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Abstract21

The problem of pattern and scale is a central challenge in ecology. The problem22

of scale is central to community ecology, where functional ecological groups are23

aggregated and treated as a unit underlying an ecological pattern, such as ag-24

gregation of �nitrogen �xing trees� into a total abundance of a trait underlying25

ecosystem physiology. With the emergence of massive community ecological26

datasets, from microbiomes to breeding bird surveys, there is a need to objec-27

tively identify the scales of organization pertaining to well-de�ned patterns in28

community ecological data.29

The phylogeny is a sca�old for identifying key phylogenetic scales associ-30

ated with macroscopic patterns. Phylofactorization was developed to objec-31

tively identify phylogenetic scales underlying patterns in relative abundance32

data. However, many ecological data, such as presence-absences and counts,33

are not relative abundances, yet it is still desireable and informative to identify34

phylogenetic scales underlying a pattern of interest. Here, we generalize phylo-35

factorization beyond relative abundances to a graph-partitioning algorithm for36

any community ecological data.37

Generalizing phylofactorization connects many tools from data analysis to38

phylogenetically-informed analysis of community ecological data. Two-sample39

tests identify three phylogenetic factors of mammalian body mass which arose40

during the K-Pg extinction event, consistent with other analyses of mammalian41

body mass evolution. Projection of data onto coordinates de�ned by the phy-42

logeny yield a phylogenetic principal components analysis which re�nes our un-43

derstanding of the major sources of variation in the human gut microbiome.44

These same coordinates allow generalized additive modeling of microbes in Cen-45

tral Park soils and con�rm that a large clade of Acidobacteria thrive in neutral46

soils. Generalized linear and additive modeling of exponential family random47
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variables can be performed by phylogenetically-constrained reduced-rank regres-48

sion or stepwise factor contrasts. We �nish with a discussion of how phylofac-49

torization produces an ecological species concept with a phylogenetic constraint.50

All of these tools can be implemented with a new R package available online.51

Keywords52

Phylofactorization, phylogeny, microbiome, ecological data, big data, graph par-53

titioning, dimensionality reduction54

Introduction55

The problem of pattern and scale is a central problem in ecology [27]. Ecological56

patterns of interest, such as ecosystem physiology, species abundance distribu-57

tions, epidemics, ecosystem services of animal-associated microbial communi-58

ties, and more, are often the result of processes that operate at multiple scales.59

Traditionally, the �scales� of interest are space, time, and levels of ecological60

organization ranging from individuals to populations to ecosystems. Predic-61

tion of spatial variation over di�erent scales, millimeters, meters, or kilometers,62

requires incorporation of di�erent processes driving patterns observed. Pre-63

dicting climatic and weather patterns over days, years, or millennia requires64

di�erent data, processes and models. Predicting the collective behavior of a65

school of �sh requires interfacing individual behavior with interaction networks66

of those individuals [25] whereas predicting the ability of a forest to act as a car-67

bon sink requires interfacing weather, nutrient cycles, and competition between68

trees with di�erent traits, such as nitrogen �xation [11]. Understanding emer-69
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gent infectious diseases requires interfacing processes over scales ranging from70

animal population dynamics, reservoir epizootiology, and human epidemiology71

[37]. Ecological theory requires interfacing phenomena across scales believed72

to be important, and continually updating our beliefs about which scales are73

important to interface.74

For a novel or unfamiliar pattern, such as a change in microbial community75

composition along environmental gradients, how can one objectively identify76

the appropriate scales of ecological organization? In macroscopic systems, a77

researcher will use intuition derived from natural history knowledge to determine78

scales of interest. Models of how the presumably important natural history traits79

a�ect the pattern will be constructed, and the goodness of �t to the pattern of80

interest will be used as a metric for the successful identi�cation of ecological81

scales/traits. However, for some patterns, such as the ecosystem physiology of82

the human microbiome, there is limited natural history knowledge to draw on to83

assist the decision of the appropriate scales of interest. There is a need for rules,84

algorithms and laws for the simpli�cation, aggregation, and scaling of ecological85

phenomena.86

A central feature of biological systems is the existence of a hierarchical as-87

semblage of entities, from genes to species, whose relationships and evolutionary88

history can be estimated and organized into a hierarchical tree. The estimated89

phylogeny contains edges along which mutations occur and new traits arise.90

When the phylogeny correctly captures the evolution of discrete, functional eco-91

logical traits underlying a pattern of interest, the phylogeny is a natural sca�old92

for simpli�cation, aggregation, and scaling in ecological systems. Patterns such93

as the change of bacterial abundances following antibiotic exposure, whose func-94

tional ecological traits of antibiotic resistance are laterally transferred, can still95

be simpli�ed by constructing a phylogeny of the laterally transferred genes, such96
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as the beta-lactamases[18], as a natural sca�old for de�ning the entities with97

di�erent responses to antibiotics.98

The phylogeny contains a hierarchy of possible scales for aggregation. Gra-99

ham et al. [17] develop the term �phylogenetic scale� to refer to the depth of the100

tree over which we aggregate information from a clade. Functional ecological101

traits often arise at di�erent depths of the tree. Many ecological phenomena102

may be driven by traits not properly summarized or aggregated by mowing the103

phylogeny along a constant depth. Instead, there may be multiple phylogenetic104

scales, or grains, underlying an ecological pattern of interest. For example, the105

patterns of vertebrate abundances on land and water are simpli�ed by nested106

clades: Tetrapods, Cetaceans, Pinnipeds, etc. There is a need for general sta-107

tistical methods to partition the phylogeny into the grains with signi�cantly108

di�erent associations or contributions to the ecological pattern. Such a method109

can objectively identify the phylogenetic scales underlying an ecological pattern110

of interest.111

Phylofactorization [51] was developed to identify the phylogenetic scales in112

compositional (relative abundance) data by iteratively constructing variables113

corresponding to edges in the phylogeny and selecting variables which maxi-114

mize an objective function. The variables used were a common transform from115

compositional data analysis [1], referred to as the isometric log-ratio transform116

[10, 9], which contrast the relative abundances of species separated by an edge117

in the phylogeny. A coordinate in an isometric log-ratio transform aggregates118

relative abundances within clades by a geometric mean and contrasts clades119

through log-ratios of the clades' geometric mean relative abundances. The120

isometric log-ratio transform also allows the construction of non-overlapping121

contrasts, thereby reducing an obvious source of dependence in phylogenetic122

variables. The isometric log-ratio transform is used to identify phylogenetic123
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scales capturing large blocks of variation in relative-abundance data and con-124

struct coordinates that correspond to edges along which hypothesized functional125

ecological traits arose.126

However, many ecological data are more appropriately viewed as counts, not127

compositions. For example, the presence/absence of bird species across conti-128

nents are best modelled as Bernoulli random variables, not compositional data.129

In this paper, we extend phylofactorization to broader classes of data types130

by generalizing the logic of phylofactorization and to a set of three operations:131

aggregation, contrast, and an objective function de�ned by the pattern of in-132

terest. The nested dependence of clades within clades is avoided by de�ning133

phylofactorization as a graph-partitioning algorithm that contrasts species sep-134

arated by edges and iteratively partitioning the phylogeny along edges that best135

di�erentiate species.136

After de�ning phylofactorization as a graph-partitioning algorithm, we il-137

lustrate the generality of the algorithm through several examples. First, we138

show that two-sample tests, such as t-tests and Fisher's exact test, are natural139

operations for phylofactorization - they �rst aggregate data from two groups140

through means, contrast the aggregates via a di�erence of means, and have nat-141

ural objective functions de�ned by their test-statistics. We illustrate the use of142

two-sample tests by performing phylofactorization of a dataset of mammalian143

body mass.144

Then, we show how the phylogeny serves as a sca�old for changing variables145

in biological data through a contrast basis - the same basis used in the isomet-146

ric log-ratio transform - which can be used to identify the phylogenetic scales147

providing low-rank, phylogenetically-interpretable representations of a dataset.148

De�ning the contrast basis allows us to introduce a phylogenetic analog of prin-149

cipal components analysis - phylogenetic components analysis - which identi�es150
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the dominant, phylogenetic scales capturing variance in a dataset. We perform151

phylogenetic components analysis on the American Gut microbiome dataset152

(www.americangut.org) and reveal that some of the dominant clades explaining153

variation in the American Gut correspond to clades within Bacteroides and Fir-154

micutes, thereby providing �ner, phylogenetic resolution of a known, major axis155

of variation in human gut microbiomes found to be associated with obesity [47],156

age [31] and more. Another phylogenetic factor of variance in the American157

Gut is a clade of Gammaproteobacteria strongly associated with IBD, corrobo-158

rating a recent study's use of phylofactorization to diagnose patients with IBD159

[49]. The contrast basis can also be used with regression if the data assumed160

to be approximately normal, log-normal, logistic-normal or otherwise related161

to the normal distribution through a monotonic transformation. We illustrate162

regression-phylofactorization through a generalized additive model analysis of163

how microbial abundances change across a range of pH, Nitrogen, and Carbon164

concentrations in soils. The resulting contrast basis and its �tted values from165

generalized additive modeling yield a low-rank representation of biological big-166

data and translates to clear biological hypotheses aiming to identify the traits167

driving observed non-linear patterns of abundance across pH [39].168

Datasets comprised of non-Gaussian, exponential family random variables169

can still be analyzed through regression-phylofactorization. We present four170

methods for generalized regression-phylofactorization in exponential family data.171

The �rst method is to use the contrast basis for constrained, reduced-rank re-172

gression to obtain a low-rank approximation of coe�cient matrices in multivari-173

ate generalized linear models. The second uses a two-level factor, a surrogate174

variable phylo indicating which side of an edge a species is found, to de�ne175

objective functions based on the deviance or the magnitude of the coe�cients176

for the factor-contrast. The third method aggregates exponential family data177
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within clades to marginally stable distributions within the exponential family,178

and then performs phylo factor contrasts described above. The fourth method179

is a mix of the �rst and second, developed to have the accuracy of the second180

method while reducing the computational costs. The mixed method considers181

phylo factors for only a subset of the best edges obtained from reduced-rank182

approximation of the coe�cient matrix.183

We �nish with a discussion of the challenges, and opportunities, for future184

development of phylofactorization, and provide an R package - phylofactor -185

available at https://github.com/reptalex/phylofactor.186

Phylofactorization187

Which vertebrates live on land, and which vertebrates live in the sea (Figure188

1a)? Most children have enough natural history knowledge to say ��sh live in the189

sea�, thus correctly identifying one of the most important phylogenetic factors of190

land/sea associations in vertebrates. The statement ��sh live in the sea� can be191

mathematically formalized by noting that one edge in the vertebrate phylogeny192

separates ��sh� from �non-�sh� (Figure 1b). Partitioning the phylogeny along193

the edge basal to tetrapods can separate vertebrates fairly well by land/sea asso-194

ciations. An algorithm for identifying that edge by land/sea associations alone,195

without requiring detailed knowledge of macroscopic life and morphological and196

physiological traits, can correctly identify an edge along which functional ecolog-197

ical traits and life-history traits arose. Controlling for the previously identi�ed198

edge, one might be able to identify the edges basal to Cetaceans and Pinnipeds,199

tetrapods which live in the sea (Figure 1b). Three edges can capture most of200

the variation in land/sea associations across thousands of vertebrate species.201

