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Abstract—Cell decision-making is the cellular process of re-
sponding to microenvironmental cues. This can be regarded as
the regulation of cell’s intrinsic variables to extrinsic stimuli.
Currently, little is known about the principles dictating cell
decision-making. Regarding cells as Bayesian decision-makers
under energetic constraints, I postulate the principle of least
microenvironmental uncertainty (LEUP). This is translated into a
free-energy principle and I develop a statistical mechanics theory
for cell decision-making. I exhibit the potential of LEUP in the
case of cell migration. In particular, I calculate the dependence of
cell locomotion force on the steady state distribution of adhesion
receptors. Finally, the associated migration velocity allows for the
reproduction of the cell anomalous diffusion, as observed in cell
culture experiments.

I. INTRODUCTION

Cell decisions are responses of the cell’s intrinsic mecha-
nisms to extrinsic signals [1]. Such mechanisms are typically
termed as signal transduction pathways. Typically, signal trans-
duction occurs when an extracellular signalling molecule binds
to a certain receptor creating a complex. In turn, this complex
of molecules triggers a biochemical chain of events inside the
cell [2]. These biochemical events can influence the epigenetic
or even the genetic state of the cell. Then the new genomic
state of the cell will be reflected in cell’s transcriptome and
translated into proteins that generate a phenotypic response. In
general, cells encode extrinsic information into new intrinsic
states and in turn decode the latter into phenotypic responses.

Concerning cell decision-making there are two fundamental
issues: (i) typically there is a great deal of uncertainty in the
intracellular dynamics involved in cell phenotypic decisions,
and (ii) although there is a lot of work focused on single cell
cell decision-making [] in the context of multicellular systems
little is known. In particular, there are two schools of thought
to address the single cell decision-making.

The first school thought is a mechanism-driven approach
which follows the idea of epigenetic landscape reconstruction
[3]. This dates back to Waddigton epigenetic landscape where
cell phenotypes trickle down along a bifurcating landscape
of ”valleys” and ”hills” (see Fig. 1). Reconstructing such
landscapes requires very good knowledge of the underlying
genetic, epigenetic or transcriptional dynamics and provides
elegant mathematical formulations that allow for temporal
predictions. Obviously, this approach suffers from the issue

(i), i.e. we do not know all possible intracellular players and
dynamics involved in phenotypic decision.

Fig. 1. Sketch of communication between cell and its microenvironment

The second is a data-driven approach involving ideas from
statistical inference [4]. In principle, cell decisions are treated
in a mechanism-blind way, as an input-output system, without
requiring the knowledge of the intracellular components in-
volved in phenotypic regulation.The intracellular dynamics are
treated as a black box. The main goal is to optimize quantities
such as mutual information and infer the corresponding pheno-
typic responses. The main problem with this approach is that
ignores dynamics, i.e. does not allow for temporal predictions
or analysis of the cells phenotypic dynamics.

Given the above problems, my goal is to identify a vari-
ational principle for cell decision-making that fulfils the fol-
lowing: (i) keeps the elegance and predictability of a dynamic
description, and (ii) circumvent the details of intracellular
dynamics as statistical inference. Here I propose the least
microenvironmental uncertainty principle (LEUP) which I
develop further in a statistical mechanics theory for cell
decision making. Finally, I apply the LEUP theory into the
cell migration problem and I calculate the corresponding force
distribution and migration velocity.

II. THE BAYESIAN CELL DECISION-MAKER

Cells typically collect information from their microenviron-
ment and encode it into tangible actions, i.e. phenotypic deci-
sions. The latter involves the rearrangement of their intrinsic
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variables x ∈ X ⊂ Rn, representing genes, RNA molecules,
translational proteins, metabolites, membrane receptors, etc.
Microenvironmental or extrinsic variables are denoted by
y ∈ Y ⊂ Rn being ligand, chemicals, nutrients, cellular
density or stress fields. In order to formalise this encoding
process, we consider a Bayesian cell decision making:

p(x|y) = p(y|x)p(x)
p(y)

. (1)

In particular, the extrinsic variable distribution p(y|x) repre-
sents the likelihood of mircoenvironmental information being
collected by the cell. In turn, it is combined with the prior
probability distribution function (pdf) of intrinsic variables
p(x) resulting into the posterior intrinsic variable distribution
p(x|y). The latter represents the decision of the cell over the
available information.

The collection of microenvironmental data, i.e. assesing the
likelihood p(y|x), is energetically expensive. For instance,
as shown in Fig. 2, sampling the cellular microenvironment
involves the recruitment/degradation of different receptors
(intrinsic state) and the corresponding binding to diffusible
ligands (extrinsic state). As any physical system, cells would
try to minimize energetic costs unless otherwise required.
Therefore, I postulate that an energy-efficient cell would
require the construction of the least informed/optimal prior1.
This idea is rather straight forward in the case of differentiated
cells, since heart cells, for instance, sufficiently know their
heart microenvironment and they would fail living in an other
one, e.g. skin.

