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Abstract

Raman spectroscopy is an imaging technique that can reflect whole-cell molecular
compositions in vivo, and has been applied recently in cell biology to characterize
different cell types and states. However, due to the complex molecular compositions and

spectral overlaps, the interpretation of cellular Raman spectra have remained unclear.
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In this report, we compared cellular Raman spectra to transcriptomes of
Schizosaccharomyces pombe and Escherichia coli, and provide firm evidence that they
can be computationally connected and interpreted. Specifically, we find that the
dimensions of high-dimensional Raman spectra and transcriptomes measured by
RNA-seq can be effectively reduced and connected linearly through a shared
low-dimensional subspace. Accordingly, we were able to reconstruct global gene
expression profiles by applying the calculated transformation matrix to Raman spectra,
and vice versa. Strikingly, highly expressed ncRNAs contributed to the
Raman-transcriptome linear correspondence more significantly than mRNAs in S.
pombe, which implies their major role in coordinating molecular compositions. This
compatibility between whole-cell Raman spectra and transcriptomes marks an

important and promising step towards establishing spectroscopic live-cell omics studies.

Introduction

Raman spectroscopy is a laser-based analytical technique that measures the energy shift
of scattered photons caused by molecular bond vibrations. Specific molecules have
unique Raman spectral signatures, which in turn allows us to determine the chemical
species in target samples. This technique is applicable to biological samples, and can
potentially unravel the abundances of various biomolecules in cells and tissues in a
comprehensive, non-destructive, and label-free manner.

Typically, interpreting spectra involves decomposing them into those of known
purified spectra and quantifying the corresponding molecules. Numerous methods such
as multivariate curve resolution alternating least squares (MCR-ALS) have been
developed [1,2]. However, preparing spectra of each and every biomolecule of cells is
laborious, or even impossible. In addition, none of these methods resolve severe spectral
overlaps of biomolecules, which makes unique quantification intractable. Consequently,
it is widely recognized that discerning constituent molecular species in a comprehensive
manner is difficult, making the interpretation of whole-cell Raman spectra nearly
intractable [3-6].

Alternative approaches of interpretation are to represent intrinsically

high-dimensional cellular Raman spectra in low-dimensional spaces using dimension
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reduction methods such as principal component analysis (PCA) and linear discriminant
analysis (LDA) [1,7,8]. Though these methods can sometimes successfully assign the
spectra from different cell types or states to distinct subspaces, the interpretation still
remains unclear because the resulting axes and spaces usually cannot be characterized
by any biological properties. These approaches therefore often fail to provide any
mechanistic insights into the differences of the spectra.

In this report, instead of pursuing the spectral decomposition, we asked whether
whole-cell Raman spectra could be directly and computationally corresponded to other
types of well studied omics-level information. Employing dimension reduction methods,
we reveal a surprising correspondence between cellular Raman spectra and
transcriptomes for S. pombe and FE. coli. We show that a simple linear transformation
links these two types of high-dimensional data, and demonstrate that global expression
profiles of transcriptomes across culture conditions can be reconstructed in
non-destructive manners from cellular Raman spectra, which was made possible by the
intrinsic low-dimensionality of transcriptomes. Furthermore, interestingly in S. pombe,
ncRNAs contributed to the Raman-transcriptome linearity more significantly than
mRNAs, supporting their major role in coordinating total molecular compositions in
eukaryotic cells. Together, these results show that whole-cell Raman spectra can be
directly and computationally linked to cellular omics information, and paves a new way

to conducting spectroscopic live-cell omics studies in the future.

Results

PC-LDA can reveal distinct cellular states of S. pombe from

Raman spectra

We obtained Raman spectra of single S. pombe cells sampled from 10 different culture
conditions using a custom-built Raman microscope with 532 nm excitation wavelength,
10 s exposure time and 4 mW power at the sample stage (Fig. S1). Technical details on
signal filtering and noise reduction are explained in Materials and Methods. Culture
conditions are listed in Table S1, which includes rich and minimal media, nutrient

depleted media, and various stress conditions. Prior to measurements of Raman spectra,
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cells were fixed with 2% formaldehyde at 4°C. We obtained Raman spectra from 54-76
cells per condition.

Raman spectra from cells had common features: the strong signal peaks of CHy and
CH3 bonds around 2800 to 3000 cm™!; the silent region from 1800 cm™! to 2800 cm™!;
and the rugged peaks from 700 cm~! to 1800 cm~! (Fig. 1A, 1B, and S2). These global
features are common among various cell types including mammalian cells [3,9-11], thus
reflecting the basic chemical composition of cells. The spectral range from 700 cm~! to
1800 cm ™1, the fingerprint region of biological samples [9,10], is where most of the
signals such as proteins and metabolites are observed. We therefore focused on this
spectral region in the following analyses.

We first asked whether these spectra can be classified based on the culture condition
from which the cells were sampled, and conducted the principal component-linear
discriminant analysis (PC-LDA) [7,8,12]. A Raman spectrum from a cell can be
represented as a single point in a high-dimensional space (599 dimensions in our
measurements) where the signal intensity at a specific Raman-shift wavenumber
position corresponds to one dimension (Fig. 1C). Taking the culture-condition
assignments into account and simultaneously avoiding over-fitting, PC-LDA
computationally extracts the most discriminatory bases by maximizing the ratio of the
between-group variances to the sum of within-group variances in the lower dimensional
representation (Fig. 1C, and see Materials and Methods). PC-LDA reduces the
dimensions to the number of groups (environments)—1; we therefore reduced the
dimensions of Raman spectra to 9 in our analysis.

