carbon and Nitrogen, we547

perform a generalized additive model of the form548

ye ∼ s(pH) + s(Carbon) + s(Nitrogen) (13)

and maximize the explained variance (Figure 3c). The resultant phylofactor-549

izations identi�es the same 4 factors as the generalized linear model, but allows550

nonlinear and multivariate analysis of how community composition changes over551

environmental meta-data. Combining the high relative-importance of pH with552

the identi�ed 4 factors, splitting over 3,000 species 5 binned phylogenetic units,553

allows clear and simple visualization of otherwise complex behavior of how a554

community of several thousand microbes changes across several hundred soil555
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samples. As with the original analysis, the generalized additive modeling phylo-556

factorization identi�es a clade of Acidobacteria - the Chloracidobacteria - which557

have highest relative abundances in more neutral soils.558

Example 4: Phylofactorization through generalized linear559

models560

Many ecological data are not Gaussian. Presence-absence data or count data561

with many zeros cannot be easily transformed to yield approximately Gaus-562

sian random variables. However, the graph-partitioning algorithm we describe563

provides a framework for implementing phylofactorization with the appropriate564

choice of aggregation and contrast operations de�ned through more complex re-565

gression models. Data assumed to be exponential family random variables can566

be analyzed with regression-phylofactorization by adapting generalized linear567

models through shared coe�cients and assumptions of within-group homogene-568

ity that allow algebraic group operations for aggregation within the exponential569

family. We present three options for aggregation and contrast in generalized570

linear models, intended to be an illustrative, but not exhaustive, account of the571

application of phylofactorization in the context of generalized linear and addi-572

tive models. These options correspond to the contrast basis, either explicitly573

using the contrast basis to approximate the coe�cient matrix in multivariate574

generalized linear models, or performing shared-coe�cient or factor-contrasts575

in generalized linear modeling which, we'll show later, have a similar graph-576

topological behavior as the contrast basis.577

The �rst method is to perform multivariate generalized modeling of one578

generalized linear model or generalized additive model using the same formula579

for each species and subsequently use contrast basis elements, vCe , to change the580

basis for regression parameters of interest - such expansions of the maximum-581
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likelihood estimates of regression coe�cients are maximum likelihood estimates582

of the expansion by the invariance of maximum likelihood estimates. To be583

precise, given an m× p matrix, B, of coe�cients used in regression on species-584

speci�c data. In particular, generalized linear models will model the predictors,585

η ∈ Rs, for each species through a linear model586

η ∼ BZ. (14)

Instead of using the exhaustive s × p list of coe�cients, one can represent the587

coe�cient matrixB through contrast basis elements and their component scores588

B = 1wT
0 + VW + ε (15)

where 1 ∈ Rs is the one vector, w0 ∈ Rp contains the sum of the regression589

coe�cients for each of the p predictors, V ∈ Rs×Kt is a matrix whose columns590

are contrast basis elements and W ∈ RKt×p is a matrix whose rows are the591

component scores for each contrast basis element. One example of an objective592

function guiding the choice of contrast basis elements can be the norm593

ωe = ||vTCeB|| (16)

which captures the extent to which coe�cients in B are di�erent between the594

sets of species partitioned by the edge e. Another option for an objective func-595

tion is the deviance of a reduced model with shared coe�cients.596

Other options for aggregation and contrast exploit the factor-contrasts built597

into generalized linear and additive modeling machinery. Factor contrasts, such598

as a variable g ∈ {R,S} indicating which group a species is in, can capture599

the assumption of shared coe�cients within-groups and di�erent coe�cients600
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between-groups in multivariate generalized linear modeling across all species. A601

third option is to assume within-group homogeneity and aggregate exponential602

family random variables to a �marginally stable� exponential family random603

variable used for analysis. Marginal stability, to the best of our knowledge, has604

not been explicitly de�ned elsewhere, and thus we introduce the term here by605

loosening the de�nition of stable distributions [41].606

Stable distribution A distribution with parameters θ, F(θ), is said to be607

stable if a linear combination of two independent random variables from F(θ)608

is also in F(θ), up to location and scale parameters.609

Marginally stable distribution A distribution with parameters {θ1, θ2},F(θ1, θ2),610

is said to be marginally stable on θ1 if F(θ1, θ2) is it is stable conditioned on θ1611

being �xed.612

613

For example, the Gaussian distribution is stable: the sum of two Gaus-614

sian random variables is also Gaussian. Meanwhile, binomial random variables615

Binom(ρ,N) are marginally stable on ρ; random variables xi ∼ Binom(ρ,Ni)616

can be summed to yield A(x) ∼ Binom(ρ,
∑
Ni). The marginal stability can617

also be used with transformations that connect the assumed distribution of the618

data to a marginally stable distribution. Log-normal random variables can be619

converted to Gaussians through exponentiation; chi random variables can be620

converted to chi-squared through squaring - random variables from many dis-621

tributions may be analyzed by transformation to a stable or marginally stable622

family of distributions. Such transformation-based analyses implicitly de�ne623

aggregation through a generalized f -mean624

Af (xR) = f−1

(∑
i∈R

f(xi)

)
(17)
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where f(x) = log(x) for log-normal random variables, f(x) = x2 for Chi ran-625

dom variables, etc. The goal of such aggregation, whether through exploiting626

marginal stability or generalized f -means or other group operations in the ex-627

ponential family, is to produce summary statistics for each group, R and S, in a628

manner that permits generalized linear modeling of the summary statistics. By629

ensuring summary statistics are also exponential-family random variables, one630

can perform a factor-contrast style analysis as described above but only on the631

two summary statistics and not on all s species. Doing so can greatly reduce632

the computational load of phylofactorizing large datasets and, as we show be-633

low, can increase the power of edge-identi�cation even when the within-group634

homogeneity assumption does not hold. Marginal stability, for the purposes of635

phylofactorization, must be on the parameter of interest in generalized linear636

modeling (Figure 3a).637

Marginal stability opens up more distributions to stable aggregation. Pres-638

ence absence data, for instance, can be assumed to be Bernoulli random vari-639

ables. The assumption of within-group homogeneity for the probability of pres-640

ence, ρ, allows addition of Bernoulli random variables within each group, R641

and S, to yield a respective binomial random variable, xR and xS . Likewise,642

the addition of a group of binomial random variables with the same proba-643

bility of success, ρ, yields an aggregate binomial random variable. A homo-644

geneous group of exponential random variables with the same rate parameter,645

λ, can be added to form a gamma random variable. Gamma random vari-646

ables, xi ∼ Gamma(κi, θ), parameterized by their shape, κi, and scale, θ, are647

marginally A-stable on θ. Addition of geometric random variables with the648

same rate parameter forms a negative binomial, and the addition of a group649

of negative binomial random variables, xi ∼ NB(πi, ρ), with the same proba-650

bility of success ρ but di�erent numbers of failures, πi, can be aggregated into651
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xR =
∑
i∈R xi where xR ∼ NB