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Phylofactorization generalizes the logic of how to simplify phylogenetically-structured

datasets. (A) Vertebrate land/water associations can be simpli�ed by partitioning the tree into the

edges along which major traits arose. (B) The �rst phylogenetic factor of vertebrate land/water as-

sociations is the edge along which tetrapods arose - an edge along which lungs and limbs evolved that

allowed colonization of land. Downstream factors can re�ne the original partitioning, and include

the Cetaceans and Pinnipeds, among other edges along which adaptation to aquatic life arose among

tetrapods. (C) Phylogenetic factorization generalizes this same logic for phylogenetically-structured

data in which traits might not be known or their evolution easily modeled, including traits like a non-

linear relationship between abundance and an environmental gradient. Phylogenetically-structured

data can be partitioned through operations of aggregation and contrast. Pure aggregations (blue)

sum data within a clade, whereas contrasts (green/red) are di�erences between two clades. Low-

rank, phylogenetically-interpretable predictions of our data can be obtained through a mixed basis

of a series of aggregations and contrasts, or a �contrast basis� in which there is a global aggregate

partitioned in subsequent contrasts.
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Ancestral state reconstruction of habitat association provides a well-known202

means of making such inferences. However, sometimes the desired traits and203

ecological patterns of interest are more complicated and their ancestral state re-204

construction dubious. For instance, how can we identify the phylogenetic scales205

of changes in microbial community composition along a pH gradient, allow-206

ing possible non-linear associations that could be detected through generalized207

additive modeling? Answering such a question through ancestral state recon-208

struction requires conceiving and analyzing an evolutionary model of how the209

generalized additive models of pH association evolve along a tree. Phylofactor-210

ization aims to generalize the phylogenetic logic used for land/sea associations211

in order to identify phylogenetic scales for more complicated functional traits212

and ecological patterns, for which an evolutionary model would be dubious.213

Phylogenetic factorization generalizes the logic of land/sea associations through214

a graph partitioning algorithm iteratively identifying edges in the phylogeny215

along which meaningful di�erences arise (Figure 1c).216

General Algorithm217

Phylofactorization requires a set of disjoint phylogenies spanning the set of218

species considered in the data. The phylogenies are rooted or unrooted graphs219

with no cycles, containing and connecting the units of interest in our data (the220

units can be species, genes other evolving units of interest). Phylofactoriza-221

tion can be implemented with disjoint sub-graphs, such as viral phylogenies for222

which there are not clear common ancestors, and the sub-phylogenies can either223

be kept separate or joined at a polytomous root. The phylogeny may have an224

arbitrary number and degree of polytomies.225

Let [x]i,j be the data for species i = 1, ...,m in sample j = 1, ..., n. Let226

xR,j be the vector of a subset of species, R, in sample j. Let Z be the n × p227
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matrix containing p additional meta-data variables for each sample. Let T be228

the phylogenetic tree and let edge e partition the phylogeny into disjoint groups229

R and S. Phylofactorization requires:230

• An aggregation function, A (xR,j , T ) which aggregates any subset, R, of231

species232

• A contrast function, C (A (xR,j , T ) , A (xS,j , T ) , T , e) which contrasts the233

aggregates of two disjoint subsets of species, R and S, possibly using234

information from the tree T and edge, e.235

• An objective function, ω(C,Z).236

With these operations, phylofactorization is de�ned iteratively as a special case237

of a graph partitioning algorithm (Figure 2). The steps of phylofactorization238

are:239

1. For each edge, e, separating disjoint groups of species Re and Se within the240

sub-tree containing e, compute Ce = C (A (xRe,j , T ) , A (xSe,j , T ) , T , e)241

2. compute edge objective ωe = ω(Ce,Z) for each edge, e242

3. Select winning edge e∗ = argmax
e

(ωe)243

4. Partition the sub-tree containing e∗ along e∗, forming two disjoint sub-244

trees.245

5. Repeat 1-5 until a stopping criterion is met.246

Unlike more general graph-partitioning algorithms, phylofactorization does not247

impose a balance constraint - it does not require that the partitions have a simi-248

lar size or weight. Furthermore, phylofactorization, by working with phylogenies249

or graphs without cycles is centered around aggregation and contrast as princi-250

ple operations for de�ning scales and units of organization. Phylofactorization is251
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limited to contrasts of non-overlapping groups, and the constraint of contrasting252

aggregates is used to formalize the process of aggregation prior to contrasting253

groups - such formalization ensures one can subsequently aggregate the bins of254

species partitioned in phylofactorization according to the method of aggregation255

by which the bins were discovered to be di�erent. The incorporation of the tree,256

T , in the contrast function encompasses a class of ancestral state reconstruction257

reconstruction methods. Ancestral state reconstruction with non-overlapping258

contrasts can be done with time-reversible models of evolution; in this case,259

phylofactorization contrasts the root ancestral states obtained in which the two260

nodes adjacent an edge are considered roots of the subtrees separated by an261

edge.262

The edges, e∗ and their contrasts, Ce, are interchangeably referred to as263

the �phylogenetic factors� due to their correspondence to hypothesized latent264

variables (traits) and their ability to construct basis elements that allow ma-265

trix factorization [51]. It's possible to de�ne objective functions through pure266

aggregation, but we limit our focus to contrast-based phylofactorizations which267

identify edges along which meaningful di�erences arose for reasons discussed268

later in the section on the �contrast basis�.269
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Figure 2: Phylofactorization is a graph partitioning algorithm. An objective function, ω, of a

contrast of species separated by an edge allows one to iteratively partition the phylogeny along edges

maximizing the objective function (1st iteration). After partitioning the phylogeny, the objective

functions are re-computed to contrast species in the same sub-tree separated by an edge. Edge B in

the �rst iteration contrasted mammals from non-mammals, but in the second iteration it contrasts

mammals from non-mammals, excluding raptors (partitioned in the �rst iteration). The result of

k iterations of phylofactorization is a set of k + 1 bins of species with similar within-group behav-

ior. A particularly useful case is �regression-phylofactorization�. Regression-phylofactorization is

implemented by de�ning contrasts through the contrast basis (Figure 1c) and de�ning an objec-

tive function through regression on the component scores of each candidate contrast basis element.

Regression-phylofactorization is a �exible way to search for clades with similar patterns of associ-

ation with environmental meta-data while also obtaining low-rank, phylogenetically-interpretable

representations of a data matrix.
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The result of phylofactorization after t iterations is a set of t inferences on270

edges or links of edges. Links of edges occur following a previous partition,271

when two adjoining edges separate the same two groups in the resultant sub-272

tree. Partitioning the phylogeny along t edges results in t + 1 bins of species,273

referred to as �binned phylogenetic units�. In general, the problem of maximizing274

some global objective function, ω(e∗1, ..., e
∗
t ), for a set of t edges, {e∗1, ..., e∗t }, is275

NP hard [6]. However, stochastic searches of the space of possible partitions,276

via a stochastic computation of ωe in step 2 or a weighted draw of e∗ in step 3,277

may yield better approximations of a global maximum [32, 20, 23].278

Aggregation, contrast, and objective functions are several junctures to de�ne279

and interpret meaningful quantities and outcomes from data analysis. Explicit280

decisions about aggregation formalize how a researcher would summarize data281

from an arbitrary set of species. Explicit decisions about contrast formalize how282

a researcher di�erentiates two arbitrary, disjoint groups of species - these com-283

mon operations form an organizational framework for ecologists studying phy-284

logenetic scales. Aggregation can be done through many operations, including285

but not limited to addition, multiplication, generalized means, and maximum286

likelihood estimation of ancestral states under models of trait di�usion away287

from the focal node. Likewise, examples of contrasts are di�erences, ratios, var-288

ious two-sample tests, and more complicated metrics of dissimilarity such as the289

deviance of a factor contrast in a generalized additive model. Researchers must290

decide for themselves how best to aggregate information in groups of species,291

contrast two groups, and decide which group maximizes the objective for a292

research goal pertaining to a particular ecological pattern. Doing so allows ob-293

jective, a priori de�nitions of what makes an informative phylogenetic scale,294

and the operations chosen are integrated into a broader theoretical framework295

of phylofactorization.296
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Below, we develop the generality and illustrate the results from phylofac-297

torization. These examples were run using the R package �phylofactor�, using298

relevant functions for analyzing and visualizing phylogenies from the R packages299

ape [36], phangorn [43], phytools [40], and ggtree [53]. Scripts and datasets for300

every analysis are available in the supplemental materials.301

Example 1: two-sample tests and mammalian body-mass302

phylofactorization303

If the data are a single vector of observations, x, similar to the land/sea associ-304

ations of vertebrates, phylofactorization can be implemented through standard-305

ized tests for di�erences of means or rate parameters in the two sets of species,306

R and S.307

To illustrate, we phylofactorize a dataset of mammalian body mass from308

PanTHERIA [24] and the open tree of life using the R package �rotl� [33]. A309

single vector of data assumed to be log-normal can be factored based on a two-310

sample t-test (Figure 3a). In this case, A(xR) = log(xR) is the arithmetic mean311

of the log-body-mass; we use the contrast operation312

C =
|A(xR)−A(xS)|√

1
r + 1

s

(1)

and the objective function ωe = Ce. Equation (1) de�nes the test-statistic for313

a two-sample t-test with the assumption of constant variance. Maximization of314

the objective function yields edges with the most signi�cant di�erence in body315

mass of organisms on di�erent sizes of the tree.316

The �rst �ve phylogenetic factors of mammalian body mass in these data are317

Euungulata, Ferae, Laurasiatheria (excluding Euungulata and Ferae), a clade318

of rodent sub-orders Myodonta, Anomaluromorpha, and Castorimorpha, and319
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the simian parvorder Catarrhini. Five factors produce six binned phylogenetic320

units of species with di�erent average body mass (Figure 3a). The most sig-321

ni�cant phylogenetic partition of mammalian body mass occurs along the edge322

basal to Euungulata, containing 296 species with signi�cantly larger body mass323

than other mammals. The second partition corresponds to Ferae, containing 242324

species which have body masses larger than other mammals, excluding Euungu-325

lata. The third partition corresponds to 864 remaining species in Laurasiathe-326

ria, excluding Euungulata and Ferae, which contains Chiroptera, Erinaceomor-327

pha, and Soricomorpha. These mammals have lower body mass than non-328

Laurasiatherian mammals. The fourth partition identi�es three rodent sub-329

orders comprising 926 species with lower body mass than non-Laurasiatherian330

mammals. Finally, 106 species comprising the Simian parvorder Catarrhini331

are factored as having higher body mass than the remaining mammals. These332

factors are fairly robust: 3000 replicates of stochastic Metropolis-Hasting phylo-333

factorization, drawing edges in proportion to Cλ with λ = 6 (producing a 1/4334

probability of drawing the most dominant edge) could not improve upon these335

5 factors.336

The �rst two phylogenetic factors of mammalian body size partition the337

mammalian tree at deep edges with ancestors near the K-Pg extinction event,338

corroborating evidence of ecological release [2, 3] and the exponential growth339

of maximum body sizes following the K-Pg extinction event [46] for these two340

dominant clades. The crown group of modern Euungulata are thought to have341

originated in the late Cretaceous [54] and its representatives may have expanded342

into previously dinosaur-occupied niches during the rapid evolution of body343

size in mammals immediately after the K-Pg extinction event at the Creta-344

ceous/Paleogene boundary [45]. Cope's rule posits that lineages tend to in-345

crease in body size over time, and a recent study [4] con�rms Cope's rule and346
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found that mammals have, along all branch lengths in their phylogeny, tended347

to increase in size. The phylogenetic factors of mammalian body size discovered348

here illustrate an important feature of phylofactorization: correlated evolution349

within a clade, such as a consistently high body-size increase among lineages in350

a clade, can cause the edge basal to a clade to be an important partition for351

capturing variance in a trait. A more robust phylofactorization may be done352

through iterative ancestral-state reconstruction of the roots of subtrees parti-353

tioned by each edge (where the subtrees are re-rooted at the nodes adjacent354

the edge), but this unsupervised phylogenetic factorization body masses in 3374355

mammals takes 15 seconds on a laptops and yields partitions which simplify the356

story of mammalian body-mass variation to a set of 5 edges forming 6 binned357

phylogenetic units.358

Two-sample tests can be used for phylogenetic factorization of any vector of359

trait data. For another example, Bernoulli trait data, such as presence/absence360

of a trait, can be factored using Fisher's exact test that there is the same361

proportion of presences in two groups, R and S. In this case, the aggregation362

operation A(xR) =
∑
i∈R xi counts the number of successes in group R, the363

contrast operation is the computation of the P-value using Fisher's exact test364

with the contingency table365

Successes Failures Total

A(xR) r −A(xr) r

A(xS) s−A(xS) s

A(xR) +A(xS) r + s− (A(xr) +A(xS)) r + s

.