Our results show that Raman spectra from the same condition form clusters in the
dimension-reduced Raman space (Fig. 1D-G). Some of the clusters could be recognized
by the first few LDA axes. Most prominently, spectra from the nitrogen-depleted
condition (EMM-N) formed a distinctive cluster along the first LDA axis (Fig. 1D).
Clusters of ethanol stress (EtOH 10%), carbon-source-depleted condition (EMM-C),
glucose-limited condition (EMM 0.1% Glc.), heat-shock stress (Heat 39°C) and
glucose-supplemented minimal medium (EMM 2% Gle.) were also well recognized by
the LDA2-5 axes (Fig. 1E-G). Clusters from other conditions such as osmotic stress
(Sorbitol 1 M), oxidative stress (HaO2 2 mM), rich medium (YE) and heavy metal

stress (CdSO4 1 mM) mostly overlapped, so could not be recognized as separate clusters
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(Fig. 1G). 80
PC-LDA reports that the classification error is approximately 9.4%, i.e. test Raman &
spectra excluded from the calculation of the discriminatory bases are assigned to the 8

correct cluster with 90.6% accuracy. Thus, clusters in the low-dimensional space reflect 3

the characteristic differences of Raman spectra across conditions. 8
Testing the linearity between Raman spectra and 85
transcriptomes of S. pombe 86

We next asked whether the classification of Raman spectra in the low-dimensional space &
can be explained by other biological data. For this purpose, we obtained the 88
transcriptomes of S. pombe cells under the same 10 culture conditions. All the 8
transcripts including messenger RNAs (mRNA) and non-coding RNAs (ncRNA) except

for ribosomal RNAs (rRNA) were annotated from PomBase [13,14] (see Materials and  «

Methods for details). Our hypothesis was that the transcriptome codes molecular o

compositions of the cell, and it linearly determines a low-dimensional Raman data rf %

obtained from cells in environment £. In other words, o4
I‘:g = zﬁtg7 (1)

where A is a linear transformation matrix and tg is a 6560-dimension vector, in which
each entry represents the expression level of a transcript in environment £. t¢ are %
obtained from cell populations, not from single cells. Thus, we calculated the mean of &
single-cell Raman spectra from each environment & to check the correspondence. To o8
test the validity of this linear relation, we conducted a leave-one-out cross-validation 9
(Fig. 2A). Out of all environmental conditions (10 conditions for S. pombe), we excluded 10
one condition, and used the remaining 9 to estimate matrix A in Eq.(1). Matrix A was
estimated by the partial least squares regression (PLS-R), which uniquely determines A 10
from given datasets of rf; and te (see Materials and Methods) [15-17]. If our hypothesis 103
is correct, one can predict the Raman spectrum of the excluded condition from the 104
transcriptome data of its corresponding environment by Eq.(1) (Fig. 2A); the predicted 105
Raman vector should be mapped onto the cluster of real spectra of the same 106

environment. Changing the environmental condition to exclude, we repeated the same 17
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Figure 1. Measurement and dimension reduction of single-cell Raman spectra of S. pombe. A, B. Raman
spectra of single cells cultured in rich medium (YE, plot A) and nitrogen-depleted medium (EMM-N, plot B). The
fingerprint region of the spectra from 700 cm ™! to 1800 cm ™! is indicated by red rectangles. C. Dimension reduction
of Raman spectra. Raman spectrum from a single cell in environment £ can be expressed as a single point r¢ in a
high-dimensional space whose axes w; represent the signal intensity at specific Raman shift positions. Principal component-
linear discriminant analysis (PC-LDA) is applied to Raman spectra to remove systematic-error while simultaneously
reducing the dimensionality. If environmentally-dependent spectral features exist, PC-LDA can assign spectra from
different environments to unique different clusters in low-dimensional LDA spaces. D-G. Single-cell Raman spectra
processed by PC-LDA and expressed in low-dimensional space (ellipses, the x2 95% confidence intervals of the mean of
each condition). Notably, the first few LDA axes were able to distinguish spectra from cells cultured in nitrogen-depleted
medium (EMM-N), ethanol stress (EtOH 10%), glucose depleted (EMM-C), glucose limited (EMM 0.1% Glc.), heat shock
(Heat 39°C) and glucose-supplemented minimal medium (EMM 2% Glc.).
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process of estimating matrix A and predicting the Raman spectrum of the excluded 108
condition for all environmental conditions. 109

Our results show that predicted spectra were indeed assigned to positions within or 1o
adjacent to corresponding clusters (Fig. 2B and S3), supporting our hypothesis of linear 1
correspondence. 12

To further test the reality of the observed linear correspondence, we calculated the 1
predicted residual error sum of squares (PRESS) and compared it with randomized 114
data. When estimating A by PLS-R and using it to predict the Raman spectrum of the s
excluded condition, we calculated the prediction error defined as |ri, — %, ||, where ry, 16

is the true data and f'/& is the estimated data for environment &;. We repeated the error s

calculation for all environments, and obtained the sum of squared errors 118
N
PRESS, = Z re, — % |12, (2)
i=1

where N is the number of environmental conditions. In our case for S. pombe, N =10 1o
and PRESS, = 5.45. 120

When our hypothesis of linear correspondence is reasonable, PRESS, should be 121
small. To check this, we conducted the permutation test [18-20] by creating 10,000 false 1
datasets in which environmental assignments of transcriptome data were randomly 123
permuted (Fig. 2C). We calculated PRESS, for these false data sets, and compared 124
them to the original experimental value. We found that the original experimental 125

PRESS, was extremely small: the p-value of obtaining PRESS, smaller than 5.45 was 1

0.0006 (Fig. 2D). This result offers strong support for the linear correspondence 127
between Raman spectra and transcriptomes, and shows that the classification in the 128
Raman space can be explained by differences of transcriptomes across conditions. 120

To further gain insight into the observed correspondence, we asked how many 130
environments are necessary to find a good linear correspondence. To this end, we 131

purposely selected fewer numbers of environments (5-9 environments), and calculated 1

PRESS, p-values for every combination of environments (Fig. 2E). For example, 252 133
possible combinations exist for 5 environments chosen among 10 (10Cs) and 210 134
combinations for 6 environments chosen among 10 (19Cs). 135

The result shows that p-values are generally smaller with more environments, and 136
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Figure 2. Linear correspondence between Raman spectra and transcriptomes. A. Leave-one-out cross-
validation. Out of all environmental conditions (N = 10 for S. pombe), one condition (&;) is excluded, and the linear
regression matrix A_; is estimated by the partial least squares regression. Then, the excluded Raman spectrum is
estimated by ry = A,itgi. This is repeated for all ¢ = 1,..., N. B. Example predictions of Raman spectra from the
transcriptomes. Thick colored points represent Raman spectra predicted from the transcriptomes. C. Permutation test
for significance of Raman-transcriptome linearity. 10,000 false datasets were created where environmental assignments
of transcriptome data were randomly permuted. For each random permutation, PRESS, was calculated and compared
with the original PRESS,. D. Histogram of PRESS, of 10,000 randomly permuted data. The original PRESS, was 5.45,
and the p-value was 0.0006. E. PRESS, p-values when fewer numbers of environments were used. PRESS, p-values
were calculated for all possible combinations of environments for each number of environments (5-9 environments), and
distributions of p-values were shown as box-and-whisker plots. F. p-values of PRESS, when increasing the number of
transcripts with highest VIP scores. p-values become stable after including 17 transcripts. The permutation test (10,000
permutations) was repeated 10 times per each point (error bar, standard error).
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they all become smaller than 1% with 9 environments except for two combinations (Fig.

