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Abstract The immediate evolutionary space accessible to HIV is largely determined by how
single amino-acid mutations affect fitness. These mutational effects can shift as the virus evolves.

However, the prevalence of such shifts in mutational effects remains unclear. Here we quantify the

effects on viral growth of all amino-acid mutations to two HIV envelope (Env) proteins that differ at

>100 residues. Most mutations similarly affect both Envs, but the amino-acid preferences of a
minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one

Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at

sites that have substituted between the Envs – and many occur at residues that do not even

contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational

tolerance during HIV evolution, although the amino-acid preferences of most sites are conserved

between moderately diverged viral strains.

Introduction
HIV’s envelope (Env) protein evolves very rapidly. The major group of HIV-1 that is responsible

for the current pandemic originated from a virus that entered the human population ∼100 years
ago (Sharp and Hahn, 2011;Worobey et al., 2008; Faria et al., 2014). The descendants of this virus
have evolved so rapidly that their Envs now have as little as 65% protein identity (Lynch et al., 2009).
For comparison, protein orthologs shared between humans and mice have only diverged to a

median identity of 78% over 90 million years (Waterston et al., 2002; Hedges et al., 2006).
Env’s rapid evolution has dire consequences for anti-HIV immunity, since it erodes the efficacy

of most neutralizing antibodies (Albert et al., 1990; Wei et al., 2003; Richman et al., 2003; Burton
et al., 2005). Because of this public-health importance, numerous studies have experimentally
characterized aspects of the “evolutionary landscape” that Env traverses. The immediate evolution-

ary space accessible to any given Env is largely defined by the effects on viral fitness of all single

amino-acid mutations to Env. Most mutational studies have measured how just a small number

of these mutations affect viral growth in cell culture, although it has recently become possible to

use deep mutational scanning to measure the effects of many (Al-Mawsawi et al., 2014; Duenas-
Decamp et al., 2016) or even all (Haddox et al., 2016) single amino-acid mutations mutations to an
Env variant.

But interpreting these studies in the context of Env evolution requires addressing a fundamental

question: How informative are mutational studies of a single protein variant about constraints

on long-term evolution? During protein evolution, substitutions at one site can change the effect

of mutations at other sites (Natarajan et al., 2013; Gong et al., 2013; Harms and Thornton, 2014;
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Podgornaia and Laub, 2015; Starr and Thornton, 2016; Klink and Bazykin, 2017). We will follow the
nomenclature of Pollock et al. (2012) to refer to these changes in mutational effects as shifts in a
site’s amino-acid preferences. Such shifts can accumulate as substitutions become entrenched via

epistatic interactions with subsequent changes (Starr et al., 2017; Pollock et al., 2012; Shah et al.,
2015; Bazykin, 2015) – although the magnitude of these shifts is usually limited (Doud et al., 2015;
Chan et al., 2017; Ashenberg et al., 2013; Risso et al., 2014).
Given that the Envs of circulating HIV strains represent a vast collection of homologs that often

differ at >100 residues, shifts in amino-acid preferences could make the outcome of any study
highly dependent on the Env used. The extent to which this is actually the case is unclear, since

the few protein-wide studies of such shifts have examined proteins that are structurally far simpler

than Env, which forms a large heavily glycosylated heterotrimeric complex that transitions through

multiple conformational states (Munro et al., 2014; Ozorowski et al., 2017).
Here we use an improved version of a previously described deep mutational scanning strat-

egy (Haddox et al., 2016) to measure the effects on viral growth of all single amino-acid mutations
to two transmitted-founder virus Envs that differ by >100 mutations. We compare these complete
maps of mutational effects to identify sites that have shifted in their amino-acid preferences be-

tween the Envs. Most sites show no detectable shifts, but 30 sites have clearly shifted preferences.

These shifted sites usually prefer a specific amino acid in one Env but have shifted to tolerate many

amino acids in the other Env. The shifted sites cluster in structure, but are often distant from any

amino-acid substitutions that distinguish the two Envs, demonstrating the action of long-range

epistasis. By aggregating our measurements for both Envs, we identify sites that evolve faster

or slower in nature than expected given the functional constraints measured in the lab, probably

due to pressure for immune evasion. Overall, our work provides complete across-strain maps of

mutational effects that inform analyses of Env’s evolution and function.

Results
Two Envs from clade A transmitted-founder viruses
The viruses most relevant to HIV’s long-term evolution are those which are transmitted from human-

to-human. However, the only prior work that has measured how all Env amino-acid mutations affect

HIV growth is a study by some of us (Haddox et al., 2016) that used a late-stage lab-passaged CXCR4-
tropic virus (LAI; Peden et al., 1991). The properties of Env can vary substantially between such
late-stage viruses and the transmitted-founder viruses relevant to HIV’s long-term evolution (Sagar
et al., 2006;Wilen et al., 2011; Parrish et al., 2013; Ronen et al., 2015).
We therefore selected Envs from two transmitted-founder viruses, BG505.W6M.C2.T332N and

BF520.W14M.C2 (hereafter referred to as BG505 and BF520), that were isolated from HIV-infected

infants shortly after mother-to-child transmission (Nduati et al., 2000;Wu et al., 2006; Goo et al.,
2014). The BG505 Env has been extensively studied from a structural standpoint (Julien et al., 2013;
Lyumkis et al., 2013; Pancera et al., 2014; Huang et al., 2014; Sanders et al., 2015; Stewart-Jones
et al., 2016; Gristick et al., 2016), and variants of this Env are being tested as a vaccine immuno-
gens (Sanders et al., 2013, 2015; de Taeye et al., 2015). We used the T332N variant of BG505 Env
because it has a common glycosylation site that is targeted by many anti-HIV antibodies (Sanders
et al., 2013). The BF520 Env was isolated from an infant who developed an early broad anti-HIV
antibody response (Goo et al., 2014; Simonich et al., 2016). We have previously created comprehen-
sive codon-mutant libraries of the BF520 Env and used them to map HIV antibody escape (Dingens
et al., 2017), but these BF520 libraries have not been characterized with respect to how mutations
affect viral growth.

Both BG505 and BF520 are from clade A of the major (M) group of HIV-1. Figure 1 shows the

phylogenetic relationship among these two Envs and other clade A sequences. BG505 and BF520

are identical at 721 of the 836 pairwise-alignable protein sites (86.2% identity). In our experiments,

we analyze only the ectodomain and transmembrane domain of Env (we exclude the signal peptide
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Figure 1. Phylogenetic tree showing the relationship of BG505 and BF520 to other clade A Envs. The tree
shows the 69 Envs in the alignment in Figure 1-source data 1, which is a subsample of clade A sequences from

the group M alignment in the Los Alamos HIV sequence database (http://www.hiv.lanl.gov). Sites not

mutagenized in our experiments (the signal peptide and cytoplasmic tail) or that are poorly alignable were

masked as indicated in Figure 1-source data 2, leaving 616 alignable sites. The pairwise identity of BG505 and

BF520 to other sequences at alignable sites is in Figure 1-Figure supplement 1. The tree topology was inferred

using RAxML (Stamatakis, 2014) under the GTRCAT model of nucleotide substitution, and branch lengths were
optimized under the M0 Goldman-Yang model (Yang et al., 2000) using phydms (Hilton et al., 2017).Figure 1–Figure supplement 1. Pairwise identity of all Env sequences to BG505 and BF520.
Figure 1–source data 1. The alignment of clade A env coding sequences is in cladeA_alignment.fasta.

Figure 1–source data 2. The 240 Env sites masked in all phylogenetic analyses because they were not mutage-
nized in our experiments or are poorly alignable are listed in alignment_mask.csv.

and cytoplasmic tail). In these regions of Env, BG505 and BF520 are identical at 549 of the 616

sites (89.1% identity) that are alignable across clade A Envs (Figure 1-source data 1, Figure 1-

source data 2). The divergence between BG505 and BF520 therefore offers ample opportunity to

investigate mutational shifts during Env evolution.