An objective function can be de�ned as the inverse of the P-value from Fisher's366

exact test, ωe = |C−1e |. The phylofactorization of vertebrates by land/water367

association in Figure 1, using an ad-hoc selection of vertebrates for illustration,368

was performed using Fisher's exact test, and the factors obtained correspond to369

Tetrapods, Cetaceans, and Pinnipeds. Unlike the phylofactorization of mam-370
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malian body mass, all three factors obtained from phylofactorization of verte-371

brate land/water association correspond to a set of traits. Tetrapods evolved372

lungs and limbs which allowed them to live on land. Cetaceans evolved �ns and373

blowholes, and Pinnipeds evolved �ns, all traits adaptive to life in the water.374

Two-sample tests are used when partitioning a vector of traits and not con-375

trolling for additional meta-data such as sampling e�ort or other confounding376

e�ects. Phylofactorization of body mass and land/water associations illustrate377

two potential evolutionary models under which edges are important: correlated378

evolution of members of a clade and punctuated equilibria. Edges identi�ed from379

more complicated methods of phylofactorization may correspond to traits, or380

they may correspond to directional evolutionary processes shared among mem-381

bers of a clade or their ancestors, such as ecological release or niche partitioning.382

When the objective function from two-sample tests has a well-de�ned null dis-383

tribution, as is the case for the two-sample t-test and Fisher's exact test, the384

uniformity of the distribution of P-values can used to de�ne a stopping criteria385

as discussed later (see: �stopping criteria�).386

Example 2: Contrast basis and phylogenetic components387

analysis388

The phylogeny provides a natural sca�old for low-rank, phylogenetically in-389

terpretable approximations of the data. As a sphere de�nes a natural set of390

coordinates for GPS data, the phylogeny de�nes a natural set of coordinates391

that can be used for a variety of data analyses. One example of a natural coor-392

dinate in the phylogeny is aggregation: the sum of abundances of species within393

a clade. Another natural coordinate is a contrast: the di�erences of abundance394

between two clades, either sister clades or a monophyletic clade and its comple-395

ment. Together, these operations allow one to construct natural coordinates for396
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more sophisticated analyses of phylogenetically-structured ecological data.397

Phylogenetically-interpretable, low-rank approximations of data can be ob-398

tained by constructing basis elements through aggregation and contrast vectors399

(Figure 1c). An aggregation basis element for a group Q = R ∪ S can be400

constructed through a vector whose ith element is401

vAQ,i =


a i ∈ Q

0 otherwise

(2)

and such aggregation basis elements can be subsequently partitioned with a402

contrast vector403

vCR|S ,i =


b i ∈ R

−c i ∈ S

0 otherwise

(3)

where b > 0 and c > 0. By meeting the criteria

rb− sc = 0 (4)

rb2 + sc2 = 1 (5)

, one can ensure that vAQand vCQ are orthogonal and with unit norm. These

criteria are satis�ed by

b =

√
s

r (r + s)
(6)

c =

√
r

s (r + s)
. (7)

When projecting data from sample j, xj , onto a contrast vector, the aggregation
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and contrast operations are

A(xR,j) = x̄R,j

C (A(xR,j), A(xS,j)) =

√
rs

r + s
(x̄R,j − x̄S,j) . (8)

where x̄R,j is the sample mean of species in group R and sample j. Projecting404

a dataset onto vCR|S yields coordinates which are a standardized di�erence of405

means similar to equation (1). The contrast vector is comprised of two sub-406

aggregations of opposite sign, one for group R and the other for group S. By407

ensuring criterion (4), the groups aggregated within a contrast vector can be sub-408

sequently partitioned with additional, orthogonal contrast vectors splitting each409

group R and S. Maintaining criterion (5), the aggregation and contrast vectors410

de�ned here can be used to construct an orthonormal basis for describing data411

containing our species, xj ∈ Rm, by de�ning a set of q ≤ m orthogonal aggrega-412

tion vectors corresponding to disjoint sets of species Ql such that the entire set413

of aggregations,
⋃l=q
l=1Ql = {1, ..., n}, covers the entire set of m species. Then,414

m − q contrast vectors partitioning the aggregations and the sub-aggregations415

within contrast vectors can complete the basis (Figure 1c). Of note is that, as416

de�ned in equations (2) and (3), the span of any aggregate and its contrast is417

equal to the span of the contrasts' sub-aggregates, i.e. for R ∪ S = Q,418

span
(
vAQ ,vCR|S

)
= span (vAR ,vAS ) (9)

(Figure 1c) and the two natural ways of changing variables with the phylogeny,419

an aggregate of species and its orthogonal contrast (grouping species and parti-420

tioning the group) or two orthogonal aggregates (two disjoint groups of species),421

are rotations of one-another. Aggregation and contrast vectors translate the no-422

tion of phylogenetic scale and group-di�erences into a basis that can be used to423
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analyze community ecological data.424

Pure aggregation vectors as de�ned in equation (2) can be de�ned a priori425

based on traits or clades of species thought to be important for the question426

at hand (e.g. aggregate �terrestrial� and �aquatic� animals), or de�ned by the427

data through myriad clustering algorithms or phylofactorization based purely on428

aggregation by converting steps (1) and (2) in the phylofactorization algorithm429

into a single step: maximizing an objective function of the aggregate of a clade.430

A special case occurs when data are compositional [1], in which case the sum431

of any sample across all species in the community will equal 1 and thus the432

data are constrained by an aggregation element - the aggregate of all species433

- which can only be subsequently contrasted. Phylofactorization via contrasts434

of log-relative abundance data allows one to construct an isometric log-ratio435

transform, a commonly used and well-behaved transform for the analysis of436

compositional data [10, 9, 44]. Since the span of an aggregate and its contrast437

is equal to the span of the contrasts' two aggregates (equation 9), we simplify438

construction of the basis by considering, from here on out, only the �contrast439

basis� in which the an initial aggregate of all species is then partitioned with a440

series of contrasts.441

An orthonormal basis, including one constructed via aggregation and con-442

trast vectors, enables researchers to partition the variance along each of a set443

of orthogonal directions corresponding to discrete, identi�able features in the444

phylogeny. Using the phylofactorization algorithm, a dataset X = [x]i,j can be445

summarized by de�ning the objective function446

ωe = Var
[
vTCeX

]
(10)

where vCe is the contrast vector from (3) corresponding to the sets of species, R447

and S, split by edge e. The objective function in equation (10) yields a phyloge-448

21

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


netic decomposition of variance we de�ne as �phylogenetic components analysis�449

or PhyCA. PhyCA is a constrained version of principal components analysis,450

allowing researchers to identify the dominant axes of variation, constrained to451

axes which contrast species separated by an edge.452

The variance of component scores, ye = vTCeX, are easiest to understand453

when the data [xi,j ] are assumed to be standard Gaussian. The component454

score for sample j, ye,j , can be written as455

ye,j =

√
rs

r + s
(x̄R,j − x̄S,j) (11)

where x̄R,j is the sample mean of xi,j for i ∈ R and x̄S,j is the sample mean of456

xi.j for i ∈ S. The variance of the component score across all samples j = 1, ..., n457

is458

Var[ye] =
rs

r + s
(Var [x̄R] + Var [x̄S ]− 2Cov [x̄R, x̄S ]) . (12)

The variance of ye increases through a combination of variances in aggregations459

of groups R and S across samples (x̄R and x̄S , respectively) and a high negative460

covariance between aggregations for groups R and S across samples. Species461

with a negative covariance may be competitively excluding one-another or may462

be di�erentiated due to a trait which arose along edge e which causes di�erent463

habitat associations or responses to treatments. Edges extracted from PhyCA464

are edges along which putative functional ecological traits arose di�erentiating465

the species in R and S in the dataset of interest.466

Phylogenetic Components of the American Gut To illustrate, we per-467

form PhyCA to identify 10 factors from a sub-sample of the American Gut468

dataset and the greengenes phylogeny [8] containing m = 1991 species and469

n = 788 samples from human feces (Figure 3b). The American Gut dataset470

was �ltered to only fecal samples with over 50,000 sequence counts and, for471
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those samples, otus with an average of more than one sequence count per472

sample. After performing PhyCA, each identi�ed resulting component score,473

ye∗ , was assessed for a linear association with seven explanatory variables:474

types_of_plants (a question asking participants how many types of plants475

they've eaten in the past week), age, bmi, alcohol consumption frequency, sex,476

antibiotic use (ABX), and in�ammatory bowel disease (subset_ibd) (Figure477

3b). The raw P-values are presented below, but for a reference, the P-value478

threshold for a 5% family-wise error rate is 7.1× 10−4.479

The �rst factor splits 1229 species of Firmicutes from the remainder of mi-480

crobes. The component score for the �rst factor, ye∗1 , is strongly associated with481

antibiotic use (P=3.6 × 10−4), with dramatic decreases in relative abundance482

in patients who have taken antibiotics in the past week or month. The second483

factor identi�es 217 species of several genera of Lachnospiraceae, a clade con-484

tained within the Firmicutes, strongly associated with age (P=1.2×10−15) and485

bmi (P=3.2× 10−6) and alcohol (P=6.4× 10−3). The third factor is a clade of486

81 Bacteroides most strongly associated with types_of_plants (P=2 × 10−9).487

By identifying a clade of Bacteroides as a major axis of variation, factors 1488

and 3 re�ne the Firmicutes to Bacteroidetes ratio commonly used to describe489

variation in the gut microbiome and found associated with obesity and other490

disease states [28, 7]. It's been found that the Firmicutes/Bacteroidetes ratio491

changes with age [31], but the picture from phylofactorization is more nuanced:492

the large clade of Firmicutes in the �rst factor does not change with age, but493

the Lachnospiraceae within that clade decrease strongly with age relative to494

the remaining Firmicutes, while the Bacteroides show only a moderate decrease495

with age. The strong decrease with age in Lachnospiraceae is found in a few496

other clades within the Firmicutes: the 4th factor identi�ed a clade of Firmi-497

cutes of the family Ruminococcaceae strongly associated with types of plants498
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(P=3.6 × 10−5), sex (P=5.9 × 10−4) and decreasing with age (P=9.2 × 10−4),499

and the 5th factor identi�ed a group of Firmicutes of the family Tissierellaceae500

that decrease strongly with age (P=1.9× 10−5).501
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Figure 3: Phylofactorization with contrast basis. (A) The contrast basis de�nes variables sim-

ilar to t-statistics, and maximizing the projection of data onto the contrast basis can identify

phylogenetic factors. Five iterations of phylofactorization on a dataset of mammalian log-body

mass yields �ve clades with very di�erent body masses. (B) Maximizing the variance of com-

ponent scores, ye, of log-relative abundance data produces a �phylogenetic components analysis�

(PhyCA) of the American Gut dataset. The most variable clades cover a range of phylogenetic

scales. Downstream analysis of component scores tested associations with meta-data - plotted are

linear predictors against relevant meta-data; the plot of Lachnospiraceae includes the raw data

as black dots. (C) More complicated methods can be used, such as generalized additive mod-

eling with ye. Using the central park soils dataset, ye of log-relative abundances, the model

ye ∼ s(log(Carbon)) + s(log(Nitrogen)) + s(pH), and the objective of maximizing the explained

variance, we obtained the same 4 factors obtained using generalized linear modeling in the original

data, including the misnomer group of Chloracidobacteria that don't thrive in low pH environ-

ments. The relative importance of pH in the generalized additive models and exact clades with

a high amount of variance explained by pH allows a projection of 3000 species into 5 BPUs for

clear visualization of a dominant feature of how soil bacterial communities change along a key

environmental gradient.
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The sixth factor is a small group of 5 OTUs of Prevotella copri strongly as-502

sociated with types_of_plants (P=2.8× 10−4) and in�ammatory bowel disease503

(P=2.5× 10−3). Previous studies have found that Prevotella copri abundances504

are correlated with rheumatoid arthritis in people and innoculation of Prevotella505

copri exacerbates colitis in mice. Consequently, Prevotella copri is hypothesized506

to increase in�ammation in the mammalian gut [42], and the discovery of Pre-507

votella copri as one of the dominant phylogenetic factors of the American Gut, as508

well as the discovery of its association with IBD, corroborates the hypothesized509

relationship between Prevotella copri and in�ammation. Likewise, the seventh510

factor is a clade of 41 Gammaproteobacteria of the order Enterobacteriales also511

associated with types_of_plants (P=6.7 × 10−8) and weakly associated with512

in�ammatory bowel disease (P=0.022). Gammaproteobacteria were used as513

biomarkers of Crohn's disease in a recent study [49] and their associations with514

IBD in the American Gut project corroborates the possible use of Gammapro-515

teobacterial abundances for detection of IBD from stool samples. Summaries of516

the models for all factors' component scores are in the supplemental information.517