2E). These exceptional combinations lacked either EMM-N or EtOH 10%, a special
environment distinguishable by axis LDA1 or LDA2 (Fig. 1D and 1E). These results

show that having more environmental conditions and conditions in which cellular Raman

spectra are largely distant from others, will generally improve the linear correspondence.

We next asked how many different kinds of transcripts are required to find a linear
correspondence. To address this, we first evaluated the importance of each transcript
based on the variable importance in projection (VIP) score in PLS-R analysis, which
reflects the accumulated importance of each transcript to the linear regression [21,22].
A high VIP score of a transcript indicates that its contribution to the linear
correspondence is significant. The top 30 transcripts with the highest VIP scores are
listed in Table 1. Then, starting from 7 transcripts (the minimum number of transcripts
required to conduct PLS-R, see Materials and Methods for details) with the highest VIP
scores, we increased the numbers of transcripts included and conducted the permutation
test each time. Both p-values and PRESS, values initially decreased, and plateaued

after including 17 transcripts (Fig. 2F and S4). Thus, based on the VIP score, knowing

the expression profiles of these 17 transcripts is sufficient to find a linear correspondence.

Global expression profiles of S. pombe transcriptomes across

conditions are predictable from Raman spectra

PLS-R not only estimates the linear transformation matrix A, but also conducts a

dimension reduction of the transcriptome data. We found that only 4 dimensions were

required to explain 95% of the total variances of transcriptomes across conditions (Fig.

3A). The low-dimensionality of the transcriptome data indicates that global expression
profiles of transcriptomes might also be predictable from Raman spectra. Note that this
is a non-trivial inverse problem because we need to predict expression levels of 6560
transcripts in each environment only from 9-dimensional Raman data computed by
PC-LDA.

We estimated the global expression profile of transcriptome in environment &;
(denoted as tg,) from obtained Raman spectra ri based on the linear relation of Eq.(1)

and the Moore-Penrose pseudo-inverse of the PLS-R parameter A_, (Fig. 3B; see
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Figure 3. Predicting transcriptomes from Raman spectra. A. The total variance of transcriptome data explained
by PLS-R. The horizontal axis represents the numbers of dimensions of transcriptomes after the dimension reduction by
PLS-R used to calculate the variance, and the vertical axis the total variances explained. B. Predicting transcriptomes
from Raman spectra. Transcriptomes were predicted by calculating the pseudo-inverse of A_,; estimated in PLS-R as
f]gi = Aizrfg This is repeated for all 4 = 1,..., N. C. An example prediction of the transcriptome of rich medium
environment (YE). Blue points represent the measured RNA abundance + 1 (FPKM) (average of the two replicate
measurements; error bar, max-min range) sorted from low to high along the horizontal axis. Red points represent the
RNA abundance predicted from Raman spectra. D. Scatter plot of the predicted YE medium transcriptome versus the
measured YE medium transcriptome. E. Scatter plot of the measured YE medium transcriptome versus the measured
nitrogen-depleted medium (EMM-N) transcriptome. F. Histogram of PRESS; of 10,000 randomly permuted data.
Environmental assignments of transcriptomes were randomly permuted 10,000 times, and PRESS; were calculated for
each permutation. The probability of accidentally finding PRESS; less than the original experimental value, 1.52 x 10'2,
was extremely low (p-value 0.0004).
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Table 1. List of S. pombe transcripts with top 30 VIP scores. The VIP score of each transcript is shown on the
third column. The mean expression level of each transcript across 10 environmental conditions is shown on the fourth column,
in the unit of fragments per kilobase per million mapped reads (FPKM). Type “N” on the fifth column indicates that the

transcripts are known or predicted non-coding RNAs.

ID Name VIP FPKM Type Description

SPSNRNA.06 snu6 52.3  3.95x10° N small nuclear RNA U6

SPNCRNA.98 srp7 26.6 3.86x10° N 7SL signal recognition particle component
SPMITTRNALYS.01 SPMITTRNALYS.01 23.1 1.81x10° N tRNA Lysine, mitochondrial
SPNCRNA.510 SPNCRNA.510 21.1 146 x10° N non-coding RNA (predicted)
SPSNORNA .24 snoR39b 188 1.32x10° N small nucleolar RNA R39b (predicted)
SPSNORNA.31 snoR39%a 121 727x10* N small nucleolar RNA snR39

SPSNORNA .43 snR91 112 1.29x10° N box H/ACA small nucleolar RNA snR91
SPSNORNA.17 snoR58 11.2 754 x10* N small nucleolar RNA snR58 (predicted)
SPMITTRNAGLY.01 SPMITTRNAGLY.01 10.5 6.44 x 10* N tRNA Glycine, mitochondrial
SPSNORNA.32 snol2 104  1.29x10° N box H/ACA small nucleolar RNA 12/snR99
SPSNORNA.13 snoR69b 9.87 9.17x10* N small nucleolar RNA snoR69b (predicted)
SPSNORNA. .27 snoR47 9.25 538x10* N small nucleolar RNA R47 (predicted)
SPMITTRNAALA.01 SPMITTRNAALA.01 825 2.88x10* N tRNA Alanine, mitochondrial
SPSNORNA.16 snoR56 8.03 6.96x 10* N small nucleolar RNA snR56 (predicted)
SPNCRNA.507 SPNCRNA.507 788 T7.79x10* N non-coding RNA (predicted)
SPSNORNA.O01 snR40 7.80  4.02x10* N small nucleolar RNA snR40 (predicted)
SPATRNAILE.02 SPATRNAILE.02 777 310x10* N tRNA Isoleucine

SPMITTRNATYR.01 SPMITTRNATYR.01 7.42 246x10* N tRNA Tyrosine, mitochondrial
SPMITTRNAASP.01 SPMITTRNAASP.01 7.41 3.10x10* N tRNA Aspartic acid, mitochondrial
SPSNORNA.21 snoU14 6.97 577 x10* N small nucleolar RNA U14

SPSNORNA .41 snR46 6.29 533 x10* N box H/ACA small nucleolar RNA snR46
SPBTRNAARG.04 SPBTRNAARG.04 598 261x10* N tRNA Arginine

SPMITTRNAGLU.01 SPMITTRNAGLU.01 5.52 2.39x10* N tRNA Glutamic acid, mitochondrial
SPCTRNAARG.08 SPCTRNAARG.08 546 212x10* N tRNA Arginine