Deep mutational scanning of each Env
We have previously described a deep mutational scanning strategy for measuring how all amino-

acid mutations to Env affect HIV growth in cell culture, and applied this strategy to the late-stage

lab-adapted LAI strain (Haddox et al., 2016). Here we made several modifications to this earlier
strategy to apply it to transmitted-founder Envs and to reduce the experimental noise. This last

consideration is especially important when comparing Envs, since it is only possible to reliably detect

differences that exceed the magnitude of the experimental noise. Our modified deep mutational

scanning strategy is in Figure 2A. This approach had the following substantive changes: we used

SupT1 cells expressing CCR5 to support growth of viruses with transmitted-founder Envs, we used

more virions for the first passage (≥ 3 × 106 versus 5 × 105 infectious units per library) to avoid
bottlenecking library diversity, and rather than performing a full second passage we just did a short

high-MOI infection to enable recovery of env genes from infectious virions without bottlenecking
(Figure 2A). We performed this deep mutational scanning in full biological triplicate for both BG505

and BF520 (Figure 2B). Our libraries encompassed all codon mutations to all sites in Env except for

the signal peptide and cytoplasmic tail.

The deep mutational scanning effectively selected for functional Envs as evidenced by strong

purifying selection against stop codons. Figure 3A shows the average frequency of mutations

across Env in the plasmid mutant libraries, the mutant viruses, and wildtype controls as determined

from the deep sequencing. The mutant viruses show clear selection against stop codons and

many nonsynonymous mutations (Figure 3A). This selection is more apparent if we correct for

the background error rates estimated from the wildtype controls (Figure 3-Figure-supplement 1).

The error-corrected frequencies of stop codons drop to 3%–16% of their original values (Figure 3-
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Figure 2. Deep mutational scanning workflow. (A)We made libraries of proviral HIV plasmids with random
codon-level mutations in the env gene. The number of mutations per gene approximately followed a Poisson
distribution with a mean between 1 and 1.5 (Figure 2-Figure supplement 1). We transfected the plasmids into

293T cells to generate mutant viruses, which lack a genotype-phenotype link since cells are multiply transfected.

To establish a genotype-phenotype link and select for Env variants that support HIV growth, we passaged the

libraries in SupT1.CCR5 cells for four days at a low multiplicity of infection (MOI) of 0.01. To isolate the env genes
from only viruses that encoded a functional Env protein, we infected the passaged libraries into SupT1.CCR5

cells at high MOI and harvested reverse-transcribed non-integrated viral DNA after 12 hours. We then deep

sequenced the env genes from these final samples as well as the initial plasmid library, using molecular
barcoding to reduce sequencing errors. We also deep sequenced identically handled wildtype controls to

estimate error rates. Using these sequencing data, we estimated the preference for each of the 20 amino acids

at each site in Env. These data are represented in logo plots, with the height of each letter proportional to that

site’s preference for that amino acid. (B)We conducted this experiment in full biological triplicate for both
BG505 and BF520, beginning each replicate with independent creation of the plasmid mutant library. These

replicates therefore account for all sources of noise and error in the experiments.Figure 2–Figure supplement 1. Sanger sequencing of selected clones from the mutant plasmid libraries.

Figure-supplement 1), with the residual stop codons probably due to some non-functional virions

surviving due to complementation by other co-infecting virions. The error-corrected frequencies of

nonsynonymous mutations also drop substantially (43%–49% of their original values), whereas the

frequencies of synonymous mutations drop only slightly (85%–95% of their original values). These

trends are consistent with the fact that nonsynonymous mutations are often deleterious, whereas

synonymous mutations often (although certainly not always, see Zanini and Neher, 2013) have
only mild effects on viral growth. Figure 3A only summarizes one aspect of the deep mutational

scanning data, but Supplementary files 1 and 2 contain detailed plots showing all aspects of the

data (read depth, per-site mutation rate, etc) as generated by the dms_tools2 software (Bloom,
2015, https://jbloomlab.github.io/dms_tools2/).
We used the deep mutational scanning data to estimate the preference of each site in Env

for each amino acid via the analysis method described in Bloom (2015). As graphically illustrated
in Figure 2A, the preferences for each site are normalized to sum to one. Our libraries were

mutagenized at 670 sites in BG505 and 662 sites in BF520, so 670×20 = 13, 400 and 662×20 = 13, 240
preferences were estimated for each Env, respectively. The correlations between the preferences

from different experimental replicates are in Figure 3B. These replicate-to-replicate correlations are

substantially higher than those for the deep mutational scanning of LAI Env by Haddox et al. (2016),
which had replicate-to-replicate Pearson correlations of only R = 0.45 to 0.50.
While the replicates are well correlated across all replicates for both BG505 and BF520, the

replicates for BG505 are more correlated with each other than with replicates for BF520, and vice

versa (Figure 3B, compare red and blue versus gray plots). This fact hints that there are some
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Figure 3. The deep mutational scanning selects for functional Envs and yields measurements that are well
correlated among replicates. (A) The average per-codon mutation frequency when sequencing plasmids
encoding wildtype Env (DNA), plasmid mutant libraries (mutDNA), mutant viruses after the final infection
(mutvirus), and virus generated from wildtype plasmids (virus). Mutations are categorized as nonsynonymous,
synonymous, or stop codon. The DNA samples show that sequencing errors are rare, and the virus samples
show that viral-replication errors are well below the frequency of mutations in the mutDNA samples. Comparing
themutvirus tomutDNA shows clear purifying selection against stop codons and some nonsynonymous
mutations, particularly after subtracting the background error rates given by the virus and DNA samples
(Figure 3-Figure supplement 1). More extensive plots from the analysis of the deep sequencing data are in

Supplementary files 1 and 2. (B) Correlations between replicates in the measured preferences of each site in
Env for all 20 amino acids. Blue indicates replicate measurements on BF520, red indicates replicate

measurements on BG505, and gray indicates across-Env measurements of BF520 versus BG505. R is the
Pearson correlation coefficient. The numerical values for the preferences are in Figure 3-source data 1.Figure 3–Figure supplement 1. Numerical frequencies of mutations.
Figure 3–source data 1. Preferences for each replicate and averages are in all_prefs_unscaled.zip.

shifts in amino-acid preferences between the two Envs – something that is investigated with more

statistical rigor later in this paper. Note also that there is a trend for highly preferred amino

acids to be more strongly preferred in BG505 than BF520 (most high-preference points in the

gray plots in Figure 3B fall above the diagonal); however, this trend does not necessarily reflect

differences between the Envs. Rather, there were modest differences in the stringency of selection

between our deep mutational scans of BG505 and BF520 (Figure 3-Figure-supplement 1 shows that

purifying selection better purged stop codons in BG505). In the next section, we correct for these

experimental differences by calibrating each dataset to match the stringency of selection in nature.

Amino-acid preferences of the Envs and their relationship to HIV evolution
The most immediate question is how authentically the experimental measurements describe the

actual selection on Env function in nature. Direct comparisons between experimentally measured

amino-acid preferences and amino-acid frequencies in natural sequences are confounded by the

fact that the natural sequences are evolutionarily related. This problem can be overcome by making

the comparison in a phylogenetic context. Specifically, we used our deep mutational scanning data
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Model ΔAIC LogLikelihood nParams stringency ! !� !� nsites !r > 1 nsites !r < 1

ExpCM BF520 0.0 -35218.8 7 2.8 1.4 1.0 0.7 66 35

ExpCM BG505 269.0 -35353.3 7 2.1 1.3 0.9 0.7 65 53

Goldman-Yang M5 3552.2 -36989.9 12 nan 0.8 0.6 0.7 14 211

Table 1. Evolutionary models informed by the deep mutational scanning describe HIV’s evolution in nature much better than a standard
substitution model. Shown are the results of maximum likelihood fitting of substitution models to the clade A phylogeny in Figure 1. Experimentally

informed codon models (ExpCM, Hilton et al., 2017) utilizing the across-replicate average of the deep mutational scanning describe Env’s natural
evolution far better than a standard codon substitution model (the M5 model of Yang et al., 2000) as judged by comparing the Akaike information
criteria (ΔAIC, Posada and Buckley, 2004). Both ExpCM models have a stringency parameter >1. All models draw ! from a gamma distribution,
and the table shows the mean (!) and shape parameters (!� and !� ) of this distribution. The last two columns show the number of sites evolving
faster (!r > 1) or slower (!r < 1) than expected at a false discovery rate of 0.05, as determined using the approach in Bloom (2017). Analyses were
performed using phydms (http://jbloomlab.github.io/phydms/). Table 1-source-data 1 shows the results for additional substitution models.