(∑
i∈R πi, ρ

)
. All of these distributions are not652

stable, but they are marginally stable.653

For a practical example of regression phylofactorization of an exponential654

family random variable, we consider a presence/absence dataset X, whose en-655

tries xi,j are assumed to be Bernoulli random variables with some probability656

dependent upon meta-data, ρi,j(Z), modeled naturally through the canonical657

link function, η. Phylofactorization can identify edges which separate species658

based on their response to a set of environmental variables, {zk}. For exam-659

ple researchers sequencing microbial 16S sequences in the soil may have data660

on the presence/absence of microbes across a range of biomass, pH, and nitro-661

gen concentrations and be interested in identifying the edges that best separate662

microbes based on di�erential probability of presence in response to nitrogen,663

controlling for common responses to biomass and group-speci�c responses to pH.664

Such questions can be addressed through appropriate choice of factor contrasts665

in a generalized linear model, with the optional use of within-group homogeneity666

to allow aggregation of presence/absences to binomial random variables.667

A more general formula for phylofactorization based on predictors in regres-668

sion models for exponential family random variables can be made by partitioning669

the independent variables, {zk}pk=1, into three disjoint sets: a set U of universal670

e�ects assumed to have a common e�ect across species, a set B of group-speci�c671

e�ects one wishes to control for, and a set P of group-speci�c e�ects one wishes672

to use for phylofactorization. Instead of a species-speci�c, multivariate general-673

ized linear model of the predictor for each species i, ηi,674

ηi = βi,0 + βi,1z1 + ...+ βi,pzp, (18)

one can de�ne a factor, g ∈ {R,S}, which indicates which group a species is675

in (or, for aggregated data A(xR), which group the aggregate corresponds to),676
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and construct a generalized linear model677

η =
∑
l∈U

βlzl + g ×
∑
j∈B

βjzj + g ×
∑
k∈P

βkzk, (19)

where g×zj indicates an interaction term between the group factor and the678

independent variable zj . For example, a data frame contrasting the counts of679

�birds� from �non-birds� can be constructed as follows680

Site Species Abundance z1 z2 g

1 Sparrow 10 1 .5 R

1 Dove 8 1 .5 R

1 Lizard 1 1 .5 S

1 Mouse 3 1 .5 S

1 Cat 1 1 .5 S

2 Sparrow 2 0 -2 R

2 Dove 1 0 -2 R

2 Lizard 10 0 -2 S

2 Mouse 4 0 -2 S

2 Cat 3 0 -2 S

... ... ... ... ... ...

and a generalized linear model for a count family (e.g. Poisson, binomial, or681

negative binomial) with the formula682

Abundance ∼ z1 + g × z2

can be used for maximum likelihood estimation of g, the factor which contrasts683

birds from non-birds whose coe�cient or deviance can be used as the objective684

function.685

The contrast function is de�ned through the factor-contrast, and one exam-686
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ple of an objective function is an omnibus test for all interaction terms between687

g and predictors for phylofactorization, P, relative to the model containing only688

the terms from U and B. Another example of an objective function can be689

the L2 norm of the coe�cients ~βP of interest for phylofactorization. For the690

example with carbon, pH, and nitrogen, one can perform phylofactorization to691

identify edges di�erentiating microbial presence-absences (or negative binomial692

sequence-counts) through factor-contrasts in the model693

η = Carbon + g × pH + g ×Nitrogen. (20)

The same principle of optional aggregation to marginally stable distributions694

followed by factor-contrasts can be applied to perform phylofactorization of695

exponential family random variables through generalized additive models.696

These two approaches are by no means an exhaustive list of how to integrate697

generalized linear modeling into phylofactorization. For instance, it may be698

possible to perform phylofactorization by representing a vector of canonical link699

functions for two groups or multiple species, η, in terms of �canonical contrasts�700

using an aggregation-contrast basis de�ned above. The examples included are701

intended to illustrate the feasibility and creative options for robust and statis-702

tically well-calibrated phylofactorization of datasets comprised of non-Gaussian703

random variables.704
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Figure 4: Factor contrasts can be used to de�ne objective functions for phylofactorization of

exponential family random variables. (A) Each edge separates the species in a sample into two

groups. These groups can be used as factors directly in a generalized linear model as in equation

13. Alternatively, a within-group homogeneity assumption can be used to aggregate data of many

exponential family random variables to a marginally stable distribution, such as addition of Bernoulli

random variables with the same probability of success to obtain a binomial random variable, or

addition of exponential random variables with the same rate parameter to obtain a gamma random

variable. Regression on marginally stable random variables may dramatically reduce computational

costs and improve accuracy. (B) Simulations of Bernoulli presence/absence data of 30 species with

a random phylogeny suggest that aggregation to binomial improves power across a range of e�ect

sizes, δ, (x-axis), sample sizes, n (rows), and within-group heterogeneity, σ (see supplemental info for

more details on the simulations). In all cases considered here, aggregation of presence-absence data

to binomial random variables for subsequent factor-contrasts outperformed the raw factor contrast

of Bernoulli presence/absence data, suggesting it is at least a viable tool for large datasets, but the

generality of improved power of regression on surrogate, marginally stable aggregates remains to be

seen.
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To test and compare the viability of the two proposed methods - raw fac-

tor contrasts and aggregation to a marginally stable distribution - we simu-

lated 700 replicates of e�ects of the form in equation (13) for the probability

of presence on random edges, with varying e�ect sizes, sample sizes and with-

ing group homogeneity. For 700 replicates for each combination of sample size

n ∈ {5, 10, 30, 60}, e�ect size δ ∈ {0, 0.375, 0.75, 1.125, 1.5, 1.875, 2.25, 2.625, 3},

and within-group variance σ ∈ {0, 1, 2}, we simulated three explanatory vari-

ables {z1, z2, z3} as independent, identically distributed n-vectors of standard

normal random variables. The log-odds of presence for individual i in group R

or group S was modeled as

ηR,i = z1 + z2 +

(
0.1 +

δ

2

)
z3 + z4,i

ηS,i = z1 − z2 +

(
0.1− δ

2

)
z3 + z4,i (21)

where z4,i
i.i.d.∼ N(0, σ2) are independent Gaussian random variables particular705

to the individual and sample. The data were either kept as Bernoulli random706

variables or aggregated via summation to binomial random variables and then707

analyzed using factor contrasts in a generalized linear model of the form708

η = z1 + g × z2 + g × z3. (22)

The objective function was the deviance from the �nal term, g×z3. The proba-709

bility of identifying the correct edge and the distance between the identi�ed and710

correct edge (in the number of nodes separating the two edges) are plotted in711

Figure 4b. The method of factor-contrasts for glm-phylofactorization asymptot-712

ically approaches perfect edge-identi�cation, both in the probability of detecting713

the correct edge and in distance from the correct edge, as the sample sizes and714

e�ect sizes increase. Aggregation to binomial and subsequent factor-contrast of715
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the aggregates slightly improved the power of edge-identi�cation in these sim-716

ulations. While the performance of the Bernoulli to binomial aggregation may717

decrease with di�erences in within-group means as opposed to an addition of718

individual within-group variance through z4,i, our purpose here is to illustrate719

that there exist methods of aggregation and contrast which permit maximum-720

likelihood regression-phylofactorization of exponential family random variables.721