SPBTRNAGLY.09 SPBTRNAGLY.09 543 153x10* N tRNA Glycine

SPSNRNA.O1 snul 527 6.80 x 10* N small nuclear RNA U1

SPSNORNA .44 snR92 480 522x10* N box H/ACA small nucleolar RNA snR92
SPSNRNA.O7 snu32 476 578 x10* N small nucleolar RNA U3B
SPBTRNATHR.06 SPBTRNATHR.06 471 189x10* N tRNA Threonine

SPATRNAVAL.01 SPATRNAVAL.01 456 1.20x10* N tRNA Valine

Materials and Methods for details). The results showed reasonably good agreements

between tg, and te, (Fig. 3C, 3D, and S5). However, we also noticed that

transcriptome data across conditions were already tightly correlated (Fig. 3E and S7),
and likewise found relatively good agreements even between fgi and transcriptome data

of different environments (Fig. S8). We therefore evaluated in detail the precision level

of our prediction by calculating the PRESS of transcriptomes,

N
PRESS: = Y _ |lte, — te, |,
i=1
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and again implemented the permutation test by randomly permuting the environmental
correspondence between Raman and transcriptome data. Again for S. pombe, N = 10.
Thereby we found that the original PRESS; was very small: p = 0.0004 (Fig. 3F). The
original prediction is thus significantly superior to randomly permuted data. In fact,
transcriptomes predicted from Raman spectra explain the condition-dependent fold
changes of mRNA and non-coding RNA transcripts (Fig. S6). These results prove that
cellular Raman spectra allow us to capture the real global changes of the expression
profile of transcriptomes across conditions in good precision. Note that without the
low-dimensionality of transcriptomes, it is impossible to retrieve genome-wide

expression profiles from the low-dimensional Raman spectra.

The Raman-transcriptome correspondence in E. coli

To understand whether the observed Raman-transcriptome linearity is specific to S.
pombe or more generally applicable to other organisms, we measured cellular Raman
spectra and transcriptomes of E. coli. We focused on an E. coli strain MG1655 and its
AcyaA mutant. cyaA encodes adenyl cyclase, which catalyzes the synthesis of cyclic
AMP (cAMP) from ATP [23]. The growth of the AcyaA mutant is suppressed in
cAMP-depleted culture media, but restored by exogenous cAMP supplement in a
concentration-dependent manner [24]. We measured cellular Raman spectra (Fig. 4A,
4B and S9) and transcriptomes of AcyaA mutant cultured in the media with 0, 0.1, 0.5
and 1 mM cAMP, and those of the parental MG1655 strain (no cAMP in the medium)
all sampled from late-exponential phase (ODggp = 0.8).

As was done for S. pombe, we first conducted PC-LDA to obtained Raman spectra,
finding that spectra under five different conditions (4 for the AcyaA mutant, and 1 for
wild type) can be classified in a low-dimensional Raman space (Fig. 4C). Interestingly,
clusters of Raman spectra of the mutant became closer to that of wild type as the
concentration of exogenous cAMP increased. Next we conducted PLS-R to find a linear
regression, and found that Raman spectra predicted from transcriptome data were
assigned within or adjacent to the correct clusters (Fig. 4C). We calculated PRESS, by
Eq. (2) where N =5 for E. coli, and subsequently conducted a permutation test. The

test showed that the original combination of the Raman and transcriptome data gave
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the third lowest PRESS, (1.06) among the 5!(= 120) possible permuted combinations
(PRESS, p-value 0.0250, Fig. 4D). The prediction of transcriptomes from Raman
spectra also gave good results, giving the second smallest PRESS; (PRESS; p-value
0.0167, Fig. 4E, 4F, S11, S10-S13). Together, this confirms the linear correspondence
between Raman spectra and transcriptomes even in E. coli, and indicates that it should

have broader applicability to other organisms and cell types.

ncRNAs are largely responsible for the Raman-transcriptome

correspondence in S. pombe

We next examined what types of transcripts were responsible for establishing the
observed Raman-transcriptome linear correspondence. Based on the list of transcripts
sorted by the VIP scores, we found out that the main contributors were largely ncRNAs
including small nucleolar RNAs (snoRNAs) and tRNAs in S. pombe (Table 1): The
highest scoring mRNA was ranked only at the 55-th from the top.

To further understand this result, we separated transcriptomes of S. pombe into
mRNAs (containing 5091 transcripts) and ncRNAs (containing 1469 transcripts), and
checked whether a linear correspondence can be found between Raman spectra and
these coding and non-coding subsets of transcriptomes (Fig. 5A). The result showed
that the linear correspondence between Raman spectra and mRNAs was as poor as
randomly permuted data (PRESS; .. p-value = 0.4803), whereas the correspondence
with the ncRNA subset was excellent (PRESS,_ .\, P-value = 0.0009, Fig. 5A). This
also confirms the importance of ncRNAs to find the linear correspondence between
Raman spectra and transcriptomes.

We also randomly sampled different numbers of transcripts either from the mRNA
or ncRNA subset, and searched for the presence of a linear correspondence between
those randomly sampled subsets and Raman spectra. Our results show that only very

limited combinations of the sampled mRNA subsets yielded linearity (Fig. 5B), but

many subsets of ncRNAs could correspond even with small numbers of transcripts (Fig.

5C). This result again indicates the superiority of ncRNAs for finding a linear
correspondernce.

Note that these results do not indicate that Raman spectra cannot predict mRNA
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Figure 4. Raman-transcriptome correspondence in E. coli. A, B. Example Raman spectra of E. coli for wild
type (WT, plot A), and AcyaA mutant supplemented with 0 mM cAMP (AcyaA 0 mM, plot B). Red rectangles represent
the fingerprint region. C. Dimension reduction of E. coli Raman spectra by PC-LDA. Black points represent the measured
Raman spectra after dimension reduction by PC-LDA shown on the LDA1-LDA2 plane. Colored ellipses represent the
X2 95% confidence intervals for different culture conditions: Yellow for Acyad 0 mM; green for AcyaA 0.1 mM; blue
for AcyaA 0.5 mM; purple for AcyaA 1 mM; red for WT. Thick colored points denote the low-dimensional Raman
data predicted from the corresponding transcriptomes. D. PRESS, histogram when randomly permuting environmental
assignments of transcriptome data. The original experimental PRESS, = 1.06 was the third lowest of all 5! = 120 possible
permutations (p-value = 3/120 = 0.0250). E. Example prediction of E. coli AcyaA 0 mM transcriptomes from Raman
spectra by {Zgi = Aizr'g Blue points represent the measured RNA abundance + 1 (FPKM) (average of the three replicate
measurements; error bar, standard error) sorted from low to high along the horizontal axis. Red points represent the RNA
abundance predicted from Raman spectra. F. PRESS; histogram when randomly permuting environmental assignments
of transcriptome data. The original experimental PRESS; = 1.83 x 10'° was the second lowest of all 5! = 120 possible
permutations (p-value = 2/120 = 0.0167).