Table 1–source data 1. Results for phylogenetic models where ! is not drawn from a gamma-distribution or where the preferences are averaged
across sites to eliminate the site specificity are in modelcomparison.md.

to construct experimentally informed codon models (ExpCM’s) for Env evolution (Hilton et al., 2017).
Importantly, since we expect many sites in Env to be under diversifying selection from immunity,

we extended the ExpCM’s to draw the relative dN/dS parameter (!) from a gamma distribution as is
commonly done for codon-substitution models (Yang et al., 2000).
Table 1 shows that phylogenetic models informed by the deep mutational scanning of either

BG505 or BF520 describe the natural evolution of Env vastly better than a standard codon substitu-

tion model. In addition to simply comparing model fits, we can interpret the model parameters.

ExpCM’s have a stringency parameter that relates selection in the experiments to that in nature. A

stringency parameter >1 indicates that natural selection prefers the same amino acids as the exper-
iments, but with greater stringency (Hilton et al., 2017). Both ExpCM’s have stringency parameters
>1 (Table 1) – a finding that makes sense, since the stop-codon analysis in the previous section
suggests that the experimental selections are more lax than natural selection on HIV. We can also

interpret the ! parameter. For standard codon substitution models, ! is the rate of fixation of
nonsynonymous mutations relative to synonymous ones – and the gene-wide average ! is almost
always <1, since purifying selection purges many functionally deleterious amino-acid mutations
even for adaptively evolving proteins (Murrell et al., 2015). Indeed, Table 1 shows that Env’s gene-
wide average ! is <1 for a standard model. But for ExpCM’s, ! is the relative rate of nonsynonymous
to synonymous substitutions after accounting for functional constraints measured in the deep
mutational scanning (Bloom, 2017). Table 1 shows that the ExpCM’s have a gene-wide average
! that is >1, indicating that external selection (e.g., from immunity) drives Env to fix amino-acid
mutations faster than expected under a null model that only accounts for functional constraints.

A more qualitative way to assess if the deep mutational scanning authentically describes selec-

tion on Env function is to visually compare the measurements with existing knowledge. Figures 4

and 5 show the across-replicate average of the amino-acid preferences for each Env after re-scaling

by the stringency parameters in Table 1. (Note that throughout the rest of this paper, we use

preferences re-scaled by these stringency parameters.) At sites of known functional importance,

these preferences are usually consistent with prior knowledge. For instance, residues T257, D368,

E370, W427, and D457 are important for Env binding to CD4 (Olshevsky et al., 1990), and all these
amino acids are highly preferred in our deep mutational scanning (Figures 4 and 5). Likewise,

Env has 10 disulfide bonds (linking sites 54-74, 119-205, 126-196, 131-157, 218-247, 228-239, 296-

331, 378-445, 385-418, and 598-604), most of which are important for function (van Anken et al.,
2008) – and the cysteines at these sites are highly preferred in our deep mutational scanning. The
deep mutational scanning is also consistent with prior knowledge about sites that are tolerant of

mutations. For instance, Env has five variable loops that mostly evolve under weak constraint in
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Figure 4. Amino-acid preferences for the BG505 Env. At each site, the height of the letter is proportional for that site’s preference for that amino
acid. The top color bar indicates the region of Env (gp120 variable loop, gp120 not variable loop, or gp41). The lower color bar indicates the

evidence that the site evolves faster (!r > 1) or slower (!r < 1) than expected given the experiments (see Bloom, 2017). The letters above the logos
indicate the wildtype amino acid in BG505. Sites are numbered using the HXB2 scheme (Korber et al., 1998)). This logo plot shows the site-specific
amino-acid preferences for BG505 after averaging the replicates and re-scaling by the stringency parameter in Table 1. The figure was generated

using dms_tools2 (Bloom, 2015, https://jbloomlab.github.io/dms_tools2/), which in turn utilizes weblogo (Crooks et al., 2004).
Figure 4–source data 1. The numerical values of the amino-acid preferences plotted in this figure are in rescaled_BG505_prefs.csv.

Figure 4–source data 2. The sequence of BG505 Env and mapping from sequential (original column) to HXB2 numbering (new column) is in
BG505_to_HXB2.csv.

Figure 4–source data 3. The !r values and associated P -values for BG505 in HXB2 numbering are in BG505_omegabysite.tsv.

nature (Starcich et al., 1986; Zolla-Pazner and Cardozo, 2010) – and most sites in these loops are
mutationally tolerant in our deep mutational scanning (see sites indicated by gray overlay bars in

Figures 4 and 5, such as 132 to 195). It is beyond the scope of this paper to catalog associations

between our measurements and all other prior mutational studies of Env, but the concordance of

our findings with the above mutational studies, and the fact that our data improve phylogenetic

models of Env’s natural evolution, suggest that our measurements authentically describe functional

selection on Env.
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Figure 5. Amino-acid preferences for the BF520 Env. This figure is the same as Figure 4 except that it shows the data for BF520 instead of BG505.
Figure 5–source data 1. The numerical values of the amino-acid preferences plotted in this figure are in rescaled_BF520_prefs.csv.

Figure 5–source data 2. The sequence of BF520 Env and mapping from sequential (original column) to HXB2 numbering (new column) is in
BF520_to_HXB2.csv.

Figure 5–source data 3. The !r values and associated P -values for BF520 in HXB2 numbering are in BG505_omegabysite.tsv.

Shifts in amino-acid preferences between BG505 and BF520
The most fundamental question that we seek to address is how similar the amino-acid preferences

are between the two Envs. We have already noted that Figure 3B shows that the preferences are

more correlated for replicate measurements on the same Env than for replicate measurements on

different Envs. However, simply comparing correlation coefficients does not identify specific sites

where mutational effects have shifted, nor does it quantify the magnitude of any shifts.

We therefore used a more rigorous approach to identify sites where the amino-acid preferences

differ between BG505 and BF520 by an amount that exceeds the noise in our experiments. We

first re-scaled the preferences from each experimental replicate by the stringency parameter for

that Env from Table 1 to calibrate all measurements to the stringency of natural selection. We

then identified the 659 sites in the mutagenized regions of Env that are pairwise alignable between
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Figure 6. Env sites with shifted amino-acid preferences between BG505 and BF520. (A) Calculation of the corrected distance between the
amino-acid preferences of BG505 and BF520 at four example sites. We have triplicate measurements for each Env. We calculate the distance

between each pair of replicate measurements, and group these into comparisons between the two Envs and within replicates for the same Env. We
compute the root-mean-square distance (RMSD) for both sets of comparisons, which we denote as RMSDbetween and RMSDwithin. The latter quantity

is a measure of experimental noise. The noise-corrected distance between Envs at a site, RMSDcorrected, is simply the distance between the two Envs

minus this noise. (B) The bottom distribution (orange) shows the corrected distances between BG505 and BF520 at all alignable sites. The next
distribution (blue) is a null generated by computing the corrected distances on all randomizations of the replicates among Envs. The top two

distributions (green) compare Env to the non-homologous influenza hemagglutinin (HA) protein (Doud and Bloom, 2016) simply putting sites into
correspondence based on sequence number. We compute the P -value that a site has shifted between BG505 and BF520 as the fraction of the null
distribution that exceeds that shift, and identify significant shifts at a false discovery rate (FDR) of 0.1 using the method of Benjamini and Hochberg
(1995). Using this approach, 30 of the 659 sites have significant shifts (corrected distance ≥0.22). (C) All sites that have significantly shifted their
amino-acid preferences at an FDR of 0.01. For each site, the logo stacks show the across-replicate average preferences for BG505 and BF520. The

sites are sorted by the magnitude of the shift.