Marginally-stable aggregation and stepwise construction of factor contrasts are722

but one viable way to extend regression-phylofactorization to exponential family723

random variables.724

Phylogenetic factors of space and time725

So far, we've demonstrated phylofactorization through examples of cross-sectional726

data, either through two-sample tests of cross-sections of species or through anal-727

yses of contrast-basis projections or factor contrasts in communities sampled728

across a range of meta-data. Phylofactorization can also be used in conjunction729

with many analyses of spatial and temporal patterns. Samples of a commu-730

nity over space can be projected onto contrast basis elements and the resulting731

component scores, ye, can be analyzed much like PhyCA to identify the phy-732

logenetic partitions of community composition over space. Spatial samples can733

also be analyzed using factor contrasts as de�ned for generalized linear mod-734

els. Multivariate Autoregressive Integrated Moving Average (ARIMA) models735

can be constructed either as ARIMA models of the component scores, ye, or as736

multivariate ARIMA models with factor contrasts as used in generalized linear737

models perform phylogenetic partitions based on di�erences in drift, volatility,738

and other features of interest.739

Marginal stable aggregation in spatial and temporal data requires a more740

complex consideration of the marginal stability of spatially explicit random vari-741
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able and stochastic processes. Stability�, for spatially and temporally explicit742

random variables, must preserve the underlying model for the spatial or tempo-743

ral process being used for analysis. An example of marginally stable aggregation744

and analysis of time-series data is the stability of neutral drift (sensu Hubbell745

[22]) to grouping and the use of a constant volatility transformation for neutral-746

ity testing.747

Neutral communities �uctuate, and those �uctuations have a drift and volatil-748

ity unique to neutral drift. Neutral drift can also be de�ned either by discrete,749

�nite-community size urn processes or stochastic di�erential equations for the750

continuous approximations of �nite but large communities. Recently, Wash-751

burne et al. [50] articulated the importance of a feature of neutral drift which752

enables time-series neutrality tests: its invariance to grouping of species. If a753

stochastic process of relative abundances, Xt, obeys the probability law de-754

�ned by neutral drift (either for discrete, �nite communities or their continu-755

ous approximations, referred collectively as �neutral process�), then any disjoint756

groupings of Xt is also a neutral process. Thus, neutral processes are stable757

to aggregation by grouping or summation of relative abundances. Collapsing758

all species into two disjoint groups, R and S, yields a two-dimensional neu-759

tral drift well-de�ne neutrality test for time-series data. Speci�cally, if Xt is a760

Wright Fisher process and R and S are disjoint groups whose union is the entire761

community, the quantity762

νt = arcsin

(∑
i∈R

Xi,t

)
−

∑
j∈S

Xj,t

 (23)

has a constant volatility which serves as a neutrality test for time-series data.

Thus, phylofactorization can be done to partition edges across which the dy-

namics appear to be the least neutral. For the test developed by Washburne
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et al., the aggregation operation is the L1 norm and the contrast operation is

subtraction:

A(xR) = |xR|

C(A(xR), A(xS)) = A(xR)−A(xS) (24)

and the objective function, ω, for edge e is the test-statistic of a homoskedasticity763

test ofarcsin(Ce). Neutrality is a relative measure - biological units are neutral764

relative to one-another - and thus the use of aggregation of species into a unit765

and a contrast of two units is a natural connection between the theory and766

operations of phylofactorization and the concept of neutrality.767

Whether the data are cross-sectional or spatially/temporally explicit, phylo-768

factorization can be implemented through analysis of data projected onto the769

contrast basis, factor contrasts in autoregression, or model-speci�c marginally-770

stable aggregation and contrast such as that demonstrated for neutrality testing771

of time-series data.772

Statistical Challenges773

We present a unifying algorithm which partition organisms into functional groups774

by identifying meaningful di�erences or contrasts along edges in the phylogeny.775

Phylofactorization is formally de�ned as a graph-partitioning algorithm. How-776

ever, maximizing the variance of the data projected onto contrast basis elements777

corresponding to edges in the phylogeny is a constrained principal components778

analysis. The use of regression-based objective functions and the iterative con-779

struction of a low-rank approximation of a data matrix is similar to factor anal-780

ysis. The discovery of a sequence of orthogonal factor contrasts in generalized781

linear models is a form of stepwise or hierarchical regression. The maximization782

of the objective function at each iteration is a greedy algorithm. Each of these783
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connections between phylofactorization and other classes of methods produces a784

body of literature from related methods which could inform phylofactorization.785

The relation of phylofactorization to pre-existing methods presents a suite of786

opportunities for rapid development of this exploratory tool into a more robust,787

inferential one.788

There are statistical challenges common across many methods for phylofac-789

torization. In this section, we enumerate some of the statistical challenges and790

discuss work that has been done so far. First, as with any method using the phy-791

logeny as a sca�old for creating variables or making inferences, the uncertainty792

of the phylogeny and the common use of multiple equally likely phylogenies war-793

rant consideration and further method development. Other challenges discussed794

here are: understanding the propagation of error; development of Metropolis al-795

gorithms to better arrive at global maxima; the appropriateness, and error rates,796

of phylofactorization under various evolutionary models underlying the e�ects797

(e.g. trait di�erences, habitat associations, etc.) and residuals in our data;798

understanding graph-topological biases and con�dence regions; cross-validating799

the partitions and inferences from phylofactorization; determining the appropri-800

ate number of factors and stopping criteria to stop a running phylofactorization801

algorithm; and understanding the null distribution of test-statistics when objec-802

tive functions being maximized are themselves test-statistics from a well-known803

distribution. Any exploratory data analysis tool can be made into an inferential804

tool with appropriate understanding of its behavior under a null hypothesis,805

and the connections of phylofactorization to related methods can accelerate the806

development of well-calibrated statistical tests for phylogenetic factors.807

Phylogenetic inference So far we have assumed that the phylogeny is known808

and error free, but the true evolutionary history is not known - it is estimated.809

Consequently, phylofactorizations are making inferences on an uncertain scaf-810
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fold - the more certain the sca�old, the more certain our inferences about a811

clade. Two challenges remain for dealing with phylofactorization on an uncer-812

tain phylogeny. For a consensus tree, there is the question of what statistics of813

the consensus are most easily integrated for precise statements of uncertainty814

in phylofactorization inferences. Bootstrapped con�dence limits for monophyly815

[12] are the most commonly used statement of uncertainty for a consensus tree,816

but there may be others as well. Di�erent organisms will have di�erent lever-817

ages in regression or two-sample test phylofactorization, and thus monophyly818

is only part of the picture: leverage is another. For a set of equally likely819

bootstrapped trees, there is a need to integrate phylofactorization across trees.820

