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Abstract: The stability of long-term memories is enhanced by reactivation during sleep. 
Correlative evidence has linked memory reactivation with thalamocortical sleep spindles, 
although their functional role is poorly understood. Our initial study replicated this correlation 
but also demonstrated a novel rhythmicity to spindles, such that spindles are less likely to occur 
immediately following other spindles. We leveraged this rhythmicity to test the role of spindles 
in memory by using real-time spindle tracking to present cues inside versus outside the 
presumptive refractory period; as predicted, cues presented outside the refractory period led to 
better memory. Our findings reveal a previously undescribed neural mechanism whereby 
spindles segment sleep into two distinct substates: prime opportunities for reactivation and gaps 
that segregate reactivation events.  

One Sentence Summary: The characteristic timing of sleep spindles regulates when memories 
can be reactivated during sleep.  

Main Text:  

Memories of daytime episodes are covertly reactivated during sleep, improving memory storage 
in the brain (1). Previous research has implicated three electrophysiological signals in memory 
processing during sleep. The slowest of these are sleep slow oscillations (SOs), brain rhythms at 
approximately 1 Hz prominent during deep sleep (2). A second signal is the sleep spindle, a burst 
of activity at 11-16 Hz lasting 0.5-3 s. Third, replay of newly formed memories is thought to 
occur in conjunction with high-frequency bursts of hippocampal and cortical activity called 
ripples (1, 3, 4). These three signals can occur with precise temporal interrelationships; spindles 
tend to occur most often during the up-state phase of SOs, and ripples tend to occur at spindle 
troughs (5–7). To the extent that these relationships are evidenced, memory consolidation 
appears to be more effective (8), suggesting a dual cross-frequency coupling mechanism by 
which initially hippocampal-dependent memories become stabilized in long-term neocortical 
networks over time (2). Pharmacological evidence suggests spindles promote memory 
consolidation in humans (9); however, the time course relating spindles to memory consolidation 
has not been well-characterized.   

Here, we investigated and manipulated temporal relationships between spindles and learning-
related auditory cues known to boost memory, relying on a technique called targeted memory 
reactivation (TMR) (10, 11). In experiment 1 (N = 18; Fig 1A), subjects first over-learned novel 
associations between individual sounds and picture items (e.g., [meow]-Brad Pitt, [violin]-Eiffel 
Tower). Next, they learned unique locations for each item on a background grid. After an initial 
test, they took an afternoon nap with background white noise (~40 dB; Table S1 provides sleep 
stage information). Upon online indications of slow-wave sleep (SWS), we embedded half of the 
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cues in the noise, one every 4.5 s. After a post-nap break, subjects took tests on both item-
location associations and sound-item associations.  

We analyzed spatial forgetting by subtracting pre-nap error from post-nap error and regressing 
out pre-nap error, to produce a memory change score (Fig S1). As expected, cues improved 
memory (11, 12), with less forgetting for cued than uncued items [t(17) = 2.2, dz = 0.5, p = 
0.039; Fig 1B].  

We next investigated relationships between post-cue spindles and memory. We detected spindles 
by band-passing sigma (11-16 Hz), calculating root-mean-square (RMS) values using sliding 
200-ms intervals, and extracting above-threshold segments (Methods; Fig 1C). We found that 
cues tended to provoke spindles, in line with previous findings (13, 14). Spindles at scalp 
location CPz increased early relative to later after cues [0-2 s vs. 2-4 s, respectively; t(17) = 2.3, 
dz = 0.54, p = 0.03; Fig 1D]. Furthermore, median-split analyses revealed that more spindles 
occurred <2 s after better-retained items than after worse-retained items [t(17) = 2.23, dz = 0.53, 
p = 0.039; Fig 1E]. As in several prior studies (15–18), post-cue spindles positively predicted 
memory.  

We next sought to move beyond this correlative evidence, by manipulating the incidence of 
spindles and seeing whether conditions that boost spindle occurrence also boost subsequent 
memory. First, we attempted to boost spindles directly using sensory-entrainment methods. 
Subjects in experiment 2 (N=16) heard cues during sleep, half presented alone (cued-only) and 
half followed by 2 s of white noise amplitude-modulated at spindle frequency (15 Hz; cued-
oscillation). Given that such white-noise oscillations were previously found to facilitate spindles 
(14), we hypothesized that cued-oscillation sounds would show greater post-cue spindles as well 
as better retention for those cued items. Contrary to our expectations, cues with entrainment 
versus cues presented alone were not associated with differences in either incidence of post-cue 
spindles [t(15) = 0.20, dz = 0.05, p = 0.84] or corresponding memory performance [t(15) = 0.8, dz 
= 0.2, p = 0.44; Fig 1F]. Median-split analyses revealed a trend for more spindles for better than 
worse memory in the cued-only condition [t(15) = 1.78, dz = 0.44, p = 0.096], but not the cued-
oscillation condition [t(15) = 0.13, dz = 0.03, p = 0.90; Fig 1G].  