14


https://doi.org/10.1101/235580
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/235580; this version posted December 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

profiles: our prediction of mRNA expression levels from Raman spectra was actually
more precise than ncRNA expression levels as below. To evaluate the prediction
accuracy of transcriptomes, we calculated the “coefficient of variation of prediction error

per each transcript” as follows:

vPRESS;

dimt - mean t’

CVPRESS; = (4)
where dim t is the total number of transcripts, and mean t is the mean expression level
of all transcripts in t across all environment conditions. Here, we used t,,rna OF thcrRNA
for t. We found that CVPRESS; . = 0.0909 and CVPRESS;, ., = 0.383, showing
that the prediction accuracy of each mRNAs relative to their mean expression levels was
actually higher than that of ncRNAs. This may be counterintuitive to the fact that

PRESS value is high. Instead, this indicates that expression levels of mRNAs do

rmrya P-
not change much across conditions, and there is not much difference even when the data
set is randomly permuted. In fact, the coefficient of variations (CV) of expression levels
across conditions were larger for ncRNAs than for mRNAs (Fig. 5D). Also,
PRESS,, .na Of randomized data changed over a much broader range than mRNAs
(Fig. 5A), showing once again that expression levels of ncRNAs change more
dynamically in response to environmental changes.

We likewise conducted the same analysis for F. coli. In E. coli, the number of
ncRNAs is much smaller than that of S. pombe, constituting only 2.18% of the E. coli
transcriptome. The analysis revealed that the linear correspondence can be found with
both mRNA and ncRNA subsets (p-value = 0.0250 for mRNA, and 0.0167 for ncRNA,
Fig. 5E). In fact, 28 among the 30 top VIP-scored transcripts were mRNAs (Table 2).
Random sampling test also showed that the linear correspondence was more easily
found with mRNA subsets than with ncRNA subsets for the current 5 conditions (Fig.
S14). Therefore, the necessity of ncRNAs for the Raman-transcriptome linearity was

not as apparent as that in S. pombe.
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Figure 5. Transcriptome subsets contributing to the Raman-transcriptome correspondence. A. PRESS,
histograms of randomly permuted data sets of S. pombe mRNAs (blue) and ncRNAs (red). Original PRESS, of mRNA
was 6.71 (p-value, 0.4803) and that of ncRNAs was 5.52 (p-value, 0.0009). B. PRESS, p-values of randomly selected
mRNA subsets in S. pombe. 1,000 subsets were selected, and 1,000 random permutations per each subset were conducted
to calculate p-values. C. PRESS, p-values of randomly selected ncRNA subsets in S. pombe. 1,000 subsets were selected,
and 1,000 random permutations per each subset were conducted to calculate p-values. In stark contrast to mRNAs, the
vast majority of ncRNA subsets had small p-values. D. Histograms of coefficient of variations of mRNAs (blue) and
ncRNAs (red) across 10 environmental conditions in S. pombe. E. PRESS, histograms of randomly permuted data sets of
E. coli mRNAs (blue) and ncRNAs (red). Original PRESS, of mRNA was 0.81 (p-value, 0.0250) and that of ncRNAs was
1.61 (p-value, 0.0167).

16


https://doi.org/10.1101/235580
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/235580; this version posted December 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table 2. List of E. coli transcripts with top 30 VIP scores. The VIP score of each transcript is shown on the third
column. The mean expression level of each transcript across 5 environmental conditions is shown on the fourth column, in
the unit of FPKM. Type “N” and “C” on the fifth column indicate ncRNAs and mRNAs, respectively.

ID Name VIP FPKM Type Description
b2621 ssrA 54.3 257x10° N tmRNA, 10Sa RNA
b3123 rnpB 219 898x10* N RNase P, M1 RNA component
b1677 lpp 142 294x10* C murein lipoprotein
b2579  grcA 13.5 9.88x10®° C autonomous glycyl radical cofactor
b3510 hdeA 898 1.73x10* C stress response protein acid-resistance protein
b3708 tnaA 598 290x10° C tryptophanase/L-cysteine desulfhydrase, PLP-dependent
b2266 elaB 5.64 7.85x10® C putative membrane-anchored DUF883 family ribosome-binding protein
b3556 cspA 428 1.04x10* C RNA chaperone and antiterminator, cold-inducible
b3985 rplJ 3.32  930x102 C 50S ribosomal subunit protein 110
b4217  ytfK 3.05 427x10® C DUF1107 family protein
b2215 ompC 293 148 x10* C outer membrane porin protein C
b3986  rplL 290 853x10® C 508 ribosomal subunit protein L7/L12
b0953  rmf 2.88 324x10® C ribosome modulation factor
b0812 dps 2.85 445x10° C Fe-binding and storage protein; stress-inducible DNA-binding protein
b3314  rpsC 2.66 594x10® C 30S ribosomal subunit protein S3
b2096 gatY 2.65 2.01x10®° C D-tagatose 1,6-bisphosphate aldolase 2, catalytic subunit
b0957 ompA 2.65 1.35x10* C outer membrane protein A (3a;11*;G;d)
b3316  rpsS 2.64 5.82x10° C 308 ribosomal subunit protein S19
b2343  yfcZ 2.60 3.88x10®° C UPF0381 family protein
b3296 rpsD 2.57 745x10® C 30S ribosomal subunit protein S4
b3315 rplV 2,51 5.68x10° C 508 ribosomal subunit protein L22
b3509 hdeB 250  5.08x10® C acid-resistance protein
b4240 treB 248 1.32x10° C trehalose-specific PTS enzyme: 1IB and IIC component
b3307 rpsN 247 691x10° C 308 ribosomal subunit protein S14
b2092 gatC 246 1.65x10® C pseudogene, galactitol-specific enzyme IIC component of PTS;
transport; Transport of small molecules:
Carbohydrates, organic acids, alcohols;
PTS system galactitol-specific enzyme I1C
b0814 ompX 244 5.12x102 C outer membrane protein X
b3308 rplE 242 731x10° C 508 ribosomal subunit protein L5
b3065 rpsU 240 7.17x10® C 30S ribosomal subunit protein S21
b3319 rplD 239 6.02x10° C 508 ribosomal subunit protein L4
b4015 aceA 238 3.12x10° C isocitrate lyase
Discussion

Cellular Raman spectra reflect the comprehensive molecular compositions of cells, and

therefore spectral differences should be associated with cellular state differences.