Phylofactorization of bundles of phylogenies has not yet been done, but may be821

a fruitful avenue for future research. One last option for researchers with trees822

containing clades with low bootstrap monophyly is to lower the resolution of the823

tree. Phylofactorization can still be performed on a tree with polytomies - the824

mammalian phylogeny used above contained many - and reducing the number825

of edges considered at each iteration can focus statistical e�ort (and chances of826

false-discovery) on clades about which the researcher is more certain.827

Propagation of error Phylofactorization is a greedy algorithm. Like any828

greedy algorithm, the deterministic application of phylofactorization is non-829

recoverable. Choosing the incorrect edge at one iteration can cause error to830

propagate, potentially leading to decreased reliability of downstream edges. Lit-831

tle research has been done towards managing the propagation of error in phylo-832

factorization, but recognizing the method as a greedy algorithm suggests options833

for improving performance. Stochastic-optimization schemes, such as replicate834

phylofactorizations using Metropolis algorithms and stochastic sampling as im-835

plemented in the mammalian tree phylofactorization (sampling of edges with836

probabilities increasing monotonically with ωe and picking the phylofactor ob-837
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ject which maximizes a global objective function), may reduce the risk of error838

cascades in phylofactorization [20]. We leave this important problem, and the839

construction of suitable algorithms, to future research.840

Behavior under various evolutionary models Phylofactorization is hy-841

pothesized to work well under a punctuated-equilibrium model of evolution or842

jump-di�usion processes [15, 26] in which jumps are infrequent and large, such as843

the evolution of vertebrates to land or water. If few edges have large changes in844

functional ecological traits underlying the pattern of interest, phylofactorization845

is hypothesized to work well. Phylofactorization may also work well when in-846

frequent life-history traits arise or evolutionary events occur (such as ecological847

release) along edges and don't yield an obvious trait but instead yield a cor-848

related, directional evolution in descendants. Phylofactorization of mammalian849

body sizes yielded a scenario hypothesized to be in this category. In this case the850

exact trait may not have arisen along the edge identi�ed, but a precursor trait,851

or a chance event such as extinctions or the emergence of novel niches, may852

precipitate downstream evolution of the traits underlying phylofactorization.853

Both aggregation and contrast functions can incorporate phylogenetic structure854

and edge lengths to partition the tree based on likelihoods of such evolutionary855

models. The sensitivity of phylofactorization to alternative models, such as the856

myriad Brownian motion and Ornstein-Uhlenbeck models commonly used in857

phylogenetic comparative methods [13, 19], remains to be tested and will likely858

vary depending on the particular method used.859

Basal/distal biases Researchers may be interested in the distribution of fac-860

tored edges in the tree. If a dataset of microbial abundances in response to861

antibiotics is analyzed by regression-phylofactorization and results in many tips862

being selected, a researcher may be interested in quantifying the probability of863

42

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


drawing a certain number of tips given t iterations of phylofactorization. Alter-864

natively, if several edges are drawn in close proximity researchers may wonder865

the probability of drawing such clustered edges under a null model of phylofac-866

torization. For another example, researchers may wonder if the number of im-867

portant functional ecological traits arose in a particular historical time window868

(e.g. due to some hypothesis of important evolutionary event or environmental869

change), and thus want to test the probability of drawing as many or more870

edges than observed under a null model of phylofactorization. All of these tests871

would require an accurate understanding of the probability of drawing edges in872

di�erent locations of the tree.873

All methods described here, save the Fisher exact test, have a bias for tips874

in the phylogeny (Figure 5a). Such biases a�ect the calibration of statistical875

tests of the location of phylogenetic factors, such as a test of whether/not there876

is an unusually large number of di�erentiating edges in mammalian body mass877

during or after the K-Pg extinction event.878
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Figure 5: Graph topological bias in null data and the relative size of Voronoi cells of

contrast basis elements. The method and the null distribution determine graph-topological bias

of phylofactorization, but many methods share a common source of bias. A random draw of edges

does not discriminate against edges based on the relative sizes of two groups contrasted by the

edge, but 16,000 replicate phylofactorizations of null data reveal that contrast-basis methods are

slightly biased towards uneven splits (e.g. tips of the phylogeny). Standard Gaussian null data were

used for PhyCA, F-statistics from regression on contrast basis elements (ye ∼ z), and binomial null

data was used for generalized phylofactorization (gpf) through marginally-stable aggregation. Other

methods, such as Fisher's exact test of a vector of Bernoulli random variables, have opposite biases.

The tip-bias of contrast-basis analysis is ampli�ed for marginal-stable aggregation in generalized

phylofactorization, and ampli�ed even more if the null data have residual structure from a Brownian

motion di�usion along the phylogeny (Phyl-BM). The common bias when using contrast bases across

a range of objective functions is related to the uneven relative sizes of Voronoi cells produced by

the bases, simulated here by equation (26).

Phylofactorization using the contrast basis is biased towards the tips of879

the tree. Some progress can be made towards understanding the source of880

basal/distal biases in phylofactorization via the contrast-basis. The biases from881

analyses of contrast basis coordinates, ye, stem from a common feature of the882

set of Kt candidate basis elements {vCe}
Kt
e=1 considered at iteration t of phylo-883

factorization. For the example of the t-test phylofactorization of a vector of884

data, x, the winning edge e∗ is885

e∗ = argmax
e
|vTCex|. (25)

44

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


If all basis elements have unit norm, which they do under equation (5), then886

each basis element being considered corresponds to a point on anm-dimensional887

unit hypersphere. If the data, x, are drawn at random, such that no direction888

is favored over another, the probability that a particular edge e is the winning889

edge is proportional to the relative size of its Voronoi cell on the surface of the890

unit m-hypersphere. Thus, the basal/distal biases for contrast-basis analyses891

with null data assumed to be drawn from a random direction can be boiled892

down to calculating or computing the relative sizes of Voronoi cells. For our893

simulation, we estimated the size of Voronoi cells through matrix multiplication894

Y null = V TXnull (26)

were V is a matrix whose columns j is the contrast basis elements for edge895

ej being considered and Xnull is the dataset simulated under the null model896

of choice whose columns are independent samples xj . Each column of Y null897

contains the projections of a single random vector - the element of each column898

with the largest absolute value is the edge closest to that random vector.899

Graph-topology and con�dence regions As a graph-partitioning algo-900

rithm, phylofactorization also invites a novel description of con�dence regions901

over the phylogeny. The graph-topology of our inferences - edges, and their902

proximity to other edges, both on the phylogeny and in the m-dimensional hy-903

persphere discussed above - can be used to re�ne our statements of uncertainty.904

95% Con�dence intervals for an estimate, e.g. the sample mean, give bounds905

within which the true value is likely to fall 95% of the time in random draws of906

the estimate. Con�dence regions are multi-dimensional extensions of con�dence907

intervals. Conceptually, it's possible to make similar statements regarding phy-908

logenetic factors - con�dence regions on a graph indicating the regions in which909
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the true, di�erentiating edge is likely to be.910