Since the cued-oscillation approach did not work, we next explored whether spindles were 
modulated by the time since the prior spindle occurrence. Prior in vitro (19), in vivo, (20), and 
human EEG (21) evidence of a decline in spindle incidence shortly after a spindle could be 
indicative of a refractory period. If this refractory period exists, it could be leveraged to 
manipulate the probability of spindle occurrence. As an initial probe into this question, we asked 
whether presence of a spindle pre-cue influenced post-cue spindle probability. Combining data 
from experiments 1 and 2, we found a significant interaction between whether there was a pre-
cue spindle (-2.5 to 0 s) and early-versus-late post-cue spindle rate [0-2 s vs. 2-4 s, respectively, 
F(1,33) = 24.23, p < 0.001]. Follow-up analyses connected pre-cue spindles with more late than 
early post-cue spindles [t(33) = 3.1, dz = 0.53, p = 0.004], and their absence with more early than 
late post-cue spindles [t(33) = 5.5, dz = 0.94, p < 0.001; Fig 1H]. We then asked whether pre-cue 
spindle activity negatively affected memory by analyzing cue-locked sigma power at CPz while 
correcting for multiple comparisons. As expected, sigma power was higher for better- than 
worse-remembered items for a post-cue time segment (1092 to 1372 ms, p < 0.05), but higher for 
worse- than better-remembered items during a pre-cue time segment (-1696 to -1288 ms, p < 
0.05; Fig 1I). These results hinted that memories cued within spindle refractory periods may be 
unlikely to undergo reactivation.  
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To further understand these spindle refractory effects, we computed the inter-spindle lag or ISL 
(Fig 2A). ISL analyses showed fewer spindles for lags of 0.5-2.5 s (15.3%) compared to 2.5-4.5 s 
(30.0%). A parallel analysis in the frequency domain revealed a peak at 0.21 Hz (4.8-s ISL) with 
a range around the peak at 0.17-0.33 Hz (3-5.9-s ISL; Fig 2B). These results revealed that sigma 
activity occurs not randomly but rather in an oscillatory fashion. 

Next, we obtained sigma RMS values -10 to 10 s around the RMS peaks of verified spindles (Fig 
2C), and then performed autocorrelations between each time lag and the RMS peak for each 
subject. The autocorrelation graph revealed “reverberations,” such that on each side of t = 0 there 
were negative, positive, negative, and positive peaks (approximately ±1.5, 3.1, 4.1, and 5.35 s, 
respectively; Fig 2D; Table S2). To ensure these qualitative results were not artifacts of cueing, 
we analyzed data from subjects who did not receive cues (N=28; Methods; Fig S2). All major 
aspects of the above analyses held, except reverberation cycles were slightly wider (~ 4 s rather 
than ~ 3 s). Finally, as both preceding spindles and sounds affect spindle occurrence, we 
measured the likelihood of a spindle relative to a preceding sound or spindle (Fig 2E). In line 
with previous analyses, spindles were most likely 3-5 s after predecessors and shortly after cues; 
sounds shortly after spindles elicited few spindles, whereas spindles frequently occurred 3-5 s 
after predecessors almost regardless of cues (Fig 2F), suggesting the spindle refractory period 
imposes a limitation on spindle probability that can over-ride sensory influences.  

If this is true, then it should be possible to manipulate spindle probability by manipulating the 
timing of the cue relative to the last spindle: cues presented in the refractory period should be 
less likely to trigger spindles and should lead to worse memory, relative to cues presented 
outside of the refractory period. To test this, we arranged to systematically deliver cues at 
different times relative to the spindle-refractory period. For experiment 3 (N=20), we developed 
an algorithm to track spindles in real-time (Fig 3A). Each cue was presented either shortly after a 
spindle finished (0.25 s, Early Condition) or much later (~ 2.5 s, Late Condition). Confirming the 
success of the spindle-tracking method, early cues showed far more pre-cue spindles than late 
cues [40.4% vs. 5.7%; t(19) = 13.3, dz = 2.97, p < 0.001; Fig 3B]. Crucially, spatial memory was 
more accurate with late cues compared to early cues [t(19) = 3.2, dz = 0.7, p = 0.004; Fig 3C]. 
That is, memory reactivation was apparently reduced within the spindle refractory period. 