Figure 6–source data 1. The corrected distances between BG505 and BF520 at each site are in BG505_to_BF520_prefs_dist.csv.

BG505 and BF520 (Figure 6-source data 1). For each site, we calculated the shift in amino-acid

preferences between Envs using an approach similar to that of Doud et al. (2015) as illustrated in
Figure 6A. This approach calculates the magnitude of the shift after correcting for experimental

noise by comparing the differences in preferences between replicates for BG505 and BF520 to the

differences between replicates for the same Env. Figure 6A shows this calculation for a site that has

not shifted (site 598, which strongly prefers cysteine in both Envs), the most shifted site (512, which

shifts from being mutationally tolerant in BG505 to strongly preferring alanine in BF520), and two

other sites with more intermediate behaviors.

The overall distribution of shifts between BG505 and BF520 is shown in Figure 6B. Most sites

have relatively small shifts (close to zero), although there is a long tail of sites with large shifts. This
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tail reaches its upper value with site 512, which has a shift of 0.52 out of a maximum possible

of 1.0. How should we interpret this distribution – have mutational effects shifted a lot, or not

very much? We can establish an upper-bound for how much sites might shift by comparing Env

to a non-homologous protein. Figure 6B shows the distribution of shifts when comparing Env to
influenza’s hemagglutinin protein, which has previously had its amino-acid preferences measured

by deep mutational scanning (Doud and Bloom, 2016) . Most sites have large shifts between Env
and hemagglutinin, with the typical shift being ∼0.4 and some approaching the maximum value of
1.0. We can also establish a lower-bound by creating a null distribution for the expected shifts if all

differences are simply due to experimental noise. This null distribution is created by randomizing

the experimental replicates among Envs. Figure 6B shows that the null distribution is more peaked

at zero than the real distribution, and does not have the same prominent tail of sites with large shifts.

The answer to the question of how much mutational effects have shifted is therefore nuanced: they

have substantially shifted at some sites, but remain vastly more similar between the two Envs than

between two unrelated proteins.

We can use the null distribution to identify sites where the shifts between BG505 and BF520

are significantly larger than the noise in our experiments (Figure 6B). There are 30 such sites at

a false discovery rate of 0.1. Figure 6C shows the amino-acid preferences of these significantly

shifted sites for each Env. For the majority of shifted sites, one Env prefers a specific amino acid

whereas the other Env tolerates many amino acids; for instance, see sites 512, 516, 599, 165, 605

and 505 in Figure 6C. Such broadening and narrowing of a site’s mutational tolerance is frequently

linked to changes in protein stability, with a more stable protein typically being more mutationally

tolerant (Wang et al., 2002; Bloom et al., 2006; Gong et al., 2013; Kumar et al., 2017). Work with
engineered Env protein in the form of “SOSIP” trimer (Binley et al., 2000; Sanders et al., 2002) has
shown that BG505 SOSIP is more thermostable than BF520 SOSIP (Verkerke et al., 2016). Consistent
with this fact, sites with altered mutational tolerance are often (although not always, see sites 165

and 520 in Figure 6C) more mutationally tolerant in BG505.

However, not all of the significantly shifted sites show a simple pattern of broadening or

narrowing of mutational tolerance. For instance, site 288 does not alter its mutational tolerance

but rather flips its rather narrow amino-acid preference from phenylalanine in BG505 to leucine in

BF520 (Figure 6C). Thus, there is variation in both the extent and types of shifts observed.

Structural and evolutionary properties of shifted sites
What distinguishes the sites that have undergone significant shifts? Figure 7A shows the locations

of the shifted sites on the crystal structure of Env. There is no visually obvious tendency for shifted

sites to preferentially be on Env’s surface or in its core, and a statistical analysis (Figure 7B) finds no

association between a site’s relative solvent accessibility and whether its amino-acid preferences

have shifted. However, Figure 7A does suggest that the sites of significant shifts tend to cluster in

Env’s structure, and a statistical analysis confirms that this is the case (Figure 7C). Therefore, the

factors that drive shifts in Env’s mutational tolerance often affect physically interacting clusters of

residues in a coordinated fashion.

An obvious hypothesis is that strongly shifted sites have substituted between BG505 and BF520,

or physically contact such substitutions. According to this hypothesis, substitutions would alter the

local physicochemical environment of the substituted site and its neighbors, thereby shifting the

amino-acid preferences of sites in the physical cluster. But surprisingly, the typical magnitude of

shifts is not significantly larger at sites that have substituted, or at sites that contact sites that have

experienced substitutions (Figure 7C). There is a borderline trend for the significantly shifted sites

to be more likely to have substituted between BG505 and BF520 (Figure 7-Figure supplement 1), but

most shifted sites have not substituted (only 8 of the 30 shifted sites differ in amino-acid identity

between the two Envs). The lack of strong enrichment in shifts at substituted sites contrasts with

previous protein-wide experimental (Doud et al., 2015) and simulation-based (Pollock et al., 2012;
Shah et al., 2015) studies of shifting amino-acid preferences, which found that shifts were dramati-
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Figure 7. Characteristics of significantly shifted sites. (A) One monomer of the Env trimer (PDB 5FYL;
Stewart-Jones et al., 2016) is colored from gray to orange according to the magnitude of the mutational shift at
each site (orange indicates large shift). Sites that are significantly shifted according to Figure 6B are in spheres,

and all other sites are in cartoon representation. (B) There is no significant difference in the relative solvent
accessibility of sites that have and have not undergone significant shifts. The absolute solvent accessibility of

each site was calculated using DSSP (Kabsch and Sander, 1983) and normalized to a relative solvent
accessibility using the absolute accessibilities from Tien et al. (2013). (C) Sites of significant shifts are clustered
in Env’s structure. Shown is the distance of each significantly shifted and not-shifted site to the closest other

shifted site. (D) Large mutational shifts are not strongly enriched at sites that have substituted between BG505
and BF520, or at sites that contact sites that have substituted. The plot shows the magnitudes of the shifts

among the 83 crystallographically resolved sites that have substituted between BG505 and BF520, the 234

non-substituted sites that physically contact a substitution in the Env structure (any non-hydrogen atom within

3.5Å), and all other sites. Figure 7-Figure supplement 1 shows that there is a modest borderline-significant

tendency of significantly shifted sites to have substituted. All panels only show the 577 sites that are resolved in

the crystal structure. Of the 30 significantly shifted sites in Figure 6B, only 28 are crystallographically resolved.

Structural distances and solvent accessibilities were calculated using all monomers in the trimer. P values were
calculated using the Mann-Whitney U test.Figure 7–Figure supplement 1. Statistical testing of whether significantly shifted sites are more likely to have
substituted between BG505 and BF520.

cally more pronounced at sites of substitutions. The difference may arise because these earlier

studies examined proteins that are fairly conformationally static (absolutely so in the case of the

simulations). On the other hand, Env is extremely complex and conformationally dynamic (Munro
et al., 2014; Ozorowski et al., 2017), which may increase the opportunities for long-range epistasis
to enable substitutions at one site to shift the amino-acid preferences of distant sites.

Entrenchment of substitutions modestly contributes to mutational shifts
One idea that has recently gained support in the protein-evolution field is that substitutions become

“entrenched” by subsequent evolution (Pollock et al., 2012; Shah et al., 2015; Starr et al., 2017).

11 of 25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/235630doi: bioRxiv preprint 

https://doi.org/10.1101/235630
http://creativecommons.org/licenses/by/4.0/


-10 -5 0 5

mutational effect

BG505
all mutations

BG505→BF520

BF520
all mutations

BF520→BG505

Figure 8. Entrenchment of substitutions during Env evolution. There are 12,521 possible amino-acid mutations
at the 659 mutagenized sites alignable between BG505 and BF520. The blue densities show the effects of all

these mutations to each Env. The orange densities show the effects of just the 92 mutations that convert BG505

to BF520 or vice versa. In the absence of entrenchment, mutating a site in BG505 to its identity in BF520 should

have the opposite effect of mutating the site in BF520 to its identity in BG505. In this case, we would expect the

BF520→BG505 distribution to be the mirror image of the BG505→BF520 distribution – and both distributions

should be centered around zero if the two Envs are equivalently functional. Instead, mutating a site in either

Env to its identity in the other Env tends to be deleterious, indicating that substitutions are often entrenched in

the Env in which they have fixed. The effect of a mutation is quantified as the log of the ratio of the site’s

preference for the mutant amino acid to the preference for the wildtype amino acid.