Fig. 2. Sketch of communication between cell and its microenvironment

III. A FREE-ENERGY PRINCIPLE: THE LEAST
MICROENVIRONMENTAL UNCERTAINTY PRIOR

The above arguments could be translated in a statistical
mechanics formulation. My central idea is that the cell decides
on its phenotype by virtue of minimally sampling its microen-
vironment. As stated above, my goal is to optimize the cell’s
prior and at the same time minimize the total uncertainty of
the system cell-microenvironment. This can be mathematically
translated into finding the appropriate intrinsic state pdf p(x)

1An informed prior is the one that requires the most sampling of new data.
Here we are interested to least collection of data, i.e. the least informed prior.

that minimizes the joint entropy of cell intrinsic and extrinsic
variables

min
p(x)

S(X,Y), (2)

where S(X,Y) := −
∫
dxdy p(x,y) ln p(x,y) = S(X) +

S(Y|X).
The corresponding variational principle that follows reads:

δ

δp(X)

[
S(X,Y)− λ

(∫
dxp(x)− 1

)]
= 0, (3)

where the δ
δp(X) denotes the functional derivative operator and

λ a Lagrange multiplier for the normalization constraint. The
solution of eq. (3) is the equilibrium pdf:

p(x) =
e−βS(Y|X=x)

Z
, (4)

where Z =
∫
dxe−βS(Y|X=x) the corresponding normaliza-

tion factor. The last equation is very interesting since it shows
the equilibrium distribution of the cell’s intrinsic states is the
one that confers the least uncertainty of microenvironmental
conditions. Please note that I introduced the parameter β as
an ”inverse temperature”, that quantifies the compliance of a
cell to LEUP. Please note that additional biological knowledge
will be translated into Lagrange constraints of the free-energy
minimisation.

To illustrate the above result, let us assume that the distribu-
tion p(y|x) follows the normal distribution N (µy(x), σ

2
y(x)).

Then the mutual entropy reads

S(Y|X) = ln(2πσ2
y(x))

1/2,

and the eq. (4) respectively becomes:

p(x) =
σ−βy (x)∫
dxσ−βy (x)

. (5)

This last equation is exactly the normalized square
root of Fisher’s Information for the second moment,
i.e.

√
I
(
σy(x)

)
∝ 1/σy(x) [5]. Given the latter our equi-

librium distribution (5) coincides with a normalized Jeffrey’s
prior distribution, for β = 1. Jeffrey’s prior represents the def-
inition of non-informative Bayesian prior in classical statistics
[6].

Substituting the equilibrium pdf (4) into the cell intrinsic
state entropy, we obtain:

S(X) = −
∫
dx p(x) ln

e−βS(Y|X=x)

Z
= −βS(Y|X)+lnZ.

(6)
The above is a fundamental thermodynamic identity of LEUP
where the first term denotes the system’s total phenotypic
internal energy U = 〈S(Y|X = x)〉p(x) which is the average
microenvironmental uncertainty sensed by a cell. The last term
represent a phenotypic free energy F = β−1 lnZ.
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IV. CELL MIGRATION FORCE PROBABILITY DISTRIBUTION
AGAINST INTEGRIN RECEPTORS

To illustrate the implications of the LEUP in a single cell-
microenvironment system, we assume the problem of single
cell migration (see Fig. 3). Cell membrane-expressed inte-
grin receptors bind to the corresponding extra-cellular matrix
(ECM) ligands. The formation of stable focal adhesion points
(FA), i.e. bond clusters, is required to generate locomotion
force. Cell migration starts when the force at the front of
the cell is larger than the force at the rear, inducing the
rupture of the rear cell bonds. Integrin receptors play the role
of cell’s intrinsic state and the a density of ECM ligands
the corresponding microenvironmental/extrinsic variable [7].
Here, I try to calculate the locomotion force distribution via
the surface-expressing receptor distribution.

I employ the simplest FA dynamics model of receptor-ligand
concentrations denoted by x(t) and y(t), respectively, and c(t)
corresponding to bond density :

dc

dt
= k+y(x− c)− k−c, (7)

where k+ the association and k− the disassociation rate. Then,
I calculate the steady state value of bond concentration:

ceq =
xy

KD + y
, (8)

where the parameter KD = k−/k+. It is well-known that
the disassociation depends on the adhesion force F as k− =
eF/c and in the steady state one can prove (for details see in
Schwartz et al [7]) that:

Feq = plog(k+/e)x, (9)

where the function plog is the solution of the equation xex =
a. Therefore, the equilibrium force pdf is proportional to the
steady state distribution of the receptors.