To verify the predominance of spindles shortly after late cues, we submitted spindle-density 
measures to a cue type (early vs. late) x post-cue interval (0-2 vs. 2-4 s) ANOVA. We found a 
significant interaction between cue type and post-cue interval [F(1,19) = 6.6, p =0.01; Fig 3D]. 
Spindles increased early post-stimulus-onset (vs. late) after late cues [t(19) = 4.0, dz = 0.88, p < 
0.001], but not after early cues [t(19) = 0.44, dz = 0.10, p = 0.66]. As stimulus-evoked slow 
oscillations (SOs) predict memory retention (22) and have also been shown to have refractory 
periods (23, 24), we next wanted to verify that effects that are attributed here to the spindle 
refractory period were not due instead to the SO refractory period. The same analyses on SOs, as 
measured using established algorithms (25), revealed more SOs 0-2 vs. 2-4 s after cues [F(1,19) 
= 11.66, p < 0.001], but no effect of our early vs. late cueing manipulation [F(1,19) = 2.8, p = 
0.11] or interaction [F(1,19) = 0.6, p = 0.44; Fig 3E], indicating that the observed memory 
effects of this manipulation are unlikely to be due to modulation of SOs.  

The reverberatory nature of sigma power was also evident in temporal patterns of cue-locked 
sigma RMS (Fig 3F): late cues, higher from -3868 to -2472 ms; early, higher from -1992 to -48 
ms; late, crucially higher from 500 to 1172 ms; early, higher from 2252 to 3000 ms (all corrected 
for multiple comparisons). Finally, as in vivo evidence suggests the refractory period is not 
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absolute (20), we reasoned that early cues directly after spindles should still occasionally able to 
elicit spindles, which would show up as an increase in spindles at very short ISLs. In keeping 
with this idea, we found higher proportions of spindles at very short lags (< 1.5 s) in experiment 
3 than experiments 1 and 2 (t(52) = 2.38, d = 0.67, p = 0.02; Fig 3G). 

Converging evidence thus describes a novel rhythm of spindle incidence. Moreover, this 
previously under-characterized regularity in sigma, corresponding to a ~3-5 s ISL, is strongly 
connected to memory reactivation. At ISL<3 s, the state of local thalamocortical spindle 
networks is presumably refractory due to the hyperpolarization-activated current, Ih (19, 26). At 
ISL>5 s, the reduced spindle likelihood (right side of Fig 2F) may reflect the initial shift to a 
sleep state not conducive to spindles. Additionally, we found a strong peak at an infraslow 
frequency (~0.02 Hz; Fig 2B), in line with a recent report suggesting the presence of spindle-rich 
intervals separated by ~50 s (27). Our findings therefore underscore the importance of 
considering spindles on the meso-scale (~0.2-0.3 Hz), intermediate between the sub-second scale 
of the oscillations themselves (11-16 Hz) and the infra-slow scale just under a minute (0.02 Hz).  

These findings parallel and qualify recent investigations into memory reactivation with respect to 
SOs. Given that SOs nest spindles and ripples (7), they could be seen to segment and thereby 
regulate memory reactivation. In humans, boosting SOs improves memory (22, 28); however, the 
degree to which it improves memory may be limited to effects on spindles (23, 25). Here we 
provide additional evidence that reactivation may be more broadly regulated by the spindle 
refractory period (~3-5 s) than individual SOs (~1s). Additionally, whereas stimulation to 
enhance SOs (23, 25) and TMR (29) are most effective at particular SO phases, our findings 
show that TMR is most effective at particular “phases” of the meso-scale sigma power rhythm of 
0.2-0.3 Hz. They also suggest that efforts to manipulate spindles via optogenetic (30) or auditory 
(14) stimulation may also benefit by considering this rhythm.   

In conclusion: Our findings suggest spindles segment sleep into prime opportunities for 
reactivation interspersed by gaps corresponding to the spindle refractory period. We speculate 
that this segmentation could serve as a mechanism for segregating memory reactivation related 
to different events. Furthermore, these results suggest fundamental limitations on the amount of 
reactivation that can occur across a given sleep period.  
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Figure 1. Experiments 1 & 2 procedure and results. (A) Subjects over-learned associations 
between sounds and items before learning item spatial locations. In experiment 1, half of 
the sounds were presented during slow-wave sleep (SWS) of an afternoon nap. In 
experiment 2, all sounds were similarly presented, and half were followed by 15-Hz, 
oscillating white noise (cued-oscillation). (B) In experiment 1, cues reduced forgetting 
between pre-nap and post-nap tests. (C) Sleep spindles calculation. (D) During the period 
immediately after cues (0-2 s) relative to later (2-4 s), spindles were increased. (E) A 
median split analysis showed more early spindles per item predicted better memory. (F) 
In experiment 2, forgetting did not differ between cued-only and cued-oscillation 
conditions. (G) Early (vs. late) spindles marginally indexed better memory for the cued-
only condition, but not the cued-oscillation condition. (H) Analyses combining both 
experiments revealed that pre-cue spindles (occurring -2.5–0 s) reversed the prevalence 
of early versus late post-cue spindles. (I) Better-remembered items showed higher post-
cue but lower pre-cue sigma power than worse-remembered items. (Inset) Topographical 
maps of RMS values for better – worse memory centered around -1550 ms and 1300 ms, 
respectively. †: p <= 0.1. *: p <= 0.05. **: p < 0.01. 