Example 3: Compositional, log-normal and Gaussian regression-518

phylofactorization519

The contrast basis can be used to de�ne more complicated objective functions520

for data assumed to be Gaussian or easily mapped to Gaussian, such as logistic-521

normal compositional data or log-normal data. Conversion of the data to an522

assumed-Gaussian form can then allow one to perform least-squares regression523

using ye as either an independent or dependent variable. Rather than per-524

forming PhyCA and subsequent regression, one can choose phylogenetic factors525

based on their associations with meta-data of interest.526

Maximizing the explained variance from regression identi�es clades through527
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the product of a high contrast-variance from equation (10) and the percent528

of explained-variance from regression - such clades can capture large blocks529

of explained variance in the dataset. Another common objective function is530

the deviance or F -statistic from regression which identi�es clades with more531

predictable responses - such clades can be seen as bioindicators or particularly532

sensitive clades, even if they are not particularly large or variable clades in533

the data. Regression-phylofactorization can use the component scores as an534

independent variable, as was used in the phylofactorization-based classi�cation535

of Crohn's disease [49]. For multiple regression, one can use the explanatory536

power of the entire model, or a more nuanced objective function of a subset of537

the model. More complicated regression models can be considered, including538

generalized additive models, regularized regression, and more.539

To illustrate the �exibility of regression phylofactorization to identify phy-540

logenetic scales corresponding to nonlinear patterns of abundance-habitat asso-541

ciations, we perform a generalized additive model analysis of the Central Park542

soils dataset [39] analyzed previously using a generalized linear model. To iden-543

tify non-linear associations between clades and pH, Carbon and Nitrogen, we544

perform a generalized additive model of the form545

ye ∼ s(pH) + s(Carbon) + s(Nitrogen) (13)

and maximize the explained variance (Figure 3c). The resultant phylofactor-546

izations identi�es the same 4 factors as the generalized linear model, but allows547

nonlinear and multivariate analysis of how community composition changes over548

environmental meta-data. Combining the high relative-importance of pH with549

the identi�ed 4 factors, splitting over 3,000 species 5 binned phylogenetic units,550

allows clear and simple visualization of otherwise complex behavior of how a551

community of several thousand microbes changes across several hundred soil552
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samples. As with the original analysis, the generalized additive modeling phylo-553

factorization identi�es a clade of Acidobacteria - the Chloracidobacteria - which554

have highest relative abundances in more neutral soils.555

Example 4: Phylofactorization through generalized linear556

models557

Many ecological data are not Gaussian. Presence-absence data or count data558

with many zeros cannot be easily transformed to yield approximately Gaussian559

random variables. Data assumed to be exponential family random variables can560

be analyzed with regression-phylofactorization by adapting concepts in gener-561

alized linear models.562

We present four options for phylofactorization through generalized linear563

models. These options correspond to the contrast basis, either explicitly us-564

ing the contrast basis to approximate the coe�cient matrix in multivariate565

generalized linear models, or implicitly using a form of the contrast basis in566

the likelihood function when performing shared-coe�cient or factor-contrasts in567

generalized linear modeling.568

Coe�cient Contrast The �rst method, related to reduced rank regression569

for vector generalized linear models [52], uses the contrast basis to provide a570

reduced-rank approximation of the coe�cient matrix from multivariate general-571

ized linear models. Multivariate (vector) generalized linear models assume the572

data X are drawn from an exponential family distribution with canonical pa-573

rameters for each species, η ∈ Rm, related to the meta-data Z through a linear574

model575

η ∼ BZ (14)
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where B ∈ Rm×p is the coe�cient matrix and Z ∈ Rp×n is the matrix of meta-576

data. Instead of usingm×p coe�cients, one can represent the coe�cient matrix577

B through contrast basis elements and their component scores578

B = 1wT
0 + VW + ε (15)

where 1 ∈ Rm is the one vector, w0 ∈ Rp contains the sum of the regression579

coe�cients for each of the p predictors, V ∈ Rm×t is a matrix whose columns580

are contrast basis elements obtained from t iterations of phylofactorization and581

W ∈ Rt×p is a matrix whose rows are the component scores for each contrast582

basis element. If one is interested in partitioning species based on a subset, P,583

of the explanatory variables, one can implement equation (15) for the matrix584

BP containing only the partitioning variables for phylofactorization.585

To put multiple independent meta-data from multiple species on the same586

scale, it's important to standardize the coe�cients βi,j by dividing them by587

their standard error. We refer to these standard coe�cients as β0
i,j and the ma-588

trix of such standard coe�cients for partitioning variables as the �standardized589

coe�cient matrix�, B0
P.590

A useful objective function for approximating the coe�cient matrix with591

the contrast basis is the Euclidean norm of the projection of the standardized592

coe�cient matrix onto contrast basis elements,593

ωe = ||vTCeB
0
P|| (16)

which captures the extent to which coe�cients in B0
P di�er between the sets594

of species partitioned by the edge e. Coe�cient contrasts are fast and easy595

to compute, but the algorithm described here minimizes the distance between596

VW and B0
P. Other algorithms described below can more robustly identify the597
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edge, e, whose reduced-rank approximation maximizes the likelihood.598

Stepwise phylo factor contrasts Other options for aggregation and con-599

trast exploit the factor-contrasts built into generalized linear and additive mod-600

eling machinery. Factor contrasts using a variable phylo ∈ {R,S}, indicating601

which group a species is in, can capture the assumption of shared coe�cients602

within-groups and contrast the coe�cients between-groups in multivariate gen-603

eralized linear modeling across all species. Stepwise, maximum-likelihood selec-604

tion ofphylo factor contrasts are a more accurate, yet computationally intensive,605

algorithm for partitioning exponential family random variables.606

For example, a data frame contrasting how the counts of �birds� from �non-607

birds� react to meta-data z2 while controlling for z1 can be constructed as608

follows609

Site Species Abundance z1 z2 phylo

1 Pigeon 10 1 .5 R

1 Dove 8 1 .5 R

1 Lizard 1 1 .5 S

1 Mouse 3 1 .5 S

1 Cat 1 1 .5 S

2 Pigeon 2 0 -2 R

2 Dove 1 0 -2 R

2 Lizard 10 0 -2 S

2 Mouse 4 0 -2 S

2 Cat 3 0 -2 S

... ... ... ... ... ...

.

Phylofactorization can be implemented through a generalized linear model for610
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a count family (e.g. Poisson, binomial, or negative binomial) using the formula611

Abundance ∼ z1 + phylo× z2. (17)

The phylo factor contrasts birds from non-birds and using its deviance as the612

objective function will �nd the edge e∗ whose phylo factor maximizes the like-613

lihood of the data.614

In stepwise phylo factor contrasts, aggregation occurs within the likelihood

function. The likelihood L(xj ;η) for a vector of binomial random variables xj

can be written in exponential family form

L(xj ;η) = h(xj) exp {η′x−A(η)} . (18)

A two-factor model, such as x ∼ phylo, will reduce the likelihood function from615

s parameters in η to two parameters, η ∈ (ηR, ηS), yielding616

L(xj ; phylo) = h(xj) exp

{
ηR
∑
i∈R

xi,j + ηS
∑
i∈S

xi,j −A(η)

}
.

Aggregation, within the likelihood function above, is summation of data within-617

groups. Obtaining the maximum likelihood estimates, η̂R and η̂S , a contrast618

function can be de�ned as a di�erence of ηR and ηS , or test-statistic from the619

null hypothesis that ηR = ηS . For general purposes, the deviance of the phylo620

term in generalized linear or additive models serves as a useful contrast allowing621

one to identify the edge e∗ whose phyloe factor that maximizes the likelihood622

for the regression model containing the phylo factor.623

Stepwise selection of maximum-likelihood phylo factor contrasts is a very624

accurate method for regression-phylofactorization of exponential family ran-625

dom variables. However, unlisting an entire dataset, computing a glm, and626
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re-computing the glm for each edge in the phylogeny is computationally inten-627

sive.628

Marginally Stable (mStable) Aggregation Another option, aimed to al-629

low maximum-likelihood estimation of phylo factor contrasts while reducing the630

computational di�culty, is to aggregate the data X prior to maximizing the631

likelihood in the generalized linear model. The method we present is to assume632

within-group homogeneity and aggregate exponential family random variables633

to a �marginally stable� exponential family random variable that can be used634

for downstream analysis. Marginal stability, to the best of our knowledge, has635

not been explicitly de�ned elsewhere, and thus we introduce the term here by636

loosening the de�nition of stable distributions [41].637

Stable distribution A distribution with parameters θ, F(θ), is said to be638

stable if a linear combination of two independent random variables from F(θ)639

is also in F(θ), up to location and scale parameters.640

Marginally stable distribution A distribution with parameters {θ1, θ2},641

F(θ1, θ2), is said to be marginally stable on θ1 if F(θ1, θ2) is it is stable condi-642

tioned on θ1 being �xed.643

644

For example, the Gaussian distribution is stable: the sum of two Gaus-645

sian random variables is also Gaussian. Meanwhile, binomial random variables646

Binom(ρ,N) are marginally stable on ρ; random variables xi ∼ Binom(ρ,Ni)647

can be summed to yield A(x) ∼ Binom(ρ,
∑
Ni). The marginal stability can648

also be used with transformations that connect the assumed distribution of the649

data to a marginally stable distribution. Log-normal random variables can be650

converted to Gaussians through exponentiation; chi random variables can be651
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converted to chi-squared through squaring - random variables from many dis-652

tributions may be analyzed by transformation to a stable or marginally stable653

family of distributions. Such transformation-based analyses implicitly de�ne654

aggregation through a generalized f -mean655

Af (xR) = f−1

(∑
i∈R

f(xi)

)
(19)

where f(x) = log(x) for log-normal random variables, f(x) = x2 for Chi ran-656

dom variables, etc. The goal of such aggregation, whether through exploiting657

marginal stability or generalized f -means or other group operations in the ex-658

ponential family, is to produce summary statistics for each group, R and S, in a659

manner that permits generalized linear modeling of the summary statistics. By660

ensuring summary statistics are also exponential-family random variables, one661

can perform a factor-contrast style analysis as described above but only on the662

two summary statistics and not on all s species. Doing so can greatly reduce663

the computational load of phylofactorizing large datasets and, as we show be-664

low, can increase the power of edge-identi�cation even when the within-group665

homogeneity assumption does not hold. Marginal stability, for the purposes of666

phylofactorization, must be on the parameter of interest in generalized linear667

modeling (Figure 3a).668

Marginal stability opens up more distributions to stable aggregation. Pres-669

ence absence data, for instance, can be assumed to be Bernoulli random vari-670

ables. The assumption of within-group homogeneity for the probability of pres-671

ence, ρ, allows addition of Bernoulli random variables within each group, R and672

S, to yield a respective binomial random variable, xR and xS . Likewise, the ad-673

dition of a set of binomial random variables with the same probability of success,674

ρ, yields an aggregate binomial random variable. A set of exponential random675

variables with the same rate parameter, λ, can be added to form a gamma ran-676
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dom variable. Gamma random variables, xi ∼ Gamma(κi, θ), parameterized by677

their shape, κi, and scale, θ, are marginally stable on θ. Addition of geometric678

random variables with the same rate parameter forms a negative binomial, and679

the addition of a set of negative binomial random variables, xi ∼ NB(πi, ρ),680

with the same probability of success ρ but di�erent numbers of failures, πi, can681

be aggregated into xR =
∑
i∈R xi where xR ∼ NB

(∑
i∈R πi, ρ

)
. All of these682

distributions are not stable, but they are marginally stable.683

Marginally stable aggregation can be made e�cient by matrix multiplication684

onto one-vectors 1R and 1S whose ith entries are 1 for all i ∈ R,S, respectively,685

and 0 otherwise. Assuming a Poisson or negative binomial count model for the686

bird/non-bird data frame above, the data frame is reduced to687

Site Species Abundance z1 z2 phylo

1 Bird 18 1 .5 R

1 Non-Bird 5 1 .5 S

2 Bird 3 0 -2 R

2 Non-Bird 17 0 -2 S

... ... ... ... ... ...