Extending the concept of con�dence regions to the graph-topological infer-911

ences from phylofactorization requires useful notions of distance and �regions� in912

graphs. One example of such a distance between two edges is a walking distance:913

the number of nodes one crosses along the geodesic path between two edges. Al-914

ternatively, one could de�ne regions in terms of years or branch-lengths. The915

issue of con�dence regions on graphs is conceptually possible and may prove im-916

portant for statements of certainty in phylogenetic factorization; it is an area of917

fruitful, future research. De�ning con�dence regions in phylofactorization must918

combine the uneven Voronoi cell sizes as well as the geometry of the contrast919

basis. For low e�ect sizes, con�dence regions extend generously to edges whose920

contrast basis have a large relative Voronoi cell size (e.g. the tips). As the e�ect921

sizes increase, con�dence regions over the graph can be described in terms of922

angular distances between the contrast basis elements and that of the winning923

edge, e∗ (Figure 6).924
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Figure 6: Graph-topological con�dence regions for phylofactorization. It may be possible

to describe con�dence regions around inferred edges by de�ning distances relevant to the method

and graph topology. A tree with 30 species was given a �xed e�ect about edge e∗ in their mean

values as a function of meta-data z ∼ Gsn(±δ/2, 1). 7×105 iterations of phylofactorization were run

and the relative probability of drawing each edge was visualized through both the color and width

of the edge. The relationship between the angular distance of an edge's contrast basis element to

that of e∗ and the probability of drawing the edge suggests that for low e�ects, con�dence intervals

must incorporate a mix of tip-bias and angular distance, but larger e�ect sizes, in which the edge

drawn is correctly in the neighborhood of e∗, the angular distance may provide a tractable method

for de�ning con�dence regions around the location of inferred phylogenetic factors.

Cross-validation How do we compare phylofactorization across datasets to925

cross-validate our results? If a researcher observes a pattern in the ratio of926

squamates to mammalian abundances in North America, say a decrease in the927

ratio of lizard and snake to mammal abundance with increasing altitude, they928

may wish to cross-validate their �ndings in other regions, including regions with929

few or none of the same species in the original study. Researchers replicating930

the study in Australia and New Zealand would have to grapple with whether931

or not to include monotremes in their grouping of �mammals� and whether or932

not to include the tuatara, a close relative of squamates, in their grouping of933

�squamates� - such branches were basal to the squamate & mammalian clades934

contrasted in the hypothetical North American study.935
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Phylofactorization formalizes the issues arising with such phylogenetic cross-936

validation (Figure 7). If all species in the training/testing datasets can be937

located on a universal phylogeny, phylofactorization of a training set of species938

and data identi�es edges or links of edges in the training phylogeny which are939

guaranteed to correspond to edges or links of edges in the universal phylogeny.940

The testing set of species may introduce new edges to the phylogeny which941

interrupt the links of edges in the universal phylogeny along which training942

contrasts were conducted. In the example above, the tuatara and monotremes943

all interrupt the link of edges separating North American mammals from North944

American reptiles on the universal phylogeny.945

Robust cross-validation for phylofactorization requires directly addressing946

the issues arising from the interruptions of edges produced by novel species.947

Interruptions may be either ignored, or used to re�ne the inference. Returning948

to the previous example, one can use the presence of monotremes and tuatara to949

re�ne the de�nition of North American mammals to mean �all mammals� and950

�all placental and marsupial mammals�, and likewise one can optionally re�ne951

the de�nition of �squamates� to the broader �Lepidosauria� clade.952
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Figure 7: Graph-topological considerations with cross-validation. (A) The training community

has 5 species (yellow boxes) split into two factors. The second factor forms a partition separating

t4 from {t2,t7}. The second factor does not correspond to a single edge, but instead a chain of two

edges. (B) A second, testing community is missing species t6 and t7 and contains novel species t3

and t5 (green boxes). (C) All factors can be mapped to chains of edges on a universal phylogeny.

Novel species �interrupt� edges in the original tree; cross-validation requires deciding what to do

with novel species and interrupted edges. Species t3 does not interrupt a factored edge, and so t3

can be reliably grouped with t1 in factor 1. However, species t5 interrupts one of the edges in the

edge-path of factor 2. (D-E) Interruptions can be ignored, or they can be used to re�ne the location

of important edges (illustrated in Factor 2.1 and Factor 2.2). Another topological and statistical

question is whether/not to control for factor order. For instance, controlling for factor order with

Factor 2.2 would partition t4 from {t2,t5}. Not controlling for factor order would partition t4 from

{t1,t2,t3,t5}.

Stopping Criteria With appropriately de�ned aggregation and contrast func-953

tions, phylofactorization can be iterated until every species is split and the graph954

is fully partitioned. However, such full partitioning is rarely desired. Rather,955

researchers may often want a minimal set of partitions for prioritization of �nd-956

ings, simplicity of summarizing the data, and certainty in the inferences made.957

There are two broad options for stopping phylofactorization: a stopping func-958
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tion demonstrated to be su�ciently conservative, and null simulations allowing959

quantile-based cuto�s (e.g. stop phylofactorization when the percent variance960

explained by PhyCA is within the 95% quantile of null phylofactorizations).961

Null simulations may allow statistical statements stemming from a clear null962

model, but stopping criteria can be far more computationally e�cient and can963

be constructed to be conservative.964

Washburne et al. [51] proposed a stopping criterion for regression-phylofactorization965

which extends to all methods of phylofactorization using an objective function966

that is a test-statistic whose null-distribution is known. The original stopping967

criterion is based on the fact that, if the null hypothesis is true, the distribu-968

tion of P-values from multiple hypothesis tests is uniform. Phylofactorization969

performs multiple hypothesis tests at each iteration. At each iteration, one970

can perform a one-tailed KS test on the uniformity of the distribution of the971

P-values from the test-statistics on each edge; if the KS-test is non-signi�cant,972

stop phylofactorization. KS-test stopping criteria can conservatively stop simu-973

lations at the appropriate number of factors when there is a discrete subset of974

edges with e�ects. Such a method performs similarly to Horn's stopping crite-975

rion for factor analysis [21], whereby one stops factorization when the scree plot976

from the data crosses that expected from null data (�gure 8). It's also possible977

to �rst use a stopping criterion and subsequently run null simulations to under-978

stand the likelihood of observed results under a null model of the researcher's979

choice (�gure 8).980
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Figure 8: Null simulations and stopping criteria. A challenge of phylofactorization is de-

termining the number of factors, K, to include in an analysis. Null simulations can be used to

construct quantile-based cuto�s such as those in Horn's parallel analysis from factor analysis. Stop-

ping criteria aim to stop the computationally intensive iteration of phylofactorization without using

null simulations but instead using features available during phylofactorization of the observed data.