 

Figure 2. Characterizing the spindle refractory period. (A) Inter-spindle lags (ISLs) were 
calculated as the time between the start of successive spindles, shown for up to 30 s. (B) 
Fast Fourier transformations of the sigma RMS signal revealed cyclic activity most 
prominent in the 0.17 – 0.33 Hz range, corresponding to ISLs in the range of 3 – 5.9 s. 
(C) RMS values spanning from -10 s to +10 s surrounding spindle peaks from one sample 
subject. (D) Correlations between the RMS value of the spindle peak and all other values 
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from -10 to 10 s were calculated for each subject. The correlation was r = 1.0 at the t = 0 
spindle peak. All positive (black) and negative (red) peaks that significantly differed from 
zero across subjects (p < 0.05) are marked with arrows, except † indicates p = 0.07. 
Brackets indicate approximately symmetric peaks across t = 0. (E) For each instant along 
the recording, we found whether a spindle started or not and the time lags since the last 
spindle and last sound cue. (F) Likelihoods of spindles starting as a joint function of 
spindle and sound lag. Crosses indicate bins corresponding to color-coded time lags from 
(E).  

 

Figure 3. Memory retention was impaired for items cued inside versus outside the spindle 
refractory period. (A, top) In experiment 3, TMR cues were presented either early or 
late after a spindle was detected, placing them (respectively) inside or outside the spindle 
refractory period. (A, bottom) Real-time schematic. EEG traces from electrode CPz were 
filtered between 11-16 Hz, the RMS signal was calculated, and detected spindles were 
sent to another computer to present cues at the appropriate times. (B) A manipulation 
check showed a higher percentage of pre-cue spindles (<2.5 s) in the early than late cued 
conditions. (C) Late cues significantly enhanced memory retention relative to early cues. 
(D) Late cues showed a significant spindle boost early in the post-cue interval, whereas 
early cues did not. (E) Both early and late cues boosted slow oscillations, but there was 
no interaction between conditions. (F) Cue-locked analyses revealed higher early post-
cue sigma power for late relative to early cues. All horizontal bars indicate p < 0.05 
segments. (G) Comparison of inter-spindle lags in experiments 1 and 2 vs. experiment 3 
revealed an increased number of very short inter-spindle lags. **: p < 0.01. 
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Figure 1. 
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Figure 2.  
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Figure 3.  
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Materials and Methods 

Based on the results of experiments 1 and 2, the hypotheses, methods, and planned analyses for 
experiment 3 were pre-registered at https://osf.io/brndg/. All code and results will be placed there 
upon publication.  

Subjects. Subjects were asked to wake an hour earlier than normal in order to increase the 
chances of their napping successfully. They were also asked to refrain from drinking alcohol the 
night before and caffeine the morning of the experiment. Informed consent was obtained before 
and monetary reimbursement given after the study. Twenty-one (M = 21.8 yrs, range: 18-33, 10 
female) and twenty-five volunteers (M = 22 yrs, range: 19 - 33, 15 female) from the 
Northwestern community participated in experiments 1 and 2, respectively. Twenty-six 
volunteers (M = 21.2 yrs, range: 18-33, 10 female) from the Princeton University community 
participated in experiment 3. In experiments 1 and 2, participants’ data were included in the final 
dataset if they experienced one full round of cues during sleep, and excluded otherwise. In 
experiment 3, the rate of cue presentation was slower because we waited to detect spindles 
before cuing; this, in turn, made it less likely that we would be able to get through a full round of 
cues. Therefore, we loosened our inclusion criterion a priori for experiment 3: Participants were 
included if they experienced at least 50% of the overall cues (see Preregistered methods at 
https://osf.io/brndg/). Only two subjects received fewer than one full round of cues. In these 
cases, only the cued items from each group were analyzed. Data were excluded from subjects 
who did not receive the minimum number of cues (three, nine, and six subjects in experiments 1, 
2, and 3, respectively). 