Entrenchment is the tendency of a mutational reversion to become increasingly unfavorable as a

sequence evolves. Given two homologs, if there is no entrenchment then the effect of mutating a

site in the first homolog to its identity in the second will simply be the opposite of mutating the site

in the second homolog to its identity in the first. But if there is entrenchment, then both mutations

will be unfavorable, since the site is entrenched at its preferred identity in each homolog.

Figure 8 shows the distribution of effects for mutating all sites that differ between BG505

and BF520 to the identity in the other Env. As expected under entrenchment, the average effect

of these mutations is deleterious – although there are a substantial number of sites where the

mutational flips are not deleterious. We can get some sense of the magnitude of the entrenchment

by comparing the effects of the BG505↔BF520 mutations to the distribution of effects of all possible

amino-acid mutations (Figure 8). This comparison shows that even unfavorable inter-Env mutational

flips are generally more favorable than random amino-acid mutations. Therefore, entrenchment

occurs for some but not all substitutions that distinguish BG505 and BF520, and the magnitude of

entrenchment is less than the effect of a typical random mutation. Entrenchment of substitutions

therefore contributes to some of the mutational shifts. But given that many of these shifts occur at

sites that do not even differ between the Envs (Figure 7D), entrenchment of substitutions is clearly

not the only cause of the shifting amino-acid preferences.

Comparing selection in the lab to natural selection
Our experiments measure the effects of mutations on viral growth in a T-cell line in the lab. But HIV

actually evolves in humans, where additional selection pressures on Env are undoubtedly present.

For instance, antibody pressure might increase the rate of evolution at some sites (Albert et al.,
1990; Wei et al., 2003; Richman et al., 2003), whereas pressure to mask certain epitopes (Kwong
et al., 2002) might add constraint at other sites. Comparing selection in our experiments to natural
selection can identify sites that are under such additional pressures during HIV’s actual evolution in

humans.
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Figure 9. Sites in Env that evolve faster or slower in nature than expected given the functional constraints
measured in the lab. We calculated the statistical evidence that each site evolves faster (!r > 1) or slower
(!r < 1) than expected given the experimentally measured amino-acid preferences using the method of Bloom
(2017). (A) One monomer of the Env trimer (PDB 5FYL; Stewart-Jones et al., 2016) is colored from blue to gray
to red based on the strength of evidence that sites evolve slower than expected (blue), as expected (gray) or

faster than expected (red) given the BG505 experiments. Sites where the rate of evolution is significantly

different than expected at a false discovery rate of 0.05 are shown in spheres. (B) Like (A) but using the data
from the BF520 experiments. For both Envs, sites that evolve significantly slower or faster than expected are

often on Env’s surface (Figure 9-Figure supplement 1). (C) The results are similar regardless of whether the
BG505 or BF520 experiments are used. Many of the sites of slower-than-expected evolution are asparagines in

N-linked glycosylation motifs (Figure 9-Figure supplement 2). All sites that evolve slower than expected for both

experimental datasets are in Figure 9-Figure supplement 3. (D) A large cluster of sites that evolve slower than
expected is likely involved in Env’s transition between open and closed conformational states. Gray boxes

indicate sites that Ozorowski et al. (2017, PDB 5VN3) proposed form a hydrophobic network that regulates the
conformational change; blue boxes and sticks indicate sites that evolve slower than expected. All analyses used

the phylogenetic tree in Figure 1.Figure 9–Figure supplement 1. Relative solvent accessibilities of sites evolving faster or slower than expected.Figure 9–Figure supplement 2. Amino-acid preferences and alignment frequencies for glycosylation motifs.Figure 9–Figure supplement 3. Amino-acid preferences and alignment frequencies of sites that evolve slower
than expected.

Figure 9–source data 1. The !r and Q-values are in merged_omegabysite.csv.

We determined whether each site in Env evolves faster or slower in nature than expected given

three models: that evolution is purely neutral (all nonsynonymous and synonymous mutations have

equivalent effects), that sites are under the protein-level constraint measured in our experiments

with BG505, or that sites are under the constraint measured with BF520. The first model used a

standard dN/dS test (the “FEL” method of Kosakovsky Pond and Frost, 2005), whereas the other
two models performed a conceptually similar test but used ExpCM’s that incorporate experimental

measurements as described by Bloom (2017). The standard dN/dS model finds hundreds of sites
that evolve slower than expected under neutral evolution (Table 1, !r < 1), and only a handful
of sites that evolve faster than expected under neutral evolution (Table 1, !r > 1). This finding is
unsurprising, since it is well known that Env is under functional constraint. In contrast, ExpCM’s that

test the rates of evolution relative to the experimentally measured constraints find far fewer sites
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that evolve slower than expected, but many more sites that evolve faster (Table 1).

The sites that evolve slower or faster than expected from the experiments are shown in Fig-

ure 9A,B, and overlaid on the logoplots in Figures 4 and 5 as the !r values. The identified sites
are similar regardless of whether we use the experiments with BG505 or BF520 (Figure 9C). The

reason the results are similar for both experimental datasets is that (as discussed above) the amino-

acid preferences of most sites are similar in both Envs, suggesting that either dataset provides
a reasonable approximation of the site-specific functional constraints across the clade A Envs in

Figure 1.

What causes some sites to evolve faster or slower in nature than expected from the experiments?

The answer in both cases is likely to be immune selection. Most of the sites of faster-than-expected

evolution are on the surface of Env (Figure 9A,B and Figure 9-Figure supplement 1). Env’s escape

from autologous neutralizing antibodies often involves amino-acid substitutions in surface-exposed

regions (Moore et al., 2009), including at many of the sites that evolve faster than expected. Since
our deep mutational scanning did not impose antibody pressure, sites where substitutions are

antibody-driven will evolve faster in nature than expected from the experiments.

Interestingly, immune selection also offers a plausible explanation for the sites that evolve slower
than expected. In addition to escaping immunity via substitutions at antibody-binding footprints,

Env is notorious for employing a range of more general strategies to reduce its susceptibility to

antibodies. These strategies include shielding immunogenic regions with glycans (Wei et al., 2003;
Stewart-Jones et al., 2016; Gristick et al., 2016) or hiding them by adopting a closed protein confor-
mation (Kwong et al., 2002; Guttman et al., 2015; Ozorowski et al., 2017). Sites that contribute to
such general immune-evasion strategies will be under a constraint in nature that is not present in

our experiments – and indeed, such sites evolve more slowly than expected from our experiments.

For instance, we find very little selection to maintain most glycans in our cell-culture experiments.

Of the 21 N-linked glycosylation sites shared between BG505 and BF520, only four are under strong

selection to maintain the glycan in our experiments – despite the fact that most are conserved in

nature (Figure 9C and Figure 9-Figure supplement 2). This finding concords with prior literature

suggesting that these glycans are selected primarily for their role in immune evasion (Pugach et al.,
2004;Wang et al., 2013; Rathore et al., 2017). Similarly, a network of sites that help regulate Env’s
transition between open and closed conformations that have different antibody susceptibilities

(Figure 9D) also evolve slower in nature than expected from our experiments. Therefore, we can

distinguish evolutionary patterns that are shaped by simple selection for Env function from those

that are due to the additional complex pressures imposed during human infections.

Discussion
We have experimentally measured the preference for each amino acid at each site in the ectodomain

and transmembrane domain of two Envs under selection for viral growth in cell culture. These

amino-acid preference maps are generally consistent with prior knowledge about sites that are

important for protein properties such as receptor binding or disulfide-mediated stability. However,

the main value of these maps comes not from comparing them with prior knowledge, but from

the fact that such prior knowledge encompasses just a small fraction of the vast mutational space

available to Env. Because Env evolves so rapidly, every study of this protein must be placed in an

evolutionary context, and our comprehensive amino-acid preference maps potentially enable this

in ways that prior piecemeal studies of mutations cannot.