and the same equation (17) can be used for phylofactorization throughphylo688

factor-contrasts.689
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Figure 4: phylo factor contrasts can allow phylofactorization of exponential family random vari-

ables. (A) Each edge separates the species in a sample into two groups. These groups can be used

as factors directly in a generalized linear model as in equations 17 and 21. Alternatively, a within-

group homogeneity assumption can be used to aggregate data of many exponential family random

variables to a marginally stable distribution, such as addition of Bernoulli random variables with

the same probability of success to a binomial random variable. Regression on marginally stable

random variables may dramatically reduce computational costs and, if within-group heterogeneity

is low, improve accuracy. (B) Simulations of Bernoulli presence/absence data of 30 species with

a random phylogeny suggest that aggregation to binomial improves power across a range of e�ect

sizes, δ, (x-axis), sample sizes, n (rows), and within-group heterogeneity, σ. Here, aggregation of

presence-absence data to binomial random variables for subsequent factor-contrasts outperformed

the raw factor contrast of Bernoulli presence/absence data, suggesting it is at least a viable tool

for large datasets. The generality of improved power of regression on surrogate, marginally stable

aggregates remains to be seen.
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Aggregation to a marginally stable distribution is computationally e�cient

but will only outperform maximum-likelihood estimation if the within-group

heterogeneity is small. For 700 replicates for each combination of sample size n ∈

{5, 10, 30, 60}, e�ect size δ ∈ {0, 0.375, 0.75, 1.125, 1.5, 1.875, 2.25, 2.625, 3}, and

within-group variance σ ∈ {0, 1, 2}, we simulated three explanatory variables

{z1, z2, z3} as independent, identically distributed n-vectors of standard normal

random variables. The log-odds of presence for individual i in group R or group

S was modeled as

ηR,i = z1 + z2 +

(
0.1 +

δ

2

)
z3 + z4,i

ηS,i = z1 − z2 +

(
0.1− δ

2

)
z3 + z4,i (20)

where z4,i
i.i.d.∼ Gsn(0, σ2) are independent Gaussian random variables particular690

to the individual and sample. The data were either kept as Bernoulli random691

variables or aggregated via summation to binomial random variables and then692

analyzed using factor contrasts in a generalized linear model of the form693

η = z1 + phylo× z2 + phylo× z3. (21)

The objective function was the deviance from the �nal term, phylo × z3. The694

probability of identifying the correct edge and the distance between the iden-695

ti�ed and correct edge (in the number of nodes separating the two edges) are696

plotted in Figure 4b. The method of factor-contrasts for glm-phylofactorization697

asymptotically approaches perfect edge-identi�cation, both in the probability of698

detecting the correct edge and in distance from the correct edge, as the sample699

sizes and e�ect sizes increase. Aggregation to binomial and subsequent factor-700

contrast of the aggregates slightly improved the power of edge-identi�cation in701

these simulations. The improved accuracy of marginally-stable aggregation de-702
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creases with di�erences in within-group means, as opposed to an addition of703

individual within-group variance through z4,i, as illustrated below. However,704

marginally-stable aggregation performs reasonably well and, crucially, scales705

well with increasing numbers of species and sample size. Consequently, if the706

datasets are large and the within-group homogeneity across samples is small,707

marginally-stable aggregation and stepwise construction of factor contrasts may708

be a useful tool for regression-phylofactorization of exponential family random709

variables.710

Mixed Algorithm Coe�cient contrasts are computationally easy yet inac-711

curate, whereas stepwise phylo factor selection (without marginally-stable ag-712

gregation) is accurate yet computationally demanding (Figure 5). It's possible713

to develop mixed algorithms with accuracy similar to stepwise phylo factor se-714

lection and reduced computational costs more similar to coe�cient contrasts715

or marginally-stable aggregation. We present one example. In the �rst stages716

of the algorithm, multivariate generalized linear modelling is performed as for717

coe�cient contrasts. For each iteration, coe�cient contrasts (equation 16) are718

used to narrow down the set of possible edges, {e}top, to a set of edges with high719

objective functions from standardized coe�cient contrasts. We use the top 20%720

of edges based on ωe in equation 16, resulting in an approximately 80% speed-721

up compared to the brute-force phylo factor contrast algorithm. For only these722

edges, phylo factors are considered and the winning edge is the top-quantile723

edge which maximizes the deviance of its phylo factor contrast.724

Algorithm comparison We compare the performance of the four algorithms725

listed above by testing how well they can correctly identify the a�ected edges,726

{e∗1, e∗2}, and how long they take to extract a variable number of factors. The727

four algorithms tested are:728
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• �B� : standardized coe�cient contrasts729

• �phylo�: Unaggregated phylo factor contrasts730

• �mStable�: marginally-stable aggregation followed by phylo factor con-731

trasts732

• �mix�: Use of the �phylo� algorithm on only the top 20% of edges.733

For edge identi�cation, presence/absence data, xi,j , were simulated for a set of734

s = 50 species and n = 40 samples. The logit probability of all species was735

modelled as736

ηi ∼ βi,0 + 0.1z1 + 0.1z2 (22)

whereβi,0
i.i.d.∼ N(0, 1) broke the within-group homogeneity in mean-probability737

of presence/absence. For comparison, the case with β0,i = 0 for all species738

i is also considered. The other two explanatory variables, z1 and z2, were739

the partitioning variables di�erentiating species separated by edges. Two non-740

nested clades, one containing 21 species and the other containing 5 species, had741

a di�erent association with the meta-data:742

ηi ∼ z0,i − 0.2z1 + 0.6z2

for i in either of the two a�ected clades. To add an additional level of complexity,743

the two meta-data variables were given multicolinearity by simulating z1 ∼744

Gsn(0, 1) and z2 ∼ Gsn(z1, 1). The algorithms were run for two factors and the745

number of correctly identi�ed edges (out of 2) was tallied across 1000 replicates746

(e.g. an algorithm that was 80% correct identi�ed 1600 correct edges over 1000747

replicates). The times for each of these algorithms to compute two factors748

was also recorded. To compare the scaling of the algorithms, null data were749

simulated across a range of species richness m ∈ {50, 100, 150, 200, 250, 300}750
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and across a range of factors t ∈ {1, 2, 3}.751

The stepwise phylo factor contrasts by maximizing the total deviance of752

phylo ∗ (z1 + z2) had the greatest accuracy but also the slowest computation753

time (Figure 5). The time required to compute phylo factor contrasts scale754

quadratically with the number species, m, whereas coe�cient contrasts and755

marginally stable (mStable) aggregation scale linearly. Marginally stable ag-756

gregation only performs well when βi,0 = 0 for all species, i, and when the757

within-group heterogeneity is small. The accuracy of phylo factor contrasts758

can be preserved and the computation time reduced by selecting the top 20% of759

edges based on coe�cient contrasts. The computation of multiple generalized760

linear models across edges can be parallelized to reduce computation time, and761

such parallelization is built into the R package phylofactor.762
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Figure 5: The accuracy, computation time and scaling of four algorithms for generalized

phylofactorization. Algorithms are compared via the baseline time for two factors with m = 50

species, the scaling coe�cient γ in time ∝ mγ , and percent of correctly identi�ed edges in simulated

data with m = 50 species and 2 a�ected clades. Stepwise phylo factor contrasts have high accuracy

but are computationally costly and scale quadratically with the number of species. Marginally stable

(mStable) aggregation scales linearly with m but only performs well when β0 = 0. Computation

time can be reduced and accuracy preserved if coe�cient contrasts in equation 16 are used to narrow

the set of edges considered for rigorous phylo factor contrasts.

Summary of generalized phylofactorization We have presented algo-763

rithms to perform regression-phylofactorization for non-Gaussian data. These764

algorithms can be called within the function gpf(). The stepwise selection of765

phylo factor contrasts is best able to correctly identify edges and is easily par-766

allelizable. The computation time of stepwise phylo factor contrasts can be767

reduced by narrowing the set of considered edges to those with high coe�cient768

contrasts. Marginally stable aggregation may be a promising alternative for769

faster algorithms as it scales linearly with the number of species, but marginally770

stable aggregation only performs well when there is little systematic di�erence771

in the mean, βi,0, across species, i.772
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There are fruitful avenues for future research to re�ne the algorithms for773

phylofactorization of big-data consisting of non-Gaussian exponential family774

random variables. These algorithms are intimately related to reduced rank775

regression and generalized linear modelling with shared coe�cients. Reduced-776

rank regression considers a compact set of possible basis vectors and, conse-777

quently, can use gradient-descent methods to �nd maximum-likelihood esti-778

mates. The constrained set of allowable contrasts in the phylogeny precludes779

gradient-descent and produces problems directly analogous to those in phylo-780

genetic components analysis and thus we have focused on explicit testing of all781

possible allowable contrasts in the phylogeny or, in the case of the mixed algo-782

rithm, testing a subset of contrasts believed to contain the winning edge, e∗.783

These methods can extend to generalized additive models and, as we discuss784

below, spatial and time-series data as well.785

Phylogenetic factors of space and time786

Phylofactorization can also be used in analyses of spatial and temporal patterns.787

We've demonstrated phylofactorization through examples of cross-sectional data788

through two-sample tests, analyses of contrast-basis projections, and use of789

phylo factor contrasts in communities sampled across a range of meta-data.790

These same tools can be used for phylofactorization-based analysis of spatial791

and temporal ecological data. Samples of a community over space and time can792

be projected onto contrast basis elements and the resulting component scores,793

ye, can be analyzed much like PhyCA to identify the phylogenetic partitions794

of community composition over space and time. Spatial samples can be an-795

alyzed using phylo factor contrasts as de�ned for generalized linear models.796

Multivariate Autoregressive Integrated Moving Average (ARIMA) models can797

be constructed either as ARIMA models of the component scores, ye, or as798

41

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


multivariate ARIMA models with phylo factor contrasts as used in general-799

ized linear models perform phylogenetic partitions based on di�erences in drift,800

volatility, and other features of interest. Coe�cient matrices, including spatial801

and temporal autocorrelation matrices or coe�cients for extrinsic meta-data Z,802

can be approximated with phylogenetic contrast-bases as in equation (15).803

Marginally stable aggregation in spatial and temporal data requires a more804

complex consideration of the marginal stability of spatially explicit random vari-805

able and stochastic processes. �Stability�, for spatially and temporally explicit806

random variables, must preserve the underlying model for the spatial or tem-807

poral process being used for analysis. An example of a less obvious marginally808

stable aggregation of time-series data is the stability of neutral drift (sensu809

Hubbell [22]) to grouping.810

Neutral communities �uctuate, and those �uctuations have a drift and volatil-811

ity unique to neutral drift. Neutral drift can also be de�ned either by discrete,812

�nite-community size urn processes or stochastic di�erential equations for the813

continuous approximations of �nite but large communities. Recently, Wash-814

burne et al. [50] articulated the importance of a feature of neutral drift which815

enables time-series neutrality tests: its invariance to grouping of species. If a816

stochastic process of relative abundances, Xt, obeys the probability law de�ned817

by neutral drift, then any complete, disjoint groupings of Xt also obeys the818

probability law for a lower-dimensional neutral drift. Thus, neutral processes819

are stable to aggregation by grouping or summation of relative abundances. Col-820

lapsing all species into two disjoint groups, R and S, yields a two-dimensional821

neutral drift with a well-de�ned neutrality test for time-series data. Speci�cally,822

if Xt is a Wright Fisher process and R and S are disjoint groups whose union823
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is the entire community, the quantity824

νt = arcsin

(∑
i∈R

Xi,t

)
−

∑
j∈S

Xj,t

 (23)

has a constant volatility which can be used to de�ne a neutrality test for time-

series data. Thus, phylofactorization can be done to partition edges across

which the dynamics appear to be the least neutral. For the test developed by

Washburne et al., the aggregation operation is the L1 norm and the contrast

operation is subtraction:

A(xR) = |xR|

C(A(xR), A(xS)) = arcsin (A(xR)−A(xS)) (24)

and the objective function, ω, for edge e is the test-statistic of a homoskedasticity825

test of Ce. Neutrality is a relative measure - biological units are neutral relative826

to one-another - and thus the use of aggregation of species into a unit and a827

contrast of two units is a natural connection between the theory and operations828

of phylofactorization and the concept of neutrality.829

Statistical Challenges830

We present a unifying algorithm which partition organisms into functional groups831

by identifying meaningful di�erences or contrasts along edges in the phylogeny.832