Stimuli. Subjects learned to associate 24 celebrities and 24 landmarks with 48 randomly-
assigned environmental sounds bearing no relation to the pictures (e.g. a cat’s meow, violin 
musical tones). The sounds lasted 0.5 s or less and were selected from a larger set used in another 
TMR study (12), so as to maximize the distinctiveness of the selected cues from each other.  

In experiment 2, the oscillating sounds were created by modulating the amplitude of a white 
noise signal, which was a mixture of sound frequencies from 20-1000 Hz with random 
amplitudes constant across the power spectrum (Antony & Paller, 2017). The modulated sound 
alternated between 100% and 20% of the original amplitude in the form of a sine wave using the 
Tremolo function in Audacity software. Thus, the modulation did not change the maximum 
amplitude of the signal.  

Design. The three experiments included sound-item association over-learning, item-location 
learning, pre-nap location testing, napping for 90 min, and post-nap item-location and sound-
item testing. There was an additional phase before learning in which subjects viewed a different 
group of celebrities, landmarks, common objects, scrambled faces, and scrambled places, 
included to allow for training a wake EEG classifier. Those classification analyses are not 
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described further in this article. The procedural details for each phase were as follows. During 
sound-item over-learning, subjects learned pairwise associations between 48 unique sounds and 
48 new faces or places to a high degree of accuracy. During item-location learning, subjects 
learned the location of each picture against a background grid accompanied by its previously-
associated sound. For the pre-nap test, subjects were tested on each picture location once just 
before sleeping, receiving feedback on the correct location after their guess. Then, subjects took 
a 90-min nap, during which learned sounds were randomly and repeatedly played to the subjects 
upon their entering SWS. Subjects returned to the lab 150 min after the nap to take tests on all 
item-location and sound-item associations. 

Procedure. Pre-training. We fitted subjects with a 64-channel cap of electrodes along with two 
EEG mastoid electrodes and one EMG electrode on the chin. Two EOG channels were used for 
monitoring horizontal and vertical eye movements.  

Sound-item overlearning. Subjects encoded sound-item pairs using repeated study-test cycles to 
ensure sounds would reliably elicit picture-related neural activity. During encoding, subjects 
viewed each picture for 4 s; concurrent with picture onset, a unique sound was played for 0.5 s. 
Sound-item mappings were random and different for each subject. A label indicating the correct 
name and spelling of the picture was shown below 2 s after picture onset, along with a re-
presentation of the sound. During testing, subjects heard each sound alone and were asked to 
type in the corresponding picture label. Typing was only allowed to begin 1 s after sound offset. 
After submitting a response, subjects received feedback on whether their response was correct, 
along with a 4-s presentation of the picture and label, with the sound presented twice at 0 and 2 s. 
After the subject correctly produced a label twice in a row, the corresponding pair was dropped 
from further testing. Testing continued until all labels were correctly produced twice in a row. 
The pace of encoding and testing were thus at the subject’s discretion in this phase.  

Item-location learning. Next, subjects learned the location of each item against a background 
grid. Each picture was randomly assigned to a location -300 to 300 pixels from the center of the 
screen in horizontal and vertical directions. During encoding, subjects viewed the location of 
each picture for 3 s, accompanied by a single presentation of the picture’s accompanying sound. 
Following encoding, we asked subjects to drag each picture from the center of the screen to 
where they remembered seeing it. After subjects made their location response, they viewed 
feedback of each picture in its correct location and heard its corresponding sound. When the 
guessed location occurred within 150 pixels of the correct location, the item dropped out from 
further testing. Subjects performed the task until they guessed each pair within 150 pixels once.  

Pre-nap item-location test. Following a 5-min break, subjects made their location response for 
each item once, followed by feedback. Items were again accompanied by their corresponding 
sound at presentation and feedback.  

Nap. Subjects then took a nap in the laboratory against a background white noise level of 
approximately 40 dB. Following online indications of SWS, 0.5-s sound cues were administered 
once every 4.5 s in a randomized order. In experiment 1, half of the cues were presented over 
multiple rounds (M = 7.24, range = 2.9-9.25). In experiment 2, all sounds were presented (M = 
6.53, range = 2.62-10.77), with half of the sounds followed by 2 s of 15-Hz oscillating white 
noise. In experiment 3, all sounds were presented (M = 1.96, range = 0.56-4.0), with half 0.25 s 
after the end of a spindle and half 2.5 s after the end of a spindle. In all experiments, items in 
each group were equally split between celebrity and landmark categories. No individual cue 
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caused an amplitude jump greater than 4 dB. Cues were immediately stopped upon arousals and 
repeated if the subject remained in SWS after all cues finished. If a subject had not heard a 
sufficient number of cues after 60 min, we cued during stage-2 NREM sleep.  