At this point, in order to calculate the equilibrium probabil-
ity of receptors p(x), I need to estimate the bond fluctuations
of the system. The fluctuations estimated at equilibrium read:

δceq =
dceq
dy

δy =
xKD

(KD + y)2
δy. (10)

Using the Fourier transform δĉeq(ω) =
∫ T
0
dte−iωtδceq(t),

we can state that the standard deviation of ceq is related to the
power spectral density |δĉeq(ω)|2 as

〈δc2eq〉 =
1

2π

∫
R
|δĉeq(ω)|2dω.

The next goal is to calculate the steady state variation of
complex formation. In this respect, we use the master equation
as described in [8]:

dPc
dt

= k+y(x− (c− 1))Pc−1 + k−(c+ 1)Pc+1 (11)

− [k+y(x− (c− 1)) + k−(c+ 1)]Pc, (12)

where Pc(t) the probability distribution of complexes and c =
1, 2, ..., x − 1. The resulting probability generating function
reads at the steady state:

Geq(s) =
(s+KDy

1 +KDy

)x
. (13)

Then the complex distribution coincides with the Binomial one
with parameter (1 + KDy)

−1. The variance is simply given
by the following formula:

〈δc2eq〉 =
KDxy

(KD + y)2
. (14)

Combining equations (10) and (14), we can obtain the steady
state fluctuations of the ligand density:√

〈δy(x)2〉 = (KD + y)

√
y

KDx
. (15)

Fig. 3. Simplified description of cell migration processes.

Finally, assuming that ligands for a given receptor concen-
tration follow a normal distribution and a ”inverse tempera-
ture” β, the equilibrium pdf of receptor is provided by eq. (5):

p(x) =
〈δy(x)2〉−β/2∫
dx〈δy(x)2〉−β/2

∝ xβ/2, (16)

which results into power law distributions for different values
of β. Assuming normality of the ligand y distribution and
ceq (the binomial distribution converges to the normal one for
large numbers of receptors), then from the eq. (8) and for
KD � 1, we have x ∝ ceq/y. One can easily prove that
the ratio of two Gaussian distributions results into fat-tailed
Cauchy distribution which scales the data, i.e. 1/x2. LEUP
would fit the corresponding data for β = −4.

The above result states that the cell locomotion force pdf
is proportional to the power law distribution of the adhesion
receptors

p(Feq) ∝ xβ/2.

In particular it implies that there is a finite probability for cells
to exert high locomotion forces. In principle, the presence of
power laws would support the long-standing hypothesis that
biology is poised at criticality [9].
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It is very interesting to see the impact on the cell locomotion
velocity, where using the overdamped Newton’s law reads:

v(t) ∝ Feq ∝ xβ/2. (17)

Now assuming that x ∝ ta, where a ≥ 0, the velocity becomes

v(t) ∝ taβ/2.

It is know that for constant velocity aβ = 0 the cell would
be a random walker moving diffusively. However for aβ 6= 0,
one may recover the anomalous diffusion as observed in cell
motility experiments [10] (see Fig. 4).

Fig. 4. Velocity temporal scaling aβ defines the different diffusion regimes.

As stated above, in the low association limit KD � 1 the
inverse temperature should be β = −4. Then the cell migration
velocity decays in time as

v(t) ∝ t−2a,

for a ≥ 0. This is rather intuitive since for KD � 1 very few
bonds would be created. As a consequence, the cell would
move sub-diffusively until it gets stopped.

V. DISCUSSION

In this article, I present a novel statistical theory for cell
decision-making, the so-called least microenvironmental un-
certainty principle (LEUP). This is translated into a variational
principle that minimized the joint entropy of cell intrinsic
states and the corresponding microenvironental states. In turn,
I develop the statistical mechanics theory for equilibrium cell
decision-making, where I derive thermodynamic-like relation-
ships. In turn, I apply the theory in a simplified model of cell
migration and I calculate the locomotion force distribution.
Finally, the resulting force distribution recovers the observed
single cell anomalous diffusion.

In the present paper, I develop only the equilibrium theory.
However, the minimization of the LEUP free energy allows us

to formulate cell decision-making dynamics. This can be in the
form of Monte-Carlo simulations or Langevin-like stochastic
differential equations. In a future work, I will elaborate on this
direction.

One could note that this is not the first effort to use informa-
tion theoretic arguments to understand cell fate determination.
Similar approaches have been undertaken by other works, such
as [11], [12], [13], [14]. However, in another paper I discuss
the connection of all these approaches with LEUP [15].

Finally, LEUP is particular interest since it allows for the
inference of cellular intrinsic states/phenotypes by means of
the local microenvironental entropy or fluctuations. This al-
lows for computation of the cellular states without the explicit
understanding the underlying mechanisms. The sole knowl-
edge of the extrinsic variable distribution is enough. Therefore,
we could apply the LEUP to problems where phenotypic
regulation is unclear or unknown. One direct application would
be on the regulation of migration/proliferation plasticity or Go-
or-Grow in the context of glioblastoma tumors [16], [17].
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