Phylofactorization is formally de�ned as a graph-partitioning algorithm. How-833

ever, maximizing the variance of the data projected onto contrast basis elements834

corresponding to edges in the phylogeny is a constrained principal components835

analysis. The use of regression-based objective functions and the iterative con-836

struction of a low-rank approximation of a data matrix is similar to factor837

analysis. The discovery of a sequence of orthogonal factor contrasts in general-838
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ized linear models is a form of stepwise/hierarchical regression and partitioning839

a coe�cient matrix B is a reduced-rank regression method. The maximization840

of the objective function at each iteration is a greedy algorithm. Each of these841

connections between phylofactorization and other classes of methods produces a842

body of literature from related methods which could inform phylofactorization843

and facilitate rapid development of this exploratory tool into a more robust,844

inferential one.845

There are statistical challenges common across many methods for phylofac-846

torization. In this section, we enumerate some of the statistical challenges and847

discuss work that has been done so far. First, as with any method using the phy-848

logeny as a sca�old for creating variables or making inferences, the uncertainty849

of the phylogeny and the common use of multiple equally likely phylogenies war-850

rant consideration and further method development. Other challenges discussed851

here are: understanding the propagation of error; development of Metropolis al-852

gorithms to better arrive at global maxima; the appropriateness, and error rates,853

of phylofactorization under various evolutionary models underlying the e�ects854

(e.g. trait di�erences, habitat associations, etc.) and residuals in our data;855

understanding graph-topological biases and con�dence regions; cross-validating856

the partitions and inferences from phylofactorization; determining the appropri-857

ate number of factors and stopping criteria to stop a running phylofactorization858

algorithm; and understanding the null distribution of test-statistics when objec-859

tive functions being maximized are themselves test-statistics from a well-known860

distribution. Any exploratory data analysis tool can be made into an inferential861

tool with appropriate understanding of its behavior under a null hypothesis,862

and the connections of phylofactorization to related methods can accelerate the863

development of well-calibrated statistical tests for phylogenetic factors.864
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Phylogenetic inference So far we have assumed that the phylogeny is known865

and error free, but the true evolutionary history is not known - it is estimated.866

Consequently, phylofactorizations are making inferences on an uncertain scaf-867

fold; the more certain the sca�old, the more certain our inferences about a868

clade. Two challenges remain for dealing with phylofactorization on an uncer-869

tain phylogeny. For a consensus tree, there is the question of what statistics of870

the consensus are most easily integrated for precise statements of uncertainty871

in phylofactorization inferences. Bootstrapped con�dence limits for monophyly872

[12] are the most commonly used statement of uncertainty for a consensus tree,873

but there may be others as well. Di�erent organisms will have di�erent leverages874

in regression or two-sample test phylofactorization, and thus monophyly is only875

part of the picture: leverage is another. For a set of equally likely bootstrapped876

trees, there is a need to integrate phylofactorization across trees. Phylofactor-877

ization of sets of equally likely phylogenies has not yet been done, but may be878

a fruitful avenue for future research. One last option for researchers with trees879

containing clades with low bootstrap monophyly is to lower the resolution of the880

tree. Phylofactorization can still be performed on a tree with polytomies - the881

mammalian phylogeny used above contained many - and reducing the number882

of edges considered at each iteration can focus statistical e�ort (and chances of883

false-discovery) on clades about which the researcher is more certain.884

Propagation of error Phylofactorization is a greedy algorithm. Like any885

greedy algorithm, the deterministic application of phylofactorization is non-886

recoverable. Choosing the incorrect edge at one iteration can cause error to887

propagate, potentially leading to decreased reliability of downstream edges. Lit-888

tle research has been done towards managing the propagation of error in phylo-889

factorization, but recognizing the method as a greedy algorithm suggests options890

for improving performance. Stochastic-optimization schemes, such as replicate891
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phylofactorizations using Metropolis algorithms and stochastic sampling as im-892

plemented in the mammalian tree phylofactorization (sampling of edges with893

probabilities increasing monotonically with ωe and picking the phylofactor ob-894

ject which maximizes a global objective function), may reduce the risk of error895

cascades in phylofactorization [20].896

Behavior under various evolutionary models Phylofactorization is hy-897

pothesized to work well under a punctuated-equilibrium model of evolution or898

jump-di�usion processes [15, 26] in which jumps are infrequent and large, such899

as the evolution of vertebrates to land or water. If few edges have large changes900

in functional ecological traits underlying the pattern of interest, phylofactor-901

ization is hypothesized to work well. Phylofactorization may also work well902

when infrequent life-history traits arise or evolutionary events occur (such as903

ecological release) along edges and don't yield an obvious trait but instead yield904

a correlated, directional evolution among descendants. Phylofactorization of905

mammalian body sizes yielded a scenario hypothesized to be in this category.906

In this case the exact trait may not have arisen along the edge identi�ed, but a907

precursor trait, or a chance event such as extinctions or the emergence of novel908

niches, may precipitate downstream evolution of the traits underlying phylofac-909

torization. Both aggregation and contrast functions can incorporate phyloge-910

netic structure and edge lengths to partition the tree based on likelihoods of911

such evolutionary models. The sensitivity of phylofactorization to alternative912

models, such as continuous Brownian motion and Ornstein-Uhlenbeck models913

commonly used in phylogenetic comparative methods [13, 19], remains to be914

tested and will likely vary depending on the particular method used.915

Basal/distal biases Researchers may be interested in the distribution of fac-916

tored edges in the tree. If a dataset of microbial abundances in response to917
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antibiotics is analyzed by regression-phylofactorization and results in many tips918

being selected, a researcher may be interested in quantifying the probability of919

drawing a certain number of tips given t iterations of phylofactorization. Alter-920

natively, if several edges are drawn in close proximity researchers may wonder921

the probability of drawing such clustered edges under a null model of phylofac-922

torization. For another example, researchers may wonder if the number of im-923

portant functional ecological traits arose in a particular historical time window924

(e.g. due to some hypothesis of important evolutionary event or environmental925

change), and thus want to test the probability of drawing as many or more926

edges than observed under a null model of phylofactorization. All of these tests927

would require an accurate understanding of the probability of drawing edges in928

di�erent locations of the tree.929

All methods described here, save the Fisher exact test, have a bias for tips in930

the phylogeny (Figure 6). Such biases a�ect the calibration of statistical tests931

of the location of phylogenetic factors, such as a test of whether/not there is932

an unusually large number of di�erentiating edges in mammalian body mass933

during or after the K-Pg extinction event.934
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Figure 6: Graph topological bias in null data and the relative size of Voronoi cells of

contrast basis elements. The method and the null distribution of the data determine graph-

topological bias of phylofactorization. A random draw of edges does not discriminate against edges

based on the relative sizes of two groups contrasted by the edge, but 16,000 replicate phylofactor-

izations of null data reveal that contrast-basis methods are slightly biased towards uneven splits

(e.g. tips of the phylogeny). Standard Gaussian null data were used for PhyCA, F-statistics from

regression on contrast basis elements (ye ∼ z), and binomial null data was used for generalized

phylofactorization (gpf) through marginally-stable aggregation. Other methods, such as Fisher's

exact test of a vector of Bernoulli random variables, have opposite biases. The tip-bias of contrast-

basis analysis is ampli�ed for marginal-stable aggregation in generalized phylofactorization, and

ampli�ed even more if the null data have residual structure from a Brownian motion di�usion along

the phylogeny (Phyl-BM). The common bias when using contrast bases across a range of objective

functions is related to the uneven relative sizes of Voronoi cells produced by the bases, simulated

here by equation (25).

Phylofactorization using the contrast basis is biased towards the tips of935

the tree. Some progress can be made towards understanding the source of936

basal/distal biases in phylofactorization via the contrast-basis. The biases from937

analyses of contrast basis coordinates, ye, stem from a common feature of the938

set of Kt candidate basis elements {vCe}
Kt
e=1 considered at iteration t of phylo-939

factorization. For the example of the t-test phylofactorization of a vector of940

data, x, the winning edge e∗ is941

e∗ = argmax
e
|vTCex|. (25)
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If all basis elements have unit norm, which they do under equation (5), then942

each basis element being considered corresponds to a point on anm-dimensional943

unit hypersphere. If the data, x, are drawn at random, such that no direction944

is favored over another, the probability that a particular edge e is the winning945

edge is proportional to the relative size of its Voronoi cell on the surface of the946

unit m-hypersphere. Thus, the basal/distal biases for contrast-basis analyses947

with null data assumed to be drawn from a random direction can be boiled948

down to calculating or computing the relative sizes of Voronoi cells. For our949

simulation, we estimated the size of Voronoi cells through matrix multiplication950

Y null = V TXnull (26)

were V is a matrix whose columns j is the contrast basis elements for edge951

ej being considered and Xnull is the dataset simulated under the null model952

of choice whose columns are independent samples xj . Each column of Y null953

contains the projections of a single random vector - the element of each column954

with the largest absolute value is the edge closest to that random vector.955

Graph-topology and con�dence regions As a graph-partitioning algo-956

rithm, phylofactorization invites a novel description of con�dence regions over957

the phylogeny. The graph-topology of our inferences - edges, and their proximity958

to other edges, both on the phylogeny and in the m-dimensional hypersphere959

discussed above - can be used to re�ne our statements of uncertainty. 95%960

Con�dence intervals for an estimate, e.g. the sample mean, give bounds within961

which the true value is likely to fall 95% of the time in random draws of the962

estimate. Con�dence regions are multi-dimensional extensions of con�dence963

intervals. Conceptually, it's possible to make similar statements regarding phy-964

logenetic factors - con�dence regions on a graph indicating the regions in which965
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the true, di�erentiating edge is likely to be.966

Extending the concept of con�dence regions to the graph-topological infer-967

ences from phylofactorization requires useful notions of distance and �regions�968

in graphs. One example of such a distance between two edges is a walking969

distance: the number of nodes one crosses along the geodesic path between970

two edges. Alternatively, one could de�ne regions in terms of years or branch-971

lengths. De�ning con�dence regions in phylofactorization must combine the972

uneven Voronoi cell sizes as well as the geometry of the contrast basis. For973

low e�ect sizes, con�dence regions extend to distant edges on the graph whose974

contrast basis have a large relative Voronoi cell size (e.g. the tips). As the e�ect975

sizes increase, con�dence regions over the graph are better described in terms of976

angular distances between the contrast basis elements and that of the winning977

edge, e∗ (Figure 7).978
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Figure 7: Graph-topological con�dence regions for phylofactorization. Con�dence regions
around inferred edges must use distances relevant to the method and graph topology. A tree with

30 species was given a �xed e�ect about edge e∗ in their mean values as a function of meta-data

z ∼ Gsn(±δ/2, 1). 7 × 105 iterations of phylofactorization were run and the relative probability of

drawing each edge was visualized through both the color and width of the edge. The relationship

between the angular distance of an edge's contrast basis element to that of e∗ and the probability of

drawing the edge indicate that for low e�ects, con�dence intervals must incorporate a mix of tip-bias

and angular distance, but larger e�ect sizes, in which the edge drawn is reliably in the neighborhood

of e∗, the angular distance of contrast basis elements capture con�dence regions around the location

of inferred phylogenetic factors.

Cross-validation How do we compare phylofactorization across datasets to979

cross-validate our results? If a researcher observes a pattern in the ratio of980

squamates to mammalian abundances in North America, say a decrease in the981

ratio of lizard and snake to mammal abundance with increasing altitude, they982

may wish to cross-validate their �ndings in other regions, including regions with983

few or none of the same species in the original study. Researchers replicating984

the study in Australia and New Zealand would have to grapple with whether985

or not to include monotremes in their grouping of �mammals� and whether or986

not to include the tuatara, a close relative of squamates, in their grouping of987

�squamates� - such branches were basal to the squamate & mammalian clades988

contrasted in the hypothetical North American study.989
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Phylofactorization formalizes the issues arising with such phylogenetic cross-990

validation (Figure 8). If all species in the training/testing datasets can be991

located on a universal phylogeny, phylofactorization of a training set of species992

and data identi�es edges or links of edges in the training phylogeny which are993

guaranteed to correspond to edges or links of edges in the universal phylogeny.994

The testing set of species may introduce new edges to the phylogeny which995

interrupt the links of edges in the universal phylogeny along which training996

contrasts were conducted. In the example above, the tuatara and monotremes997

all interrupt the link of edges separating North American mammals from North998

American reptiles on the universal phylogeny.999

Robust cross-validation for phylofactorization requires directly addressing1000

the issues arising from the interruptions of edges produced by novel species.1001

Interruptions may be either ignored, or used to re�ne the inference. Returning1002

to the previous example, one can use the presence of monotremes and tuatara to1003

re�ne the de�nition of North American mammals to mean �all mammals� and1004

�all placental and marsupial mammals�, and likewise one can optionally re�ne1005

the de�nition of �squamates� to the broader �Lepidosauria� clade.1006
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Figure 8: Graph-topological considerations with cross-validation. (A) The training community

has 5 species (yellow boxes) split into two factors. The second factor forms a partition separating

t4 from {t2,t7}. The second factor does not correspond to a single edge, but instead a chain of two

edges. (B) A second, testing community is missing species t6 and t7 and contains novel species t3

and t5 (green boxes). (C) All factors can be mapped to chains of edges on a universal phylogeny.