Following the nap, subjects returned after 150 min and were tested on each item-location and 
then each sound-item pair without feedback. Sounds were omitted from the post-nap item-
location test to prevent them from influencing memory for the later post-nap sound-item pair 
test. At the completion of the experiment, subjects were paid for their time and debriefed about 
the aims of the experiment.  

Dependent variables. We used an adjusted forgetting score as our primary dependent variable. 
Forgetting, calculated as post-nap error minus pre-nap error, significantly correlates with pre-nap 
error. Items with highly accurate pre-nap recall face ceiling effects (e.g. an error of only 2 pixels 
cannot be improved across the nap by more than 2 pixels) and those with poor pre-nap accuracy 
show a regression to the mean (e.g., an incorrectly recalled location, when very distant from the 
correct location, is likely to be recalled more accurately after the nap, even by chance). 
Therefore, we calculated the linear relationship between pre-nap score and forgetting (post-nap – 
pre-nap score) pooled across subjects in the present data (Fig. S1). Then we subtracted each 
forgetting score from the forgetting expected from this linear relationship (i.e., the residual) to 
produce the adjusted forgetting store used for all reported analyses.   

EEG recording and pre-processing. Continuous EEG was recorded during the nap using 
Ag/AgCl active electrodes (Biosemi ActiveTwo, Amsterdam) using the same electrode layout 
and recording hardware at Northwestern (experiments 1 and 2) and Princeton (experiment 3). In 
experiment 3, for the purposes of real-time analyses, EEG data were collected using OpenViBE 
rather than Biosemi software. Recordings were made at 512 Hz from 64 scalp EEG electrode 
locations. In addition, a vertical electrooculogram (EOG) electrode was placed next to the right 
eye, a horizontal EOG electrode was placed under the left eye, and an electromyogram (EMG) 
electrode was placed on the chin.  

EEG data were processed using a combination of internal functions in EEGLAB (Delorme & 
Makeig, 2004) and custom-written scripts. Data were re-referenced offline to the average signal 
of the left and right mastoid channels and were down-sampled to 256 Hz. They were high-pass 
filtered at 0.1 Hz and low-pass filtered at 60 Hz in successive steps. Problematic channels were 
interpolated using the spherical method.  

Sleep physiological analyses. Sleep stages were determined by an expert scorer according to 
standard criteria (32). Table S1 shows the breakdown of stages for each condition as well as the 
number of cues occurring within each stage for all experiments. Note that sleep-staging rules 
require assigning stages based on whichever stage is more prevalent within the 30-s epoch, 
which can result in sounds occurring in stages that were not the intended targets. Artifacts (large 
movements, blinks, arousals, and rare, large deflections in single channels) during sleep were 
marked separately in 5-s chunks following sleep staging.  

Spindles and slow oscillations were calculated using established algorithms. Each of these scripts 
ignored 5-s intervals marked for rejection, effectively stitching together non-artefactual segments 
from all NREM epochs into a long, continuous EEG signal for further processing.  

For spindles, sleep EEG data were bandpass-filtered between 11-16 Hz using a two-way, least-
squares finite-impulse-response filter. Next, we calculated a root-mean-square (RMS) value for 
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every time point using a moving window of ±0.2 s for each channel separately. A threshold was 
determined by multiplying the standard deviation of the entire channel’s signal by 1.5 (33). Any 
RMS signal that crossed this threshold consecutively for 0.5- to 3-s was considered a spindle. 
Times for the start, negative peak (largest negative voltage value), and end of each spindle were 
recorded for alignment with sleep cues. We used this same RMS calculation for online spindle 
detection and offline cue-locked analyses. 

For counting slow oscillations, sleep EEG data were first low-pass filtered at 3.5 Hz. Any series 
of data points with successive positive-to-negative crossings lasting 0.75 to 2 s (corresponding to 
0.5-1.3 Hz), a negative peak of -40 μV, and peak-to-peak amplitude of 75 μV was considered a 
slow oscillation. Similar to spindles, the start, negative peak, and end were recorded for later 
alignment with sleep cues.  