But these maps come with a potentially serious caveat: each one is measured for just a single

Env variant. The major question that our study aimed to answer is whether the maps are still useful

for evolutionary questions, or whether Env’s amino-acid preferences shift so rapidly that each map

only applies to the specific HIV strain for which it was measured. This question is reminiscent

of one that was grappled with in the early days of protein crystallography, when it first became

possible to build maps of a protein’s structure. Because it was not (and is still not) possible to

crystallize every variant of a protein, it was necessary to determine whether protein structures
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could be usefully generalized among homologs. Fortunately for the utility of structural biology,

it soon became apparent that closely homologous proteins have similar structures (Chothia and
Lesk, 1986; Sander and Schneider, 1991). This rough generalizability of protein structures holds
even for a protein as conformationally complex as Env – for although there are many examples of

mutations that alter aspects of Env’s conformation and dynamics (Kwong et al., 2000;White et al.,
2010; Almond et al., 2010; Davenport et al., 2013), SOSIP trimer structures from diverse Env strains
remain highly similar in most respects (Julien et al., 2015; Pugach et al., 2015; Stewart-Jones et al.,
2016; Verkerke et al., 2016; Gristick et al., 2016).
Our results show that amino-acid preferencemaps of Env also have a useful level of conservation

for many purposes. From a qualitative perspective, the amino-acid preferences look mostly similar

between BG505 and BF520, and so provide a valuable reference for estimating which mutations are

likely to be tolerated at each site in diverse HIV strains. Indeed, we anticipate that the completemaps

of mutational effects in Figures 4 and 5 will be useful for future sequence-structure-function studies.

From an analytical perspective, a powerful use of our maps is to identify sites that evolve differently

in nature than is required by the simple selection for viral growth imposed in our experiments –

and the identified sites are largely the same regardless of whether the analysis uses an amino-acid

preference map from BG505 or BF520.

Of course, from the perspective of protein evolution, the most interesting sites are the excep-

tions to the general conservation of amino-acid preferences. Consistent with studies of other

proteins (Natarajan et al., 2013; Harms and Thornton, 2014; Doud et al., 2015; Starr et al., 2017),
we find a subset of sites that change markedly in which mutations they tolerate. Some shifted

sites simply accommodate more amino acids in the more stable BG505 Env – a type of shift that

has been well-documented for other proteins (Wang et al., 2002; Bloom et al., 2006; Gong et al.,
2013; Kumar et al., 2017). But interestingly, there is no strong trend for shifts to be enhanced
at sites that differ between BG505 and BF520. Recent studies of protein evolution have focused

on the idea that substitutions become “entrenched” as sites shift to accommodate new amino

acids (Pollock et al., 2012; Shah et al., 2015; Bazykin, 2015; Starr et al., 2017). Indeed, a prior
protein-wide comparison of amino-acid preferences across homologs of influenza nucleoprotein

found a significant enrichment of shifts at sites of substitutions (Doud et al., 2015). But although
there is some entrenchment of differences between BG505 and BF520, this is not the major factor

behind the shifts in amino-acid preferences: most sites that have shifted between BG505 and BF520

actually have the same wildtype amino acid in both Envs. This rather surprising result might be due

to Env’s exceptional conformational complexity – mutations can cause long-range alterations in

Env’s conformation (Kwong et al., 2000; White et al., 2010; Almond et al., 2010; Davenport et al.,
2013), so it seems plausible that they might also shift mutational tolerance at distant sites.
Our experiments provide highly quantitative data on the mutational tolerance of Env under

selection for viral growth in cell culture. These data are amenable to rigorous functional and

evolutionary analyses. Here we have shown how these data can be compared between Envs to

identify sites where mutational tolerance shifts with viral genotype, or between experiments and

nature to identify sites under different pressure in the lab and in humans. Future experiments that

modulate selection pressures in other relevant ways should provide further insight into the forces

that drive and constrain HIV’s evolution.
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Methods and Materials
Creation of codon-mutant libraries
Our codon mutant libraries mutagenized all sites in env to all 64 codons, except that the signal
peptide and cytoplasmic tail were not mutagenized. The rationale for excluding these regions is

that they are not part of Env’s ectodomain, and may be prone to mutations that strongly modulate

Env’s expression level.

The codon-mutant libraries were generated using the approach originally described in Bloom
(2014), with the modification of Dingens et al. (2017) to ensure more uniform primer melting tem-
peratures. The computer script used to design the mutagenesis primers (along with some detailed

implementation notes) is at https://github.com/jbloomlab/CodonTilingPrimers. For BF520, the three

libraries are the same ones described by Dingens et al. (2017). For BG505, we created three libraries
for this study. The wildtype BG505 sequence used for these libraries is in Supplemental file 3. The

BG505 mutagenesis primers are in Supplemental file 4.

The end primers for the BG505 mutagenesis were: 5’-tgaaggcaaaactactggtccgtctcgagcagaagac

agtggcaatgaga-3’ and 5’-gctacaaatgcatataacagcgtctcattctttccctaacctcaggcca-3’. As with BF520, we

cloned the BG505 env libraries into the env locus of the full-length proviral genome of HIV strain Q23
(another subtype-A transmitted/founder virus; Poss and Overbaugh, 1999) using the high-efficiency
cloning vector described in Dingens et al. (2017). For this cloning, we digested the cloning vector
with BsmBI, and then used PCR to elongate the amplicons to include 30 nucleotides at each end

that were identical in sequence to the ends of the BsmBI-digested vector. The primers for this PCR

were: 5’-agataggttaattgagagaataagagaaagagcagaagacagtggcaatgagagtgatgg-3’ and 5’-ctcctggtgctgct

ggaggggcacgtctcattctttccctaacctcaggccatcc-3’. Next, we used NEBuilder HiFi DNA Assembly (NEB,

E2621S) to clone the env amplicons into the BsmBI-digested plasmids. We purified the assembled
products using Agencourt AMPure XP beads (Beckman Coulter, A63880) using a bead-to-sample

ratio of 1.5, and then transformed the purified products into Stellar electrocompetent cells (Takara,

636765). The transformations yielded between 1.5-3.6 million unique clones for each of the three

replicate libraries, as estimated by plating 1:2,000 dilutions of the transformations. We scraped

the plated colonies and maxiprepped the plasmid DNA; unlike in Dingens et al. (2017), we did not
include a 4-hour outgrowth step after the scraping step. For the wildtype controls, we maxiprepped

three independent cultures of wildtype BG505 env cloned into the same Q23 proviral plasmid. See
Figure 2-Figure supplement 1 and Figure 3A for information on the average mutation rate in these

libraries as estimated by Sanger sequencing and deep sequencing, respectively.