Novel species �interrupt� edges in the original tree; cross-validation requires deciding what to do

with novel species and interrupted edges. Species t3 does not interrupt a factored edge, and so t3

can be reliably grouped with t1 in factor 1. However, species t5 interrupts one of the edges in the

edge-path of factor 2. (D-E) Interruptions can be ignored, or they can be used to re�ne the location

of important edges (illustrated in Factor 2.1 and Factor 2.2). Another topological and statistical

question is whether/not to control for factor order. For instance, controlling for factor order with

Factor 2.2 would partition t4 from {t2,t5}. Not controlling for factor order would partition t4 from

{t1,t2,t3,t5}.

Stopping Criteria Often, it's desireable to obtain a minimal set of partitions1007

to prioritize �ndings, simplify high-dimensional data, and focus e�ort on more1008

certain inferences. Doing so requires a method for stopping phylofactorization.1009

There are two broad options for stopping phylofactorization: a stopping func-1010

tion demonstrated to be su�ciently conservative, and null simulations allowing1011

quantile-based cuto�s (e.g. stop phylofactorization when the percent variance1012
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explained by PhyCA is within the 95% quantile of null phylofactorizations).1013

Null simulations may allow statistical statements stemming from a clear null1014

model, but stopping criteria can be far more computationally e�cient and can1015

be constructed to be conservative.1016

Washburne et al. [51] proposed a stopping criterion for regression phylofac-1017

torization which extends to all methods of phylofactorization using an objective1018

function that is a test-statistic whose null-distribution is known. The original1019

stopping criterion is based on the fact that, if the null hypothesis is true, the1020

distribution of P-values from multiple hypothesis tests is uniform. Phylofactor-1021

ization performs multiple hypothesis tests at each iteration. At each iteration,1022

one can perform a one-tailed KS test on the uniformity of the distribution of the1023

P-values from the test-statistics on each edge; if the KS-test is non-signi�cant,1024

stop phylofactorization. KS-test stopping criteria can conservatively stop simu-1025

lations at the appropriate number of factors when there is a discrete subset of1026

edges with e�ects. Such a method performs similarly to Horn's stopping crite-1027

rion for factor analysis [21], whereby one stops factorization when the scree plot1028

from the data crosses that expected from null data (�gure 9). It's also possible1029

to �rst use a stopping criterion and subsequently run null simulations to under-1030

stand the likelihood of observed results under a null model of the researcher's1031

choice (�gure 9).1032
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Figure 9: Null simulations and stopping criteria. A challenge of phylofactorization is deter-

mining the number of factors, K, to include in an analysis. Null simulations allow quantile-based

cuto�s such as those in Horn's parallel analysis from factor analysis. Stopping criteria stop phylo-

factorization using features available during phylofactorization of the observed data. Abundances

of m = 32 species across n = 10 samples were simulated as i.i.d. standard Gaussian random vari-

ables. A set of u clades were associated with environmental meta-data, z, where zj
i.i.d.∼ Gsn(0, 1).

Regression-phylofactorization on the contrast-basis scores ye was performed on 300 datasets for

each u ∈ {2, 4, 8, 16} and on data with and without e�ects. The objective function was the total

variance explained by regression ye ∼ z. (top row) The percent of the variance in the datseta ex-

plained at each factor (EV) decreases with factor, t, and the mean EV curve for data with u a�ected

clades intersects the mean EV curve for null data near where t = u, motivating a stopping criterion

(Horn) based on phylofactorization of null datasets. (bottom row) The Horn stopping criterion

has a slightly lower over-factorization (OF) rate than the standard KS stopping criterion (where

OF rate is the fraction of the 300 phylofactorizations of data with simulated e�ects in which t > u).

However, the algorithms were not extremely di�erent and both criteria can be modi�ed to be made

more conservative. The KS stopping criterion is far less computationally intensive for large datasets

as it requires running phylofactorization only once. Null simulations, however, can allow inferential

statistical statements regarding the null distribution of test statistics in phylofactorization.

Calibrating Statistical Tests for ωe∗ Often, the objective function for the

winning edge in phylofactorization, ωe∗ , corresponds directly to a common test-

statistic. Applying a standard test for the resultant test-statistic, however, will

lead to a high false-positive rate and an over-estimation of the signi�cance of

an e�ect, as the statistic was drawn as the best of many. Even when using
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a test-statistic not equal to the objective function, researchers should be cau-

tious of dependence between their test-statistic and the objective function as

a possible source of high false-positive rates. Two nmethods for calibrating, or

making conservative, statistical tests of ωe∗are multiple-comparisons corrections

to control a family-wise error rate (or other multiple-hypothesis-test methods)

or conservative bounds on the distribution of the maximum of many indepen-

dent, identically distributed statistics. For example, if each edge of Kt edges

considered at iteration t sresulted in an independent F -statistic, Fe, then the

distribution of the maximum F -statistics, Fe∗ , is

P {Fe∗ > F} = P {Fe1 > F ∩ Fe2 > F ∩ ... ∩ FeK}

= P {Fe > F}Kt . (27)

Such an approximation may be used to yield conservative estimates, but the1033

F -statistics are not independent and thus more nuanced analyses are needed for1034

well-calibrated statistical tests. More research is needed to obtain conservative1035

bounds on test-statistics in phylofactorization.1036

Summary of limitations Phylofactorization can be a reliable statistical tool1037

with a careful understanding of the statistical challenges inherent in the method1038

and shared with related methods such as graph-partitioning, greedy algorithms,1039

factor analysis, and the use of a constrained, biased basis for matrix factoriza-1040

tion. Phylofactorization can �rst and easiest be an exploratory tool, but all1041

exploratory tools can be made inferential with suitable understanding of their1042

behavior under an appropriate null model. For example, principal components1043

analysis was and still is primarily an exploratory tool, but the discovery of the1044

Marcenko-Pastur distribution [30] has improved the calibration of statistical1045

tests on principal components for standardized, mean-centered data. Improved1046
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understanding of how uncertainties in phylogenetic inference translate to uncer-1047

tainties in phylofactorization, conservative stopping criteria, null distributions1048

of test-statistics for winning edges, propagation of error and stochastic sampling1049

algorithms to avoid deterministic ruts, graph-topological biases and con�dence1050

regions on a graph, can all improve the reliability of phylofactorization as an1051

inferential tool.1052

While phylofactorization was built with an evolutionary model of punctu-1053

ated equilibria in mind, it may also work well under other evolutionary models1054

such as correlated evolution among descendants of an edge. There are also many1055

evolutionary models under which phylofactorization does not perform well. For1056

instance the graph-topological biases of PhyCA are increased under a Brownian1057

motion model of evolution. All statistical tools operate well under appropriate1058

assumptions, and understanding the assumptions, as well as the known limita-1059

tions, are necessary for responsible and academically fruitful use of statistical1060

tools like phylofactorization.1061

Discussion1062

Functional ecological traits underlie many observed patterns in ecology, includ-1063

ing species abundances, presence/absence of species, and responses of traits1064

or abundances to experimental conditions or along environmental gradients.1065

Where the ecological pattern of interest is associated with heritable traits, the1066

phylogeny provides a sca�old for the discovery of functional groupings of clades1067

underlying the ecological pattern of interest. Traits arise along edges, and con-1068

trasting taxa on opposing sides of an edge allows one to uncover edges best1069

separating species with di�erent functional associations or links to the ecologi-1070

cal pattern. By noting that each edge partitions the phylogeny into two disjoint1071
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sets of species, by generalizing the operations of �grouping� - aggregating and1072

contrasting disjoint sets of species - and by de�ning the objective function of1073

interest (the pattern), we have proposed a universal method for identifying rel-1074

evant phylogenetic scales in ecological datasets.1075

Phylofactorization is a graph-partitioning algorithm intended to separate the1076

phylogeny into binned phylogenetic units with a combination of high within-1077

group similarity and high between-group di�erences. Two-sample tests are a1078

natural method for making such partitions in vectors of data; such partitions1079

can also be made with ancestral state reconstruction. The quantities used in1080

two-sample tests can be extended to larger, real-valued datasets by analysis1081

of a contrast basis. Objective functions for choosing the appropriate contrast1082

basis include maximizing variance - a phylogenetic analog of principal com-1083

ponents analysis - maximizing explained variance from regression, maximizing1084

F-statistics from regression, and more. By partitioning coe�cient matrices and1085

using phylo factor contrasts, phylofactorization can be extended to generalized1086

linear models, generalized additive models, and analyses of spatial and temporal1087

patterns in ecological data.1088

We've illustrated that two-sample tests can partition a dataset of mam-1089

malian body mass into groups with very di�erent average body masses. We've1090

demonstrated that maximizing variance of data projected onto a contrast basis1091

can identify major clades of bacteria in human feces that have been known, at1092

a coarser resolution, to be highly variable and determined that one of the top1093

phylogenetic factors in the American Gut dataset is a clade of Gammaproteobac-1094

teria associated with IBD and used recently in an e�ort to diagnose patients1095

with Crohn's disease. We've shown that analyses of contrast bases can use non-1096

linear regression, and within minutes of analysis on a laptop found a natural1097

way put over 3,000 species into 5 binned phylogenetic units, sort them along1098

58

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/235341doi: bioRxiv preprint 

https://doi.org/10.1101/235341
http://creativecommons.org/licenses/by-nd/4.0/


an axis of the dominant explanatory variable, and produce a simpli�ed story of1099

how community composition changes in Central Park soils.1100

One can also perform phylofactorization when doing maximum-likelihood1101

regression of exponential family random variables. The coe�cient matrix can be1102

approximated using the contrast basis, resulting in a phylogenetically-interpretable1103

reduced-rank regression. Alternativley, it's possible to use phylo factor con-1104

trasts for a shared-coe�cients model and maximum-likelihood based selection1105

of edges for partitioning. One can either perform the factor contrasts on the1106

raw data, or, for many exponential family random variables, one can aggregate1107

the data from each group to a marginally stable distribution for more compu-1108

tationally e�cient factor contrasts. These methods can be extended to spatial1109

and temporal data. All methods discussed here can be implemented with the1110

R package �phylofactor�, and scripts for running all analyses in this paper are1111

available in the supplemental materials.1112

As with any method, there are limitations to be aware of. First, the general1113

problem of separating species into k bins that maximize a global objective func-1114

tion is an NP hard problem. Second, like any greedy algorithm, purely deter-1115

ministic phylofactorization may fall into ruts and errors in one step might prop-1116

agate into downstream inferences. Third, the null distribution of test-statistics1117

resulting from phylofactorization is not known; the resultant test statistics are1118

biased towards extreme values. Null simulations, conservative stopping func-1119

tions, and/or extremely stringent multiple comparisons corrections can be used1120

to make inferences through phylofactorization while maintaining conservative1121

bounds in family-wise error or false-discovery rate. When the objective func-1122

tion being maximized is also a test-statistic with a well-de�ned null distribution,1123

one-sided KS-tests of the P-values from the test-statistic can serve as a computa-1124

tionally e�cient and conservative stopping function. Fourth, common objective1125
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functions using the contrast basis will be biased due to the unequal relative1126

sizes of the Voronoi cells of the contrast basis elements in the unit hypersphere1127

in which they lie, with contrast basis elements corresponding to tips of the1128

phylogeny tending to have larger relative Voronoi cell size than contrast basis1129

elements corresponding to interior edges. Understanding the graph-topology1130

of errors can assist the description of graph-topological con�dence regions for1131

each inference. Finally, phylofactorization formalizes the logic and challenges of1132

cross-validating ecological comparisons even when the training and testing sets1133

of species are completely disjoint. Many of these limitations may be resolved1134

with future work, allowing the general algorithm and its common implementa-1135

tions to become a reliable, well-calibrated inferential tool.1136

Phylofactorization can objectively identify phylogenetic scales for ecologi-1137

cal big-data and instantly produce avenues for future naturaly history research.1138