Abundances of m = 32 species across n = 10 samples were simulated as i.i.d. standard Gaus-

sian random variables. To simulate e�ects, a set of u clades were associated with environmental

meta-data, z, where zj
i.i.d.∼ N(0, 1). Regression-phylofactorization on the contrast-basis scores

ye was performed on 300 datasets for each u ∈ {2, 4, 8, 16} and on data with and without e�ects,

with objective function being the variance explained by regression ye ∼ z. (top row) The percent

explained variance (EV) decreases with factor, k, and the mean EV curve for data with u a�ected

clades intersects the mean EV curve for null data near where k = u, motivating a stopping cri-

terion (Horn) based on phylofactorization of null datasets to be evaluated and compared to the

KS-based stopping criterion proposed by [51]. (bottom row) The Horn stopping criterion has a

lower over-factorization (OF) rate than the standard KS stopping criterion (where OF rate is the

fraction of the 300 phylofactorizations of data with simulated e�ects in which K > u). Both crite-

ria can be modi�ed to be made more conservative (e.g. the P-value threshold for the KS stopping

criterion can be lowered, or the Horn criterion can be modi�ed to stop the simulation at di�er-

ent quantiles of null simulations). The KS stopping criterion, however, is far less computationally

intensive for large datasets as it requires running phylofactorization only once. Null simulations,

however, can allow inferential statistical statements regarding the null distribution of test statistics

in phylofactorization.

Calibrating Statistical Tests for ωe∗ Often, the objective function for the

winning edge in phylofactorization, ωe∗ , corresponds directly to a common

test-statistic such as an F -statistic. Applying a standard test for the resul-
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tant test-statistic, however, will lead to a high false-positive rate and an over-

estimation of the signi�cance of an e�ect, as the statistic was drawn as the best

of many. Even when using a test-statistic not equal to the objective function,

researchers should be cautious of dependence between their test-statistic and

the objective function as a possible source of high false-positive rates. Two non-

exhaustive avenues for calibrating, or making conservative, statistical tests of

ωe∗are multiple-comparisons corrections to control a family-wise error rate (or

other multiple-hypothesis-test methods) or conservative bounds on the distri-

bution of the maximum of many independent, identically distributed statistics.

For example, if each edge of Kt edges resulted in an independent F -statistic,

Fe, then the distribution of the maximum F -statistics, Fe∗ , is

P {Fe∗ > F} = P {Fe1 > F ∩ Fe2 > F ∩ ... ∩ FeK}

= P {Fe > F}Kt . (27)

Such an approximation may be used to yield conservative estimates, but the981

F -statistics are not independent and thus more nuanced analyses are needed for982

well-calibrated statistical tests.983

Summary of limitations Phylofactorization can be a reliable statistical tool984

with a careful understanding of the statistical challenges inherent in the method985

and shared with related methods such as graph-partitioning, greedy algorithms,986

factor analysis, and the use of a constrained, biased basis for matrix factoriza-987

tion. Phylofactorization can �rst and easiest be an exploratory tool, but all988

exploratory tools can be made inferential with suitable understanding of their989

behavior under an appropriate null model. For example, principal components990

analysis was and still is primarily an exploratory tool, but the discovery of the991

Marcenko-Pastur distribution [30] has improved the calibration of statistical992
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tests on principal components for standardized, mean-centered data. Improved993

understanding of how uncertainties in phylogenetic inference translate to uncer-994

tainties in phylofactorization, conservative stopping criteria, null distributions995

of test-statistics for winning edges, propagation of error and stochastic sampling996

algorithms to avoid deterministic ruts, graph-topological biases and con�dence997

regions on a graph, can all improve the reliability of phylofactorization as an998

inferential tool.999

While phylofactorization was built with an evolutionary model of punctuated1000

equilibria in mind, it may also work well under other evolutionary models such1001

as niches leading to correlated evolution of descendants. There may also be1002

many evolutionary models under which phylofactorization does not perform1003

well. For instance the graph-topological biases of PhyCA are increased under1004

a Brownian motion model of evolution. All statistical tools operate well under1005

appropriate assumptions, and understanding the assumptions, as well as the1006

known limitations, are necessary for responsible and academically fruitful use1007

of statistical tools like phylofactorization.1008

Discussion1009

Functional ecological traits underlie many observed patterns in ecology, includ-1010

ing species abundances, presence/absence of species, and responses of traits1011

or abundances to experimental conditions or along environmental gradients.1012

Where the ecological pattern of interest is associated with heritable traits, the1013

phylogeny provides a sca�old for the discovery of functional groupings of clades1014

underlying the ecological pattern of interest. Traits arise along edges, and con-1015

trasting taxa on opposing sides of an edge allows one to uncover edges best1016

separating species with di�erent functional associations or links to the ecologi-1017
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cal pattern. By noting that each edge partitions the phylogeny into two disjoint1018

sets of species, by generalizing the operations of �grouping� - aggregating and1019

contrasting disjoint sets of species - and by de�ning the objective function of1020

interest (the pattern), we have proposed a universal method for identifying rel-1021

evant phylogenetic scales in arbitrary datasets.1022

Phylofactorization is a graph-partitioning algorithm intended to separate the1023

phylogeny into binned phylogenetic units with a combination of high within-1024

group similarity and high between-group di�erences. Two-sample tests are a1025

natural method for making such partitions in vectors of data, although such1026

partitions can also be made with ancestral state reconstruction. The idea be-1027

hind two-sample tests, however, can be extended to larger, real-valued datasets1028

by analysis of a contrast basis. Objective functions for choosing the appropriate1029

contrast basis include maximizing variance - a phylogenetic analog of principal1030

components analysis - maximizing explained variance from regression, maximiz-1031

ing F-statistics from regression, and more. We've illustrated that two-sample1032

tests can partition a dataset of mammalian body mass into groups with very1033

di�erent average body masses. We've demonstrated that maximizing variance1034

of data projected onto a contrast basis can identify major clades of bacteria in1035

human feces that have been known, at a coarser resolution, to be highly variable1036

and determined that one of the top phylogenetic factors in the American Gut1037

dataset is a clade of Gammaproteobacteria associated with IBD and used re-1038

cently in an e�ort to diagnose patients with Crohn's disease. We've shown that1039

such analysis of contrast bases can couple with non-linear regression, and within1040

minutes of analysis on a laptop found a natural way put over 3,000 species into 51041

binned phylogenetic units, sort them along an axis of the dominant explanatory1042

variable, and produce a simpli�ed story of the dominant phylogenetic scales of1043

explained variation in Central Park soil. One can also perform phylofactoriza-1044