However, interpreting spectra has been challenging due to the difficulty of decomposing

total cellular spectra into those of constituent biomolecules. In this report, instead of

pursuing the spectral decomposition, we asked whether whole-cell Raman spectra could

be directly and computationally corresponded to other types of well studied omics-level
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information. Employing dimension reduction methods, we showed that dimensions of

high dimensional cellular Raman spectra and transcriptomes measured by RNA-seq can

be greatly reduced, and connected linearly through a shared low-dimensional subspace.

Accordingly, we were able to reconstruct global gene expression profiles by applying the
calculated transformation matrix to cellular Raman spectra, and vice versa. We
therefore provided firm experimental evidence that the differences of cellular Raman
spectra contain key information that allows us to detect cellular states.

The linear correspondence between cellular Raman spectra and transcriptomes is far
from trivial because transcriptomes targeted in our study (the total RNA excluding
rRNAs) constitute only a small fraction of biomass: the total RNA excluding rRNAs
constitute 2% of the biomass, whereas proteins constitute 40-50% in Saccharomyces
cerevisiae [25,26]. Furthermore, Raman signals mostly come from proteins, and the
contribution of total RNAs to the total signal is considered minor [27,28]. It is thus
implausible that the observed Raman spectra directly reflects signals from RNAs
targeted in our study. The observed linear correspondence instead indicates that
whole-cell molecular compositions of cells are tightly and linearly constrained by the
transcriptome. Cellular Raman signals come from all the constituent biomolecules in a
cell including proteins, lipids, and metabolites, but our PLS-R analysis did not take into
account of the abundances of biomolecules other than a fraction of RNAs. The fact that
Raman spectra and transcriptomes correspond linearly implies that abundances of other
biomolecules might also be linearly related to the transcriptome. This speculation could
be tested by trans-omics analyses to examine the correspondences among multi-level
omics data such as proteomes, metabolomes, and transcriptomes [29]. The unexpected
correspondence between Raman spectra and transcriptomes might also imply that
similar multivariate analyses could find linkages between other types of non-destructive
spectroscopic data such as whole-cell NMR [30,31] and omics data. It would be an
important subject to explore such technical possibilities for future cell analysis study.

It is also intriguing that in S. pombe, ncRNAs are more linearly corresponded to
Raman spectra than are mRNAs because ncRNAs do not contribute to proteomes
directly. Our analysis reveals that snoRNAs and tRNAs had high VIP scores in S.
pombe (Table 1). These ncRNAs are directly or indirectly involved in translational

processes: For example, snoRNAs are known to be necessary for the maturation of

18

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296


https://doi.org/10.1101/235580
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/235580; this version posted December 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

ribosomal RNAs [32,33]. Therefore, expression levels and the combined action of these 2o
ncRNAs may influence the translation of all proteins and consequently modulate global 2
chemical composition of cells. Importantly, our results indicate that changes of mRNA 20
expression levels in S. pombe across environment conditions are subtle relative to 300
ncRNAs (Fig. 5D), which might have prevented us from finding a linear correspondence su
between Raman spectra and mRNA transcriptome subset. Note that our results do not e
exclude the possibility that mRNA profiles are linked to Raman spectra non-linearly. 303

On the other hand, ncRNAs are much less abundant in E. coli, and most of the 304

transcripts with high VIP scores were mRNAs (Table 2). However, we found that the s

VIP list contained many transcripts coding ribosomal subunit proteins and ribosome 306
modulating factors (Table 2). Taken together, our findings might indicate that 307
alterations in translation machinery is one of the major cellular responses to 308
environmental changes, and thus intimately linked to cellular global molecular 309
compositions that are reflected in Raman spectra. 310

Our results showing that the transcriptome is low-dimensional indicate that 311
intracellular gene expression is globally coupled and that expression-level changes of 312

many genes occur in a coordinated manner. The degree of freedom in transcriptomes 313
should therefore be severely limited, which has been in fact suggested in many 31
microarray and sequencing studies [34-43]. Importantly, as shown in our study, such a1
global changes of transcriptomes are associated with changes of cellular Raman spectra, s
which can now be monitored non-destructively at the single-cell level and in a snapshot s
manner. Furthermore, if the transformation parameter is known beforehand, one could s
estimate instantly the change of expression levels of each transcript from Raman spectra s
as conducted in Fig. 3. It should be noted that the low-dimensionality of 320
transcriptomes was indispensable for our prediction because they were predicted based sz
on dimension-reduced Raman spectra; changes of transcriptomes that require more 32
dimensions than the total number of LDA axes are unpredictable in principle. 33
Therefore, the fact that we could predict transcriptomes in a reasonably good precision 32
in turn provides evidence for the low-dimensionality of transcriptomes. 35

Single-cell Raman microscopy is compatible with live-cell time-lapse imaging, though 32
the photo-damage on cells by incident laser and background spectral noise from culture s

media must be carefully considered. Our results therefore indicate that single-cell 328
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Raman spectra have the potential to provide omics information directly from living cells
in a non-destructive and snapshot manner. Such spectroscopic live-cell omics studies
would provide the way to investigate how global cellular states dynamically change in
single living cells across diverse environmental conditions and cell types. If the
Raman-transcriptome correspondence is further confirmed for other cell types,
single-cell Raman microscopy could be applied to detecting distinct cells such as

malignant cancers, pluripotent stem cells and antibiotic-resistant bacteria.
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Materials and Methods

S. pombe strain and culture conditions

A haploid strain, 972 h™, was used for all S. pombe experiments. Initially, cells were
cultured at 30°C in Yeast Extract (YE) (Bacto Yeast Extract (Becton Dickinson and
Co)) + 3% glucose liquid medium until ODggg =0.7-1.0. Then, cell cultures were
inoculated to the following stress conditions in liquid cultures: YE + 1 mM CdSQOy4, YE
+ 1 M Sorbitol, YE + 2 mM H5O5, heat shock in a water bath at 39°C for an hour. For
the other stress conditions, cell cultures were washed three times with the media
EMM-N, EMM-C, EMM 2% Glucose, EMM 0.1% Glucose, YE + 10% EtOH (Table
S1), and cultured in each medium at 30°C for 24 hours.