Generation and passaging of viruses
For BG505, we generated mutant virus libraries from the proviral plasmid libraries by transfecting

293T cells in three 6-well plates (so 18 wells total per library) with a per-well mixture of 2 �g plasmid
DNA, 6 �l FuGENE 6 Transfection Reagent (Promega, E269A), and 100 �l DMEM. The 293T cells
were seeded at 5 × 105 cells/well in D10 media (DMEM supplemented with 10% FBS, 1% 200 mM
L-glutamine, and 1% of a solution of 10,000 units/mL penicillin and 10,000 �g/mL streptomycin)
the day before transfection, such that they were approximately 50% confluent at the time of

transfection. In parallel, we generated wildtype viruses by transfecting one 6-well plate of 293T cells

with each wildtype plasmid replicate. At 2 days post-transfection, we harvested the transfection

supernatant, passed it through a 0.2 �m filter to remove cells, treated the supernatant with DNAse
to digest residual plasmid DNA as in Haddox et al. (2016), and froze aliquots at -80◦C. We thawed
and titered aliquots using the TZM-bl assay in the presence of 10 �g/mL DEAE-dextran as described
in Dingens et al. (2017).
We conducted the low MOI viral passage illustrated in Figure 2A in SupT1.CCR5 cells (obtained

from Dr. James Hoxie; Boyd et al., 2015). During this passage, cells were maintained in R10 media,
which has the same composition as the D10 described above, except RPMI-1640 (GE Healthcare

Life Sciences, SH30255.01) is used in the place of DMEM. In addition, the media contained 10 �g/mL
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DEAE-dextran to enhance viral infection. We infected cells with 4 million (for replicate 1) or 5 million

(for replicates 2 and 3) TZM-bl infectious units of mutant virus at an MOI of 0.01, with cells at a

starting concentration of 1 million cells/mL in vented tissue-culture flasks (Fisher Scientific, 14-826-

80). At day 1 post-infection, we pelleted cells, aspirated the supernatant, and resuspended cell

pellets in the same volume of fresh media still including the DEAE-dextran. At 2 days post-infection,

we doubled the volume of each culture with fresh media still including DEAE-dextran. At 4 days

post-infection, we pelleted cells, passed the viral supernatant through a 0.2 �m filter, concentrated
the virus ∼30 fold using ultracentrifugation as described in Dingens et al. (2017), and froze aliquots
at -80◦C. In parallel, for each replicate, we also passaged 2 × 105 (for replicate 1) or 5 × 105 (for
replicates 2 and 3) TZM-bl infectious units of wildtype virus using the same procedure. To obtain

final titers for our concentrated virus, we thawed one of the aliquots stored at -80◦C and titered

using the TZM-bl assay in the presence of 10 �g/mL DEAE-dextran.
For the final short-duration infection illustrated in Figure 2A, for each replicate we infected 106

TZM-bl infectious units into 106 SupT1.CCR5 cells in the presence of 100 �g/mL DEAE-dextran (note
that this is a 10-fold higher concentration of DEAE-dextran than for the other steps, meaning that

the effective MOI of infection is higher if DEAE-dextran has the expected effect of enhancing viral

infection). Three hours post-infection, we pelleted the cells and resuspended them in fresh media

without any DEAE-dextran. At 12 hours post-infection, we pelleted cells, washed them once with

PBS, and then used a miniprep kit to harvest reverse-transcribed unintegrated viral DNA (Haddox
et al., 2016).
The generation, passaging and deep sequencing of BF520 was done in a highly similar fashion,

except that we only had a single replicate of the wildtype control. Note that the final passaged

BF520 mutant libraries analyzed here actually correspond to the “no-antibody” controls described

in Dingens et al. (2017), but that study did not analyze the initial plasmid mutant libraries relative
to these passaged viruses, and so was not able to provide measurements of the amino-acid

preferences.

Illumina deep sequencing
We deep sequenced all of the samples shown in Figure 3A: the plasmidmutant libraries and wildtype

plasmid controls, and the cDNA from the final mutant viruses and wildtype virus controls. In order

to increase the sequence accuracy, we used a barcoded-subamplicon sequencing strategy. This

general strategy was originally applied in the context of deep mutational scanning by Wu et al.
(2014), and the specific protocol used in our work is described in Doud and Bloom (2016) (see also
https://jbloomlab.github.io/dms_tools2/bcsubamp.html).

The primers used for BG505 are in Supplementary file 5. The primers used for BF520 are in

Dingens et al. (2017). The data generated by the Illumina deep sequencing are on the Sequence
Read Archive under the accession numbers provided at the beginning of the Jupyter notebook in

Supplementary files 1 and 2.

Analysis of deep-sequencing data
We analyzed the deep-sequencing data using the dms_tools2 software package (Bloom, 2015,
https://jbloomlab.github.io/dms_tools2/). The algorithm that goes from the deep-sequencing

counts to the amino-acid preferences is that described in Bloom (2015) (see also https://jbloomlab.
github.io/dms_tools2/prefs.html). A Jupyter notebook that performs the entire analysis including

generation of most of the figures in this paper is in Supplementary file 1. An HTML rendering of this

notebook is in Supplementary file 2.

The Jupyter notebooks in Supplementary files 1 and 2 also contain numerous plots that summa-

rize relevant aspects of the deep sequencing such as read depth, per-codon mutation frequency,

mutation types, etc. Supplementary file 1 also contains text files and CSV files with the numerical

values shown in these plots.
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Citations are also owed to weblogo (Crooks et al., 2004, http://weblogo.threeplusone.com/)
and ggseqlogo (Wagih, 2017, https://omarwagih.github.io/ggseqlogo/), which were used in the
generation of the logoplots.

Alignments and phylogenetic analyses of Env sequences
A basic description of the process used to generate the clade A sequence alignment in Figure 1-

source data 1, the alignment mask in Figure 1-source data 2, and the phylogenetic tree in Figure 1

are provided in the legend to that figure. An algorithmic description of how the alignment and tree

were generated are in Supplementary files 1 and 2.

For fitting of the phylogenetic substitution models, we used phydms (Hilton et al., 2017,
http://jbloomlab.github.io/phydms/) to optimize the substitution model parameters and branch

lengths on the fixed tree topology in Figure 1. The Goldman-Yang (or YNGKP) model used in

Table 1 is the M5 variant described by Yang et al. (2000), with the equilibrium codon frequen-
cies determined empirically using the CF3x4 method (Pond et al., 2010). For the ExpCM shown
in Table 1, we extended the models with empirical nucleotide frequencies described in Hilton
et al. (2017) to also allow ! to be drawn from discrete gamma-distributed categories exactly as for
the M5 model. These ExpCM with gamma-distributed ! were implemented in phydms using the
equations provided by Yang (1994) (see also http://jbloomlab.github.io/phydms/implementation.
html#models-with-a-gamma-distributed-model-parameter). The preferences were re-scaled by

the stringency parameters in Table 1 as described in Hilton et al. (2017). For both the M5 model
and the ExpCM with a gamma-distributed !, we used four categories for the discretized gamma
distribution.

Table 1-source-data 1 shows the results for a wider set of models than those used in Table 1.

These include the M0 model of Yang et al. (2000), ExpCM without a gamma-distributed !, and
ExpCM in which the amino-acid preferences are averaged across sites as a control to ensure that

the improved performance of these models is due to their site-specificity. Note how for these Env

alignments, using a gamma-distributed ! is very important in order for the ExpCMs to outperform
the M5 model – we suspect this is because there are many sites of strong diversifying selection.

For detection of sites with faster or slower than expected evolution, we used the approach in

Bloom (2017), which is exactly modeled on the FEL approach of Kosakovsky Pond and Frost (2005)
but extended to ExpCM. This approach estimates a P -value that !r is not equal to one for each site
r using a likelihood-ratio test. For the Q-values and false discovery rate testing, we considered the
tests for !r > 1 and !r < 1 separately.
Supplementary files 1 and 2 contains the code that runs phydms to reproduce all of these

analyses.

Identifying sites of shifted amino-acid preference
When identifying shifts in amino-acid preferences between the two Envs, we needed a way to quan-

tify differences between the Envs while accounting for the fact that our measurements are noisy.

The approach we use is based closely on that of Doud et al. (2015), and is illustrated graphically in
Figure 6A. The RMSDcorrected value is our measure of the magnitude of the shift. Figure 6A, its legend,

and the associated text completely explains these calculations with the following exception: they

do not detail how the “distance” between any two preference measurements was calculated. The

distance between preferences at each site was simply defined as half of the sum of absolute value

of the difference between preferences for each amino acid. Specifically, for a given site r, let �ir,a be
the preference for amino-acid a in homolog i (e.g., BG505) and let �jr,a be the preference for that
same amino acid in homolog j (e.g., BF520). Then the distance between the homologs at this site is
simply Di,j

r = 1
2

∑

a |�ir,a − �
j
r,a|. The factor of

1
2
is used so that the maximum distance will always fall

between zero and one.
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Analysis of entrenchment
For the analysis in Figure 8, the results are presented in terms of the mutational effects rather

than the amino-acid preferences. If �r,a is the preference of site r for amino-acid a and �r,a′ is the
preference for amino-acid a′ (both re-scaled by the stringency parameters in Table 1), then the
estimated effect of the mutation from a to a′ is simply log

(

�r,a′
�r,a

)

.