54

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


tion when doing maximum-likelihood regression of exponential family random1045

variables. Factor contrasts are a natural, built-in method for extending the con-1046

cepts of aggregation and contrast to generalized linear models and generalized1047

additive models. One can either perform the factor contrasts on the raw data,1048

or, for many exponential family random variables, one can aggregate the data1049

from each group to a marginally stable distribution for more computationally1050

e�cient and powerful factor contrasts. These methods can be implemented in1051

the R package �phylofactor�, and scripts for running each analysis are available1052

in the supplemental materials.1053

As with any method, there are limitations to be aware of. First, the gen-1054

eral problem of separating species into k bins that maximize some global ob-1055

jective function of high within-group similarity and high between-group dif-1056

ferences is NP hard. Second, like any greedy algorithm, purely deterministic1057

phylofactorization may fall into ruts and errors in one step might propagate1058

into downstream inferences. Third, the null distribution of test-statistics re-1059

sulting from phylofactorization is not known and is biased towards extreme1060

values due to the algorithm choosing species which maximize objective func-1061

tions. We propose null simulations, conservative stopping functions, and/or1062

extremely stringent multiple comparisons corrections for users attempting to1063

make inferences through phylofactorization while maintaining a certain family-1064

wise error or false-discovery rate. When the objective function being maximized1065

is also a test-statistic with a well-de�ned null distribution, one-sided KS-tests1066

of the P-values from the test-statistic can serve as a computationally e�cient1067

and conservative stopping function. Fourth, the contrast basis is biased towards1068

the tips due, we hypothesize, to the unequal relative sizes of the Voronoi cells1069

of the contrast basis elements in the unit hypersphere in which they lie. Such1070

topological bias is exacerbated by data produced through Brownian motion dif-1071
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fusion along the phylogeny, and reversed for Fisher's exact test of a vector of1072

binary trait data. Understanding the graph-topology of errors can assist the1073

description of graph-topological con�dence regions for each inference. Finally,1074

phylofactorization formalizes the logic of cross-validating ecological comparisons1075

even when the training and testing sets of species are completely disjoint, but1076

such cross-validation must address the issues of interrupting edges and whether1077

or not to control for factor order in cross-validation. Many of these limita-1078

tions may be resolved with future work, allowing the general algorithm and its1079

common implementations to become a reliable, well-calibrated inferential tool.1080

Phylofactorization is its ability to objectively identify phylogenetic scales for1081

ecological big-data and instantly produce avenues for future research to elucidate1082

mechanisms that underlie patterns in big-data. By iteratively identifying clades,1083

phylofactorization provides a sequence of low-rank approximations of a dataset,1084

such as that visualized in �gure 3c, which correspond to groups of species with1085

a shared evolutionary history. What traits characterize the Chloracidobacteria1086

which don't like acidic soils? What traits characterize the monophyletic clade1087

of Gammaproteobacteria that are associated with IBD? What traits underlie1088

the Clostridia/Erysipelotrichi being such variable species in the American gut?1089

Phylofactorization has identi�ed clades from big-data, and produced questions1090

that can be subsequently answered by comparative genomics, microbial physio-1091

logical studies, and other clear avenues of future research.1092

Relation to other phylogenetic methods Phylofactorization is proposed1093

amidst an explosion of literature in phylogenetic comparative methods and vari-1094

ous other phylogenetic methods for analyzing ecological datasets [29, 38, 14], and1095

some careful thinking is bene�cial to clarify the distinctions between the myriad1096

methods. First, phylogenetically independent contrasts [13] produces variables1097

corresponding to contrasts of descendants from each node, whereas phylofactor-1098
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ization uses contrasts of species separated by an edge, picks out the best edge,1099

splits the tree, and repeats. Phylogenetic generalized least squares [16] aims to1100

control for residual structure in the response variable expected under a model of1101

trait evolution, and is thus used when performing regression on a trait, whereas1102

phylofactorization aims to partition observed trait values or abundances into1103

groups with di�erent means or associations with meta-data along edges along1104

which di�erences most likely arose. Thus, while methods of phylogenetic sig-1105

nal, such as Pagel's λ [35] or Blomberg's κ [5], summarize global patterns of1106

phylogenetic signal by parameterizing the extent to which a particular model of1107

evolution can be assumed to underlie the residual structure of observed traits1108

(often for downstream use in PGLS), phylofactorization iteratively identi�es1109

precise locations of putative changes and precise locations partitioning phyloge-1110

netic signal or structure. Phylofactorization can be implemented by a contrast1111

of ancestral state reconstructions of nodes separated by edges, for example by1112

looking for edges with nodes whose reconstructed ancestral states are most dif-1113

ferent, but is limited by disallowing the descendant clade of an edge to impact1114

the ancestral state of the edge's basal node - a proper non-overlapping contrast1115

would separate the groups of species being used to reconstruct each node, and1116

thus phylofactorization can be implemented with ancestral state reconstruction1117

under the assumption of time-reversible evolutionary models. Phylofactoriza-1118

tion develops a set of variables and an orthonormal basis to describe ecological1119

data, but limits itself to bases interpretable as non-overlapping contrasts along1120

edges; eigenvectors of phylogenetic distances matrices or covariance matrices1121

under di�usion models of traits [35], are not encompassed in phylofactorization1122

as they do not construct non-overlapping contrasts along edges. Such eigenvec-1123

tor methods construct quantities whose evolutionary interpretation is less clear.1124

Unlike many modern methods for re-de�ning distances, such as UniFrac dis-1125
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tances [29] or phylogenetically-de�ned inner products [38], phylofactorization is1126

principally about discovering phylogenetically-interpretable directions - vectors1127

which characterize primary axes of variation in the community and represented1128

through the contrast basis, a multilevel-factor developed from stepwise selection1129

of factor contrasts, or a basis made of aggregations of the binned phylogenetic1130

units.1131

Phylofactorization as a species concept There is great debate about what1132

constitutes a species in microbes, let alone all organisms. There is a need for1133

objectivity and universality in the de�nition of �species� and other units in1134

ecology and evolution. The biological species concept is complicated by asex-1135

ual reproduction. Genetic species concepts are limited by the subjectivity of a1136

sequence-similarity cuto�, such as the 97% sequence similarity commonly used1137

in de�ning operational taxonomic units or OTUs, which is additionally compli-1138

cated by the fact that functional ecological similarity may not be uniform at1139

a given sequence-similarity cuto�. Ecological species concepts are often useful1140

once researchers have a clear sense of the functional ecological groups, but it is1141

di�cult to objectively de�ne what constitutes an important functional ecologi-1142

cal group, especially for taxa whose life histories are unknown. Species concepts1143

coarse-grain the diversity of life in a way that connects our coarse-grained units1144

to biological, ecological, and evolutionary theory. To that end, phylofactoriza-1145

tion can be seen as de�ning a species concept.1146

Species concepts are fundamental to biology as they partition the diversity of1147

life into units between which we de�ne ecological interactiosn and within which1148

we de�ne evolution and natural selection. At the heart of species concepts are1149

the operations fundamental to phylofactorization: aggregation, contrast, and an1150

objective function. Species are aggregations of �ner units of diversity: individual1151

subpopulations of individual organisms and their individual cells and the cells'1152
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individual genes are all aggregated to de�ne a �population�. Aggregation in a1153

species concept de�nes a clear partition for later �within-species� contrasts (evo-1154

lution) and �between-species� interactions (competition & ecological interactions1155

among populations or aggregates of species). A species concept must meaning-1156

fully contrast the units of diversity - the biological species concept contrasts1157

species based on reproductive isolation, the genetic species concept contrasts1158

species based on genetic disimilarity, and ecological species concepts contrast1159

species based on distinct functional ecological traits. The objective function in1160

phylofactorization is the theoretical placeholder for a researcher's �meanintful1161

contrast�. The units for aggregation and contrast must be done in light of some1162

objective, such as a common �tness or pattern of relative abundance within units1163

over time, space, across environmental gradients and/or between experimental1164

treatments. A full theoretical consideration of phylofactorization as a species1165

concept, as it relates to evolutionary and ecological theory, is saved for future1166

research. For the time being, we note that phylofactorization partitions diver-1167

sity and yields notions of a �species� which can be aggregated and contrasted1168

with other �species�.1169

Phylofactorization is a �exible species concept, a hybrid of the phylogeny-1170

based phylogenetic species concept [34] and the character-based ecological species1171

concept [48]. After k iterations of phylofactorization, the phylogeny is par-1172

titioned into k + 1 bins of species referred to as �binned phylogenetic units�1173