Prior to Raman microscopy measurements, cells from each stress condition were
washed with phosphate buffered saline (PBS) three times, and fixed with 2%
formaldehyde in PBS for an hour at 4°C. Then, cells were washed once with PBS + 100
mM glycine to quench the free aldehyde, and twice with PBS. Subsequently, all samples

were stored at 4°C until they were measured.

E. coli strains and culture conditions

E. coli MG1655 AcyaA strain was constructed by P1 transduction from BW25113
Acyad strain in Keio collection [44]. The deletion of cyad ORF was verified after
isolation by genome sequencing.

E. coli MG1655 strain was cultured in 10 mL L-broth (1.0% Bacto Tryptone (Becton
Dickinson and Co.), 0.5% Bacto Yeast Extract (Becton Dickinson and Co.) and 0.5%
NaCl). MG1655 AcyaA strain was cultured in 10 mL L-broth containing 0, 0.1, 0.5 or
1.0 mM cAMP. Cells were grown at 37°C to late exponential phase (ODggp=0.8). Prior

to Raman microscopy measurements, cells were washed twice with physiological saline.

Raman microscopy

Raman spectra of cells were obtained with a custom-built Raman microscope where a
commercial Raman imaging system (STR-Raman, AIRIX corp.) was integrated into a

Nikon Ti-E microscope. A 532 nm, continuous-wave diode-pumped solid-state laser
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(Gem 532, Laser Quantum) was used as excitation. For S. pombe, a 60x /NA 1.2 water
immersion objective lens (Olympus, UPLSAPO 60XW) was used at 4 mW power at the
sample stage. For E. coli, a 100x /NA 0.9 air objective lens (Olympus, MPLN 100X)
was used at 18 mW power. Backscattered Raman signals were focused through a 100
pm pinhole, dispersed by a spectrometer (Acton SP2300i, Princeton Instruments)
equipped with a 300 gr/mm grating, and detected with a sSCMOS camera (Orca Flash
4.0 v2, Hamamatsu Photonics). To reduce dark noise, the sSCMOS camera was
water-cooled at 15°C. The exposure time of each cell was 10 seconds.

Unlike CCD detectors, sCMOS detectors have pixel-dependent readout noise that
must be reduced for actual use in Raman microscopy. To address this, a sSCMOS specific
noise reduction filter inspired by [45] was implemented. All of the following analyses
were conducted by scripts written in Matlab 2017a. First, 10,000 blank, 2048 x 2048
pixel images with exposure time of 10 seconds were obtained to characterize the noise
distribution of each pixel. The offset o0; and variance var; of pixel i were calculated as

follows:

| M
oi:MZSZm, (5)

1
var; = i (s{”)2 — 0?, (6)

where M is the total number of images taken (in this case M = 10,000), m is the frame
number of obtained dark images and s!” is the analog-to-digital unit (ADU) count of
pixel i at frame m. An offset subtraction for each pixel was conducted, and a

2-dimensional convolution filter was applied to obtained images as follows:

Difoi
ZiECT,,Xn |:( var; ):|
-, (7)

unzf(Dl,n) = Z var
1€CHxn %

where D; is the ADU count of each pixel, n is the number of pixels per window size and
C,,xn represents the kernel region which is a n X n square box centered around pixel 1.
In our study, n = 3. In essence, this convolution filter assigns a weighted average to

pixel counts, where pixels with low variances are given higher weights than those with

high variances. After applying the convolution filter, the region of the spectrum in the
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image was cropped, and the sum of pixel counts along the direction perpendicular to
the wavenumber was calculated to obtain a Raman spectrum. The wavenumber was
calibrated referencing the standard Raman spectrum of ethanol, and spectral regions of
632 to 1873 cm ™! was used for all subsequent multivariate analyses (2 cm~! per pixel).
Furthermore, each spectrum was smoothed by the Savitzky-Golay filter [46], and
normalized by subtracting the mean and dividing it by its standard deviation.

For preparing S. pombe samples for Raman measurements, 1 uL of cell suspension
was placed on a synthetic quartz slide glass put in place with a synthetic quartz cover
glass (TOSHIN RIKO CO., LTD). The rims of the coverslips were sealed with Vaseline
to prevent evaporation during measurements. The center of 15-26 cells were measured
for every sample, and three biological replicates were obtained, which resulted in a total
of 54-76 cell measurements per each environment condition.

For E. coli, 5 uL of cell suspension was placed on a synthetic quartz slide glass, and
air dried for 5-10 minutes. 15 cells were measured for every sample, and three biological
replicates were obtained, which resulted in a total of 45 cell measurements per each
condition. 5 background spectra for each slide glass were obtained, and the average was

subtracted from obtained cellular spectra.

S. pombe RNA sequencing and data processing

For S. pombe RNA-seq, two biological replicates were measured. 50 mL cell cultures of
each environmental condition were prepared as described above. Each culture was
pelleted down, and quickly frozen with liquid nitrogen. The total RNA was extracted as
described in [47], followed by a DNA removal (RQ1 DNase, Promega) and a ribosome
RNA removal by the Ribo-Zero Gold rRNA Removal kit for yeast (Illumina Inc.).
Sequencing libraries were prepared using NEBNext Ultra Directional RNA Library Prep
Kit for Illumina (NEB) following the manufacturer’s instructions. 150 bp paired-end
sequencing was conducted with MiSeq (Illumina Inc.). Raw RNA-seq reads were
mapped on to the reference genome of 972 h™ S. pombe (ASM294v2) from

PomBase [13,14] by TopHat2 [48], and FPKMs of annotated genes and noncoding

transcripts were calculated by Cufflinks 2.0 [49,50].
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E. coli RNA sequencing and data processing

For E. coli RNA-seq, three biological replicates were measured. In the preparation of
RNAs, RNAprotect Bacteria Reagent (Qiagen N.V.) was added to exponential phase
cultures, and then, cells were lysed using lysozyme (SEIKAGAKU Co.). Then, the total
RNA was extracted from the lysates using an RNeasy mini kit (Qiagen N.V.) and
RNase-free DNase set (Qiagen N.V.) following the manufacturer’s instructions.
Sequencing libraries were prepared by the NEBNext mRNA library prep kit for Illumina
(NEB) with the following modifications. The random hexamer primer was used for
reverse transcription. After second strand synthesis, double stranded cDNA was
fragmented to an average length of 300 bp using a Covaris S2 sonication system
(Covaris Inc.). One hundred cycles of paired-end sequencing were carried out using
HiSeq 2500 system (Illumina Inc.) following the manufacturer’s instructions. After the
sequencing reactions were complete, the Illumina analysis pipeline (CASAVA 1.8.0) was
used to process the raw sequencing data. RNA-seq reads were trimmed using CLC
Genomics Workbench ver. 8.5.1 (Qiagen N.V.) with the following parameters; Phred
quality score >30; Removing terminal 15 nucleotides from 5’ end and 3 nucleotides from
3’ end; Removing truncated reads less than 30 nucleotides length. Trimmed reads were
mapped to all genes in E. coli strain MG1655 (accession number: NC__000913.3) using
CLC Genomics Workbench ver. 8.5.1 (Qiagen N.V.) with the following parameters;
Length fraction: 0.7; Similarity fraction: 0.9; Maximum number of hits for a read: 1.
The expression level of each gene was calculated by counting the mapped reads to each
gene and were normalized by calculating the values of FPKM. All transcripts were

annotated from [51].