Data and code availability
All code and input data required to reproduce all analyses in this paper are in Supplementary file 1

(see also Supplementary file 2). The deep sequencing data are on the Sequence Read Archive with

the accession numbers listed in Supplementary files 1 and 2.
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Supplementary file 1. The code to perform all steps in the analysis is in analysis_code.zip. Specifically, this
file contains a Jupyter notebook that performs the analysis, all required input data, and all reasonably sized

output files. The Jupyter notebook downloads the deep sequencing data, processes it with the dms_tools2
software (Bloom, 2015, https://jbloomlab.github.io/dms_tools2/), and also performs a variety of downstream
analyses that generate most of the figures for this paper.

Supplementary file 2. An HTML rendering of the Jupyter notebook that performs the computational analysis.
The actual notebook is in Supplementary file 1, but if you just want to look at the analysis rather than run it, then

you may prefer this file instead. In particular, the notebook contains plots detailing the deep sequencing data

analysis as generated using the dms_tools2 software (Bloom, 2015, https://jbloomlab.github.io/dms_tools2/).

Supplementary file 3. The sequence of the wildtype BG505 env used in our study is in FASTA format in the file
BG505_env.fasta.

Supplementary file 4. The sequences of the primers used for the BG505 codon mutagenesis are in the file
BG505_codon_mutagenesis_primers.txt.

Supplementary file 5. The primers used for the BG505 barcoded-subamplicon sequencing are in the file
BG505_bcsubamp_primers.txt.
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Figure 1–Figure supplement 1. The histograms show the pairwise amino-acid identity of each
Env to all other sequences in the clade A alignment in Figure 1-source data 1 after masking the

sites delineated in Figure 1-source data 2. There are 616 non-masked sites. The pairwise protein

identity between BG505 and BF520 is 86.2% (721 of 836 sites identical) when considering all sites,
and 89.1% (549 of 616 sites identical) when considering just the non-masked sites.
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A D 

B E 

C 

Figure 2–Figure supplement 1. We Sanger sequenced 44 clones of BG505 Env sampled roughly
evenly from each of the three replicate mutant plasmid libraries. (A) There was an average of 1.5
mutant codons per clone, with the number of mutations per clone roughly following a Poisson

distribution. (B) The mutant codons had a mix of single-, double-, and triple-nucleotide changes,
with an elevated number of single-nucleotide changes than expected. (C) Nucleotide frequencies
were fairly uniform in the mutant codons. (D) Mutations were distributed roughly evenly along
the mutagenized region of env (30-699 in the sequential numbering scheme used in this plot).
(E) For clones with multiple mutations, we computed the pairwise distance in primary sequence
between each codon mutation and plotted the cumulative distribution of these distances (red

line). We also simulated the expected distribution of pairwise distances if mutations occurred

entirely independently (blue line). The observed distribution is close to the expected distribution.

Comparable data for the BF520 libraries is provided in Dingens et al. (2017).
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sample DNA mutDNA mutvirus virus post pre percent

experiment muttype

BF520-1 nonsyn 9.41e-05 0.00147 0.000986 0.00039 0.000596 0.00138 43.3

stop 6.92e-06 0.000123 4.77e-05 3.05e-05 1.72e-05 0.000116 14.8

syn 4.27e-05 0.000166 0.000249 0.000141 0.000107 0.000124 86.6

BF520-2 nonsyn 9.41e-05 0.00135 0.000986 0.000385 0.000601 0.00125 48

stop 6.92e-06 0.000107 4.33e-05 2.91e-05 1.42e-05 0.0001 14.2

syn 4.27e-05 0.000157 0.00024 0.000136 0.000103 0.000114 90.4

BF520-3 nonsyn 9.41e-05 0.00142 0.000946 0.000362 0.000584 0.00133 44

stop 6.92e-06 0.000125 4.62e-05 2.72e-05 1.9e-05 0.000118 16.2

syn 4.27e-05 0.000162 0.000241 0.00013 0.000111 0.000119 93.4

BG505-1 nonsyn 0.000137 0.00181 0.0012 0.000402 0.000802 0.00167 48

stop 1.01e-05 0.000188 3.38e-05 2.86e-05 5.21e-06 0.000178 2.92

syn 4.94e-05 0.00021 0.000296 0.000149 0.000147 0.00016 91.9

BG505-2 nonsyn 0.000137 0.00182 0.00122 0.000392 0.000829 0.00168 49.2

stop 1.1e-05 0.000162 3.56e-05 2.62e-05 9.44e-06 0.000151 6.25

syn 5.04e-05 0.000209 0.000296 0.000146 0.00015 0.000159 94.5

BG505-3 nonsyn 0.000134 0.0018 0.00114 0.000367 0.000774 0.00166 46.5

stop 9.55e-06 0.00017 3.04e-05 2.62e-05 4.2e-06 0.00016 2.62

syn 5.01e-05 0.000217 0.00028 0.000139 0.000141 0.000167 84.7

Figure 3–Figure supplement 1. This table gives the average frequencies of nonsynonymous,
synonymous, and stop-codon mutations as plotted in Figure 3. Note that there is only one DNA
sample for BF520, so that same sample is repeated three times in the sample in conjunction with

each BF520 replicate. We calculate the error-corrected pre-selection mutation frequency as the
mutDNA frequency minus the DNA frequency, and the error-corrected post-selection mutation
frequency as themutvirus frequency minus the virus frequency. We then use these error-corrected
frequencies to calculate the percent of mutations remaining after selection for each replicate and
type of mutation.

substituted False True

significant_shift

False 545 84

True 22 8

Figure 7–Figure supplement 1. The sites of significant shifts as determined in Figure 6B are
somewhat more likely to be among the sites that have substituted between BG505 and BF520.

However, this association is only borderline statistically significant, with P = 0.055 using a Fisher’s
exact test.
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Figure 9–Figure supplement 1. Sites are grouped by whether they have !r > 1 (diversifying
selection) or !r < 1 (purifying selection) at Q < 0.05 in both Envs, or whether they fall into neither of
these categories. Relative solvent accessibilities were calculated as in Figure 7. As can be seen from

these box plots with overlaid points for each site, sites of both diversifying and purifying selection

tend to have higher relative solvent accessibility than other sites.
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611, BF520 611, BG505 611, alignment 625, BF520 625, BG505 625, alignment 637, BF520 637, BG505 637, alignment

392, BF520 392, BG505 392, alignment 406, BF520 406, BG505 406, alignment 448, BF520 448, BG505 448, alignment

355, BF520 355, BG505 355, alignment 363, BF520 363, BG505 363, alignment 386, BF520 386, BG505 386, alignment
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234, BF520 234, BG505 234, alignment 262, BF520 262, BG505 262, alignment 276, BF520 276, BG505 276, alignment

156, BF520 156, BG505 156, alignment 160, BF520 160, BG505 160, alignment 197, BF520 197, BG505 197, alignment
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Figure 9–Figure supplement 2. This plot shows all sites that are N-linked glycosylation motifs in
both BG505 and BF520. Each motif is named by the residue number of the asparagine, and the

preferences (averaged across replicates) for each Env are shown as well as the frequencies of amino

acids across the clade A alignment at each of the three positions in the motif (N-X-S/T). As can be

seen from this plot, the experiments measure relatively broad mutational tolerance at many sites

where the natural Env sequences have a strongly conserved motif. We suspect this is because many

glycans serve as a shield against immunity in nature – a function that is not required in cell culture.
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Figure 9–Figure supplement 3. This plot shows all sites that are evolving more slowly than
expected in natural sequences given the preferences measured in both Envs. Specifically, it shows

all sites with !r < 1 at Q < 0.05 for the ExpCMs for both BG505 and BF520. For each site, the
plots show the preferences averaged across replicates and re-scaled for each Env, as well as the

frequencies of amino acids in the clade A Env alignment. The Q-value indicated is the maximum of
that for the two Envs.
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