(BPUs). BPUs are aggregations of the phylogeny which, up to a certain level1174

of partitioning, are more similar to one-another with respect to the aggrega-1175

tion, contrast and objective function, than they are to other groups. BPUs are1176

a coarse-grained way to cluster entities into �units� of organization with com-1177

mon behavior with respect to the ecological pattern de�ned in the objective1178

function. Phylofactorization de�nes functional groups based on phylogenetic1179
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partitions and a similar association with some ecological pattern of interest.1180

Consequently, phylofactorization can be seen as an ecological species concept1181

constrained to a phylogenetic sca�old. Whereas the phylogenetic species con-1182

cept is character-based and pattern oriented, phylofactorization is pattern-based1183

and phylogenetically-constrained. A textbook example of a phylofactorization-1184

derived species are �land-dwelling tetrapods�, a group which can be obtained1185

objectively through phylofactorization and which de�nes a scale for aggregating1186

and summarizing the pattern of vertebrate species-abundances on Earth.1187

Phylofactorization permits optional �ne-graining and coarse-graining of our1188

patterns of diversity. Phylofactorization provides an algorithm for identifying1189

relevant units, and those units may be at di�erent taxonomic or phylogenetic1190

depths but will have shared evolutionary history and similar associations with1191

the ecological pattern of interest. For microorganisms, for which the biological1192

species concept doesn't apply, the genetic species concept appears too detached1193

from ecology, and the ecological species concept is unavailable due to lack of1194

life history detail, phylofactorization serves as a way to organize diversity for1195

focused between-species interactions and within-species comparisons.1196

R package: phylofactor An R package is in development and, prior to its1197

stable release to CRAN, publicly available at https://github.com/reptalex/phylofactor.1198

The R package contains detailed help functions and supports �exible de�nition1199

of two-sample tests (the function twoSampleFactor), contrast-basis analyses with1200

the function PhyloFactor, and generalized phylofactorization of exponential fam-1201

ily random variables with the function gpf. Phylofactorization is highly paral-1202

lelizable, and the R package functions have built-in parallelization. The R pack-1203

age in development also works with phylogenies containing polytomies, allowing1204

researchers to collapse clades with low bootstrap support to make more robust1205

inferences. The output from each of the three phylofactorization functions is1206

60

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


a �phylofactor� object one can input into various functions which summarize,1207

plot, cross-validate, run null simulations, and parse out the information from1208

phylofactorization. Future releases aim to simplify this into a single function:1209

phylofactor. Researchers are invited to contact the corresponding author for1210

assistance with the package and how to produce their own customized phylo-1211

factorizations - such feedback will be essential for a user-friendly stable release1212

to CRAN.1213

Until then, the supplemental information contains the data and scripts used1214

for all analyses done in this manuscript in an e�ort to accelerate method devel-1215

opment in this �eld.1216

�Everything makes sense in light of evolution� Phylogenetic factoriza-1217

tion is a new paradigm for analyzing a large class of biological data. Ecological1218

big-data, as Thomas Dhobzansky noted about biology in general, makes sense1219

�in light of evolution�. Phylofactorization extends a broad category of data anal-1220

yses - two sample tests, generalized linear modelling, factor analysis and PCA,1221

and analysis of spatial and temporal patterns - to incorporate a natural set of1222

variables and operations de�ned by the phylogeny. Phylofactorization localizes1223

inferences in big data to particular edges or chains of edges on the phylogeny1224

and, in so doing, can accelerate our understanding of the phylogenetic scales1225

underlying ecological patterns of interest. The problem of pattern and scale is1226

central to biology, and phylofactorization uses the pattern to objectively uncover1227

the relevant phylogenetic scales in ecological datasets.1228
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Table of mathematical notation1233

Term Description

A(.) Aggregation operator

C(., .) Contrast operator

F(θ) Distribution parameterized by θ

Fe F-statistic for edge e

Kt Number of edges considered in iteration t of phylofactorization

N Size of a binomial random variable

Q A group Q = R ∪ S aggregated at a current or previous iteration

R, S Two groups contrasted containing r and s species, respectively

U,B,P Meta-data subsets for phylofactorization

T Phylogenetic tree

V m ×Kt matrix of contrast basis elements considered at iteration t

X m × n data matrix used for phylofactorization

Y K × n matrix of component scores, one for each edge considered

Z n × p matrix of meta-data used in regression-phylofactorization

a Coe�cient in aggregation vector

b, c Coe�cients in a contrast vector

ek Edge k

e∗ Winning edge

e∗t Winning edge at iteration t

f(.) Transformation in generalized f-mean

g Factor containing two levels, {R, S}

i, j, k, l Indexes. Often, i is the index for species and j for samples.

m Number of species

n Number of samples

p Number of meta-data types for each sample

q Number of pure aggregates in a basis for Rm

Terms Description

r, s Numbers of species in groups R, S respectively

s(.) Smoothing spline notation for term in generalized additive model

t Iteration of phylofactorization

xi,j The i, jth element of data matrix X

xR,j Aggregate, A(xj) of group R for sample j. If j is missing then sample is arbitrary.

xS,j See xR,jabove.

xi A random variable (assumed to be a single species i for arbitrary sample)

[x]i,j i, jth entry of data matrix, X

zi Column of meta-data matrix, Z

vQ,i ith element of aggregation basis for set Q

vCR|S
Contrast vector splitting groups R and S

vCe
Contrast vector for edge e (which splits sub-tree into two disjoint groups)

xR,j r-vector containing only the species in group R for sample j

xS,j See xR,j above.

x m-vector of species' data for an arbitrary sample

x̄ Sample mean of vector x

ye n-vector of component scores for edge e

zk Vector of meta-data of type k.

βi Coe�cients for linear model

η Natural parameter for exponential-family random variable

κ Scale parameter for Gamma distribution

π Number of failures parameter for Negative Binomial distribution.

ρ Probability of success for Bernoulli, Binomial, Negative Binomial distributions

σ Standard deviation for Gaussian random variable

θ Arbitrary parameters for probability distribution
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