As fast spindles tend to correlate with subsequent memory (2), we chose a cluster of 
centroparietal electrodes (Cz, Cp1, Cpz, Cp2, Pz) for physiological analyses a priori as they are 
the scalp locations where fast spindle power is maximum (34). Cue-locked spindle density 
measures (e.g. 0-2 s, 2-4 s) indicate spindles started for all relevant periods divided by the length 
of these periods in minutes. We chose electrode CPz where single channels were more 
appropriate, such as graphing RMS over time, as well as for our online spindle detection 
algorithm. Fig. 1I uses non-baseline-corrected RMS values to show pre-cue effects; Fig. S3 
depicts the same analysis using baseline correction (by subtracting the mean of the interval 
between -0.5 to 0 s). We corrected for multiple comparisons in two steps. First, we randomly 
permuted better-remembered and worse-remembered conditions 400 separate times. After each 
permutation, we calculated the maximum number of consecutive time values that differed from p 
< 0.05, yielding a null distribution of maximum-consecutive-timepoints. We then compared the 
number of consecutive significant timepoints to the null distribution, yielding a family-wise error 
value. Any true time segment exceeding the 95th percentile of the null distribution (indicating a 
family-wise p value < 0.05) was deemed significant.  

Spindle refractory period analyses. All analyses in Fig. 2 were performed on electrode CPz. 
Inter-spindle lags were found by calculating the amount of time between successive spindles. 
Relative RMS power was calculated by performing fast Fourier transforms on artifact-free 
NREM periods, sorting data into 200 frequency bins between 0-1 Hz, and calculating within-
subject relative power. To calculate RMS autocorrelations, we first obtained all RMS values 
between -10 to +10 s surrounding each spindle peak for each subject, mean-normed for the 
average RMS values from a wider -30 to +30 s block. Next, we calculated correlations between 
every time lag and t = 0 separately across spindle trials. Finally, we plotted these mean 
correlations with standard errors with arrows where correlations were both at a local maxima or 
minima and significantly different from zero across subjects. Bivariate spindle and sound lag 
analyses were calculated by taking each moment in the recording and binning it into 0.5-s 
segments by the amount of time since the onset of the most recent sound and the onset of the 
most recent spindle. Moments when spindles started were marked to later calculate the likelihood 
of a spindle occurring in that given bivariate bin. Finally, two-dimensional color plots were 
produced for sound intervals of 0 – 4.5 s (9 bins) and spindle lags of 0 – 10 s (20 bins), and 
horizontal and vertical bar graphs indicated the means across each dimension.  

Real-time spindle algorithm. In order to time cues relative to spindle events, we created an 
online spindle detection algorithm using open-source brain computer interface software called 
OpenViBE (http://openvibe.inria.fr/). OpenViBE allows for real-time processing of EEG data 
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through MATLAB scripting, and the translation of established offline detection scripts to an 
online format. Our offline algorithm used a band-pass (11-16 Hz) filter, RMS values based on a 
± 0.2-s moving window, and a single-threshold constant value to detect spindles based on the 
standard deviation of the RMS signal over the whole recording.  

However, in real-time, one cannot use the whole recording to calculate baseline thresholds or 
reliably reject artifacts. Therefore, we used a different algorithm for our online scripts (Fig. S4). 
We relied on two band-pass filters and two spindle thresholds, instead of one for each. For 
filters, we chose the sigma band (11-16 Hz) and an equal-sized lower beta band that should have 
no spindle information (16-21 Hz). Generally, spindles only occur in the sigma band, but 
artifacts show up in both bands. As such, monitoring lower beta allowed us to detect (and 
discount) periods of time when broader signal artifacts were present. This algorithm was chosen 
based on its performance in detecting spindles on an online sleep spindles database 
(http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/). 

The lower and upper thresholds were 2 and 4.5 times the RMS mean of the last 600 s of the 
recording for the baseline (lower beta) frequency bandwidth. If the RMS values in the spindle 
frequency bandwidth crossed the lower threshold, it was a candidate for a spindle. The length of 
time the RMS signal was above this lower threshold constituted its duration. To be categorized 
as a spindle, the duration was required to be 0.5-3 s and the RMS value was required to surpass 
the upper threshold at least once. Thus, if the spindle RMS values crossed the first minimum 
threshold without reaching the second maximum threshold, then it would not be categorized as a 
spindle, no matter its duration. Similarly, if it crossed the maximum threshold but did not have a 
duration between 0.5-3.0 s, it would also not be categorized as a spindle. 

