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1. Abstract 
 
The sharing and the transmission of information between cortical brain regions is carried out by 

mechanisms that are still not fully understood. A deeper understanding should shed light on how 
consciousness and cognition are implemented in the brain. Research activity in this field has recently 
been focusing on the discovery of non-conventional coupling mechanisms, such as all forms of cross-
frequency couplings between diverse combinations of amplitudes and phases, applied to measured 
or estimated cortical signals of electric neuronal activity. However, all coupling measures that involve 
phase computation have poor statistical properties. In this work, the conventional estimators for the 
well-known phase-phase (phase synchronization or locking), phase-amplitude, and phase-
amplitude-amplitude couplings are generalized by means of the weighted multiple regression model. 
The choice of appropriate weights produces estimators that bypass the need for computing the 
complex-valued phase. In addition, a new coupling, denoted as the inhibitory coupling (InhCo), is 
introduced and defined as the dependence of one complex-valued variable on the inverse and on the 
conjugate inverse of another complex-valued variable. A weighted version denoted as wInhCo is also 
introduced, bypassing the need for computing the inverse of a complex variable, which has very poor 
statistical properties. The importance of this form of inhibitory coupling is that it may capture well-
known processes, such as the observed inverse alpha/gamma relation within the same cortical 
region, or the inverse alpha/alpha relation between distant cortical regions. 

 
 

2. Introduction 
 
The sharing and the transmission of information between cortical brain regions is carried out by 

mechanisms that are still not fully understood. This problem is of great interest, because it may shed 
light on how consciousness and cognition are implemented in the brain. Research activity in this field 
has recently been focusing on the discovery of non-conventional coupling mechanisms, such as all 
forms of cross-frequency couplings between diverse combinations of amplitudes and phases, applied 
to measured or estimated cortical signals of electric neuronal activity. For a review, see e.g. Jirsa and 
Muller (2013). 
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In this work, the conventional estimators for the well-known phase-phase (phase 
synchronization or locking), phase-