Abstract
The sarcomere is the basic contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating thin (i.e., actin) and thick (i.e., myosin) filament assembly during sarcomere formation. Thus, we developed an assay using human cardiomyocytes to test de novo sarcomere assembly. Using this assay, we report a population of muscle-specific stress fibers are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from these muscle stress fibers. This process requires formin-mediated but not Arp2/3-mediated actin polymerization and nonmuscle myosin IIB but not non-muscle myosin IIA. Furthermore, we show a short species of β cardiac myosin II filaments grows to form ~1.5 long filaments that then “stitch” together to form the stack of filaments at the core of the sarcomere (i.e., A-band). Interestingly, these are different from mechanisms that have previously been reported during stress fiber assembly in non-muscle cells. Thus, we provide a new model of cardiac sarcomere assembly based on distinct mechanisms of stress fiber regulation between non-muscle and muscle cells.