By iteratively identifying clades, phylofactorization provides a sequence of low-1139

rank approximations of a dataset, such as that visualized in �gure 3c, which1140

correspond to groups of species with a shared evolutionary history. What traits1141

characterize the Chloracidobacteria which don't like acidic soils? What traits1142

characterize the monophyletic clade of Gammaproteobacteria that are associ-1143

ated with IBD? What traits underlie the Clostridia/Erysipelotrichi being such1144

variable species in the American gut? The low-rank approximations of eco-1145

logical data obtained by phylofactorization motivate subsequent questions best1146

answered by life history comparisons, comparative genomics, microbial phys-1147

iological studies, and other avenues of future research contrasting the species1148

partitioned.1149

Relation to other phylogenetic methods Phylofactorization is proposed1150

amidst an explosion of literature in phylogenetic comparative methods and var-1151

ious other phylogenetic methods for analyzing ecological datasets [29, 38, 14],1152
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and some careful thinking is bene�cial to clarify the distinctions between the1153

myriad methods.1154

Phylogenetic generalized least squares [16] aims to control for residual struc-1155

ture in the response variable expected under a model of trait evolution, and1156

is thus used when performing regression on a trait, whereas phylofactorization1157

aims to partition observed trait values or abundances into groups, separated by1158

edges, with di�erent means or associations with meta-data. Thus, while meth-1159

ods of phylogenetic signal, such as Pagel's λ [35] or Blomberg's κ [5], summarize1160

global patterns of phylogenetic signal by parameterizing the extent to which a1161

particular model of evolution can be assumed to underlie the residual structure1162

of observed traits (often for downstream use in PGLS), phylofactorization it-1163

eratively identi�es precise locations of putative changes and precise locations1164

partitioning phylogenetic signal or structure.1165

Phylofactorization can be implemented by a contrast of ancestral state re-1166

constructions of nodes separated by edges, for example by looking for edges with1167

nodes whose reconstructed ancestral states are most di�erent, but is limited by1168

disallowing the descendant clade of an edge to impact the ancestral state of the1169

edge's basal node - a proper non-overlapping contrast would separate the groups1170

of species being used to reconstruct each node, and thus phylofactorization can1171

be implemented with ancestral state reconstruction under the assumption of1172

time-reversible evolutionary models.1173

Phylogenetically independent contrasts [13] produces variables correspond-1174

ing to contrasts of descendants from each node, whereas phylofactorization uses1175

contrasts of species separated by an edge, picks out the best edge, splits the tree,1176

and repeats. Phylofactorization develops a set of variables and an orthonormal1177

basis to describe ecological data, but limits itself to bases interpretable as non-1178

overlapping contrasts along edges; eigenvectors of phylogenetic distances matri-1179
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ces or covariance matrices under di�usion models of traits [35], are not encom-1180

passed in phylofactorization as they do not construct non-overlapping contrasts1181

along edges. Such eigenvector methods construct quantities whose evolutionary1182

interpretation is less clear. Unlike many modern methods for re-de�ning dis-1183

tances, such as UniFrac distances [29] or phylogenetically-de�ned inner prod-1184

ucts [38], phylofactorization is principally about discovering phylogenetically-1185

interpretable directions - vectors which characterize primary axes of variation1186

in the community and represented through the contrast basis, a multilevel-factor1187

developed from stepwise selection of factor contrasts, or a basis made of aggre-1188

gations of the binned phylogenetic units.1189

Phylofactorization as a species concept There is great debate about what1190

constitutes a species in microbes, let alone all organisms. There is a need for1191

objectivity and universality in the de�nition of �species� and other units in1192

ecology and evolution. The biological species concept is complicated by asex-1193

ual reproduction. Genetic species concepts are limited by the subjectivity of a1194

sequence-similarity cuto�, such as the 97% sequence similarity commonly used1195

in de�ning operational taxonomic units or OTUs, which is additionally compli-1196

cated by the fact that functional ecological similarity may not be uniform at1197

a given sequence-similarity cuto�. Ecological species concepts are often useful1198

once researchers have a clear sense of the functional ecological groups, but it is1199

di�cult to objectively de�ne what constitutes an important functional ecologi-1200

cal group, especially for taxa whose life histories are unknown. Species concepts1201

coarse-grain the diversity of life in a way that connects our coarse-grained units1202

to biological, ecological, and evolutionary theory. To that end, phylofactoriza-1203

tion can be seen as de�ning a species concept.1204

Species concepts are fundamental to biology as they partition the diversity of1205

life into units between which we de�ne ecological interactions and within which1206
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we de�ne evolution and natural selection. At the heart of species concepts are1207

the operations fundamental to phylofactorization: aggregation, contrast, and an1208

objective function. Species are aggregations of �ner units of diversity: individual1209

subpopulations of individual organisms and their individual cells and the cells'1210

individual genes are all aggregated to de�ne a �population�. Aggregation in a1211

species concept de�nes a clear partition for later �within-species� contrasts (evo-1212

lution) and �between-species� interactions (competition & ecological interactions1213

among populations or aggregates of species). A species concept must meaning-1214

fully contrast the units of diversity - the biological species concept contrasts1215

species based on reproductive isolation, the genetic species concept contrasts1216

species based on genetic disimilarity, and ecological species concepts contrast1217

species based on distinct functional ecological traits. The objective function in1218

phylofactorization is the theoretical placeholder for a researcher's �meaningful1219

contrast�. The units for aggregation and contrast must be done in light of some1220

objective, such as a common �tness or pattern of relative abundance within units1221

over time, space, across environmental gradients and/or between experimental1222

treatments. A full theoretical consideration of phylofactorization as a species1223

concept, as it relates to evolutionary and ecological theory, is saved for future1224

research. For the time being, we note that phylofactorization partitions diver-1225

sity and yields notions of a �species� which can be aggregated and contrasted1226

with other �species�.1227

Phylofactorization is a �exible species concept, a hybrid of the phylogeny-1228

based phylogenetic species concept [34] and the character-based ecological species1229

concept [48]. After k iterations of phylofactorization, the phylogeny is par-1230

titioned into k + 1 bins of species referred to as �binned phylogenetic units�1231

(BPUs). BPUs are aggregations of the phylogeny which, up to a certain level1232

of partitioning, are more similar to one-another with respect to the aggrega-1233
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tion, contrast and objective function, than they are to other groups. BPUs are1234

a coarse-grained way to cluster entities into �units� of organization with com-1235

mon behavior with respect to the ecological pattern de�ned in the objective1236

function. Phylofactorization de�nes functional groups based on phylogenetic1237

partitions and a similar association with some ecological pattern of interest.1238

Consequently, phylofactorization can be seen as an ecological species concept1239

constrained to a phylogenetic sca�old. Whereas the phylogenetic species con-1240

cept is character-based and pattern oriented, phylofactorization is pattern-based1241

and phylogenetically-constrained. A textbook example of a phylofactorization-1242

derived species are �land-dwelling tetrapods�, a group which can be obtained1243

objectively through phylofactorization and which de�nes a scale for aggregating1244

and summarizing the pattern of vertebrate species-abundances across land/water1245

habitats.1246

Phylofactorization permits optional �ne-graining and coarse-graining of our1247

patterns of diversity. Phylofactorization provides an algorithm for identifying1248

relevant units, and those units may be at di�erent taxonomic or phylogenetic1249

depths but species within those units will have shared evolutionary history and1250

similar associations with the ecological pattern of interest. For microorganisms,1251

for which the biological species concept doesn't apply, the genetic species con-1252

cept appears too detached from ecology, and the ecological species concept is1253

unavailable due to lack of life history detail, phylofactorization serves as a way1254

to organize diversity for focused between-species interactions and within-species1255

comparisons.1256

R package: phylofactor An R package is in development and, prior to its1257

stable release to CRAN, publicly available at https://github.com/reptalex/phylofactor.1258

The R package contains detailed help functions and supports �exible de�nition1259

of two-sample tests (the function twoSampleFactor), contrast-basis analyses with1260
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the function PhyloFactor, and generalized phylofactorization of exponential fam-1261

ily random variables with the function gpf. Phylofactorization is highly par-1262

allelizable, and the R package functions have built-in parallelization. The R1263

package in development also works with phylogenies containing polytomies, al-1264

lowing researchers to collapse clades with low bootstrap support to make more1265

robust inferences. The output from phylofactorization is a �phylofactor� object1266

containing the contrast basis, the BPUs, and other details allowing one to input1267

the object into various functions which summarize, plot, cross-validate, run null1268

simulations, and parse out the information from phylofactorization. Researchers1269

are invited to contact the corresponding author for assistance with the package1270

and how to produce their own customized phylofactorizations - such feedback1271

will be essential for a user-friendly stable release to CRAN.1272

Until then, the supplemental information contains the data and scripts used1273

for all analyses done in this manuscript in an e�ort to accelerate method devel-1274

opment in this �eld.1275

�Everything makes sense in light of evolution� Phylogenetic factoriza-1276

tion is a new paradigm for analyzing a large class of biological data. Ecological1277

big-data, as Thomas Dhobzansky noted about biology in general, makes sense1278

�in light of evolution�. Phylofactorization extends a broad category of data anal-1279

yses - two sample tests, generalized linear modelling, factor analysis and PCA,1280

and analysis of spatial and temporal patterns - to incorporate a natural set of1281

variables and operations de�ned by the phylogeny. Phylofactorization localizes1282

inferences in big data to particular edges or chains of edges on the phylogeny1283

and, in so doing, accelerates our understanding of the phylogenetic scales under-1284

lying ecological patterns of interest. The problem of pattern and scale is central1285

to biology, and phylofactorization uses the pattern to objectively uncover the1286

relevant phylogenetic scales in ecological datasets.1287
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Table of mathematical notation1292

Term Description

A(.) Aggregation operator

C(., .) Contrast operator

F(θ) Distribution parameterized by θ

Fe F-statistic for edge e

Kt Number of edges considered in iteration t of phylofactorization

N Size of a binomial random variable

Q A group Q = R ∪ S aggregated at a current or previous iteration

R, S Two groups contrasted containing r and s species, respectively

U,B,P Meta-data subsets for phylofactorization

T Phylogenetic tree

B m × p coe�cient matrix

W matrix of component scores corresponding to V

V m matrix of contrast basis elements

X m × n data matrix used for phylofactorization

Y K × n matrix of component scores, one for each edge considered

Z n × p matrix of meta-data used in regression-phylofactorization

a Coe�cient in aggregation vector

b, c Coe�cients in a contrast vector

ek Edge k

e∗ Winning edge

e∗t Winning edge at iteration t

f(.) Transformation in generalized f-mean

g Factor containing two levels, {R, S}

i, j, k, l Indexes. Often, i is the index for species and j for samples.

m Number of species

n Number of samples

p Number of meta-data types for each sample
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Terms Description

q Number of pure aggregates in a basis for Rm

r, s Numbers of species in groups R, S respectively

s(.) Smoothing spline notation for term in generalized additive model

t Iteration of phylofactorization

xi,j The i, jth element of data matrix X

xR,j Aggregate, A(xj) of group R for sample j. If j is missing then sample is arbitrary.

xS,j See xR,jabove.

xi A random variable (assumed to be a single species i for arbitrary sample)

[x]i,j i, jth entry of data matrix, X

zi Column of meta-data matrix, Z

vQ,i ith element of aggregation basis for set Q

vCR|S
Contrast vector splitting groups R and S

vCe
Contrast vector for edge e (which splits sub-tree into two disjoint groups)

xR,j r-vector containing only the species in group R for sample j

xS,j See xR,j above.

x m-vector of species' data for an arbitrary sample

x̄ Sample mean of vector x

ye n-vector of component scores for edge e

zk Vector of meta-data of type k.

βi Coe�cients for linear model

η Natural parameter for exponential-family random variable

κ Scale parameter for Gamma distribution

π Number of failures parameter for Negative Binomial distribution.

ρ Probability of success for Bernoulli, Binomial, Negative Binomial distributions

σ Standard deviation for Gaussian random variable

θ Arbitrary parameters for probability distribution
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