In order to present sounds, three conditions needed to be met: (1) spindle detection, (2) RMS 
values were currently below the spindle threshold (so there was no candidate spindle presently 
ongoing) and (3) > 4.5 s elapsed since the onset of the previous sound. Once these conditions 
were met, sound information was sent to the presentation computer via UDP packets at different 
times depending on sound type. Early intervals of 0.25 s were chosen (as opposed to no delay) in 
order to avoid a scenario in which RMS values, while below the spindle threshold, still remained 
above baseline RMS values, thus causing a possible confound of sigma power at the t = 0. Late 
intervals of 3.5 s were chosen to be late enough to fall outside of the refractory period (see Fig. 
2). If a spindle occurred during this interval, the timer was reset and the next late sound could 
only occur 3.5 s after the onset of that (intervening) spindle.  

Spontaneous (non-TMR) sleep data. Data collected during similar experiments from other 
subjects (N=28, age range: 18-30) were used to validate the dynamics of the spindle refractory 
period in the absence of TMR cues. The no-sounds control condition in a published study (35) 
was used for 16 subjects. In all cases, subjects performed pre-learning memory tasks. These data 
were acquired using Neuroscan software at a sampling rate of 1000 Hz with a bandpass of 0.1–
100 Hz. Tin electrodes in an elastic cap were placed at 21 standard scalp locations, left and right 
mastoids, lateral to the right eye, under the left eye, and on the chin. Data were downsampled to 
250 Hz, re-referenced to average mastoids, and filtered between 0.4-60 Hz in successive steps 
using a 2-way least-squares finite impulse response filter. Because we used an electrode montage 
that did not include CPz, we used Pz instead. Analyses paralleling Fig. 2A, B, and D are 
reproduced using this dataset in Fig. S2. 

Supplementary Text 
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Baseline-corrected sigma RMS from experiments 1 and 2. To highlight the role of pre-cue 
sigma power, we did not perform baseline correction in Fig. 1I. Nevertheless, baseline-corrected 
sigma power showed a similar post-cue subsequent memory difference (1052 to 1400 ms, p < 
0.05), but predictably no pre-cue difference (Fig. S3). 

Final sound-item memory. We tested overlearned sound-item memory after the final spatial 
item-location test. Even though we expected ceiling-level performance, we analyzed final sound-
item memory because it is conceivable that cueing could also strengthen these associations. 
Overall, these results showed non-significant TMR benefits that were weaker than, but generally 
consistent with, the spatial error results in each experiment. In experiment 1, cued associations 
were marginally better-remembered than uncued associations [t(17) = 1.7, dz = 0.4, p = 0.106]. In 
experiment 2, no difference was found between cued-only than cued-oscillation associations 
[t(15) = 0.93, dz = 0.23, p = 0.37]. In experiment 3, late cued associations were marginally better-
remembered than early cued associations [t(19) = 1.8, dz = 0.4, p = 0.089].  
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Fig. S1. Residual analysis used in the forgetting metric. (A) Pre-nap error significantly 
predicts forgetting (post- – pre-nap error). (B) Corrected (residual) forgetting values after 
regressing out pre-nap error. 
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Fig. S2. Spindle refractory period analyses on non-TMR data. We created a variant of the 
graphs from Fig. 2A, B, and D using data that had no TMR cues (N=28). We relied on data from 
the Pz electrode because EEG acquisition did not include CPz.   
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Fig. S3. Baseline-corrected subsequent memory analyses for experiments 1 & 2. We plotted 
cue-locked RMS sigma values for better- and worse-remembered items, as determined by 
median split. The horizontal bar indicates times showing a significant difference between the 
conditions at p < 0.05, which was significant after correcting for multiple comparisons.   
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Fig. S4. Example of a spindle detected by online spindle algorithm. (Top) Raw EEG signal. 
(Middle) Signals filtered in the sigma (11-16 Hz, blue) and lower beta (16-21 Hz, red) bands. 
(Bottom) RMS sigma (blue) and lower beta (red) signals along with the first (dashed black) and 
second (solid black) spindle thresholds, which were multiplications of 2 and 4.5 times the mean 
lower beta power, respectively. Any sigma signal above the first threshold between 0.5 – 3 s and 
above the second threshold at any point was considered a spindle. One spindle was thus detected 
near the end of the interval. 
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Table S1. Sleep staging and cue quantification. Mean amount of time in each sleep stage (min 
± SEM) is displayed together with the number of cues per stage for Experiments 1, 2, and 3.  

in 
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Table S2. Timing of autocorrelation peaks in sigma RMS signal. Shown are all positive and 
negative autocorrelation peaks with each time point and t = 0 from Fig. 2D. Brackets indicate 
approximately symmetric peaks around t = 0. All peaks are significant at p < 0.05 level, except †,
where 0.05 < p < 0.1.  

  
 

 †, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2017. ; https://doi.org/10.1101/235606doi: bioRxiv preprint 

https://doi.org/10.1101/235606
http://creativecommons.org/licenses/by/4.0/