Principal component-linear discriminant analysis (PC-LDA)

To reduce systematic-error and dimensions of cellular Raman spectra, we conducted
principal component-linear discriminant analysis (PC-LDA). In short, PC-LDA is a
supervised classification technique that combines principal component analysis (PCA)
and linear discriminant analysis (LDA) to find the most discriminatory bases while
avoiding over-fitting. PCA is first applied to the original high-dimensional Raman

spectra to reduce noise and dimension, which simultaneously reduces over-fitting and
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enables conducting the following LDA analysis against high-dimensional data [7,8,12].
In our study, for both S. pombe and E. coli, we used principal components that in total
explained 98% of the variance of the original Raman spectra. Then, against the chosen
principal components, LDA takes into account the culture-condition assignments and
extracts the most discriminatory bases by maximizing the ratio of the between-group
variance to the sum of within-group variances in the lower dimensional space.

To test how well PC-LDA was able to classify cellular Raman spectra, 1/6-th of the
spectra from every environment condition was excluded from the calculation of the
discriminatory bases, projected on to the PC-LDA space, and classified by the
maximum likelihood method. It was assumed that single-cell Raman spectra in the
PC-LDA space from each environment followed a Gaussian distribution, and the
excluded Raman spectra were classified as the environment which gave the highest

likelihood. For S. pombe, the classification accuracy was 90.6%, and for E. coli, 65.7%.

Prediction of Raman spectra and transcriptomes by partial

least squares regression (PLS-R)

To evaluate the linearity between dimension reduced and environment averaged Raman
spectra and transcriptomes, we conducted a leave-one-out cross-validation. One
measurement from environment &; was removed, and PLS-R was applied to conduct a
linear regression against the remaining data set. Specifically, this equates to finding a
matrix A_; such that

R;=A_T_ ,+E_, (8)

. —_— / ... / / - e /
where R_; = [rglﬁi7 (T, | isTe,, s 7rgN’ﬂ-],

T_;=[te, - ,te,_,,te -+, tegy] and E_; is the error matrix. Here, ry _; are the

ip10 "
dimension reduced Raman spectra where PC-LDA against Raman spectra excluding
environment i was applied. Also, r’g,—i and tg are mean centered by subtracting the
average of the included N — 1 conditions. Now, when N — 1 < dim tg, ordinary least
squares regression cannot be conducted to find A_; (In our study, for S. pombe,

N —1=9 < dim tg = 6560 and for E. coli, N — 1 =4 < dim tg = 4349). Therefore,
we applied PLS-R, which reduces the dimension of tg to below N — 1 so that a linear

regression can be conducted, while retaining the linearity between r’&_i and tg [15-17].
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For all PLS-R analyses in this study, the dimensions were reduced to N — 3.
Consequently, in our attempt in Fig. 2F to find the required numbers of transcripts to
observe a linear correspondence, the number of included transcripts was increased from
N-3=10-3="7.

Once A_; is estimated, r/a,,—i can be estimated as f'/g—l = A,Z—tgi. However, f'/&,,—i
is predicted on to the PC-LDA space where environment &; is excluded. Therefore, this
space is not designed to evaluate Raman spectra obtained from environment &;. Thus,
to evaluate the estimated spectra, the basis of f"&_z was changed to the PC-LDA space
including environment &; by f/& = C_if'g“_i. C_; was calculated as
Ci=[rg, 7r:€1;717r/8i+1"" ,r’gN}RT_i, where RT_i is the Moore-Penrose
pseudoinverse of R_;. This was repeated for all : = 1,..., N, and PRESS, was
calculated.

To predict the transcriptome of environment &;, we obtained the Moore-Penrose
pseudoinverse of A _; denoted as AL, and predicted it as f:gi = Aiirfgi. Note that in

general, the estimate of transcriptome Egi that satisfies r’gi = A_Z‘Egi is
e, = ALt + (1-ALA v o)

where v is an arbitrary vector, meaning that {]gi in principle cannot be determined
uniquely from r’g However, Af_zr’g is the term that can be determined experimentally.
Also, the terms AT_ZI‘/S and (I — ALA,z)V are orthogonal
((AT_zr'g, (I- AT_lA,Z)V> = 0), meaning that removing the term (I — AT_ZA,Z)V does
not affect the subspace spanned by A‘L_lr’g Therefore, we estimated f:gi by
te, = ALI"& Again, this was repeated for all i = 1,..., N, and PRESS; was
calculated.

VIP scores in Table 1 and 2, and explained variances by the number of dimensions

used in Fig 3A were calculated as the average of i = 1, ..., N when conducting the above

leave-one-out cross-validation.
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Evaluating the significance of Raman-transcriptome linearity by

the permutation test

To test the significance of the Raman-transcriptome linearity, we conducted the
permutation test [18,19]. In short, false data sets were created by randomly permuting
environmental assignments of transcriptomes, PRESS, or PRESS; values were
calculated, and p-values of accidentally obtaining PRESS values equal to or lower than
the original value were obtained.

When the number of environment conditions NV is larger than 8, the number of
possible random permutations exceeds 8! = 40, 320, and becomes computationally
intensive to calculate p-values. Therefore, when N > 8, unless otherwise stated, p-values
were calculated by randomly generating 10,000 permutations, and when N < 8, all
possible permutations were generated. p-values calculated from randomly generated
permutations are known to underestimate exact p-values [20]. Therefore, when N > 8,
p-values were calculated by applying the following correction: (b+ 1)/(m + 1) where b is
the number of permutations that gave PRESS values equal to or lower than the original

PRESS value, and m is the total number of permutations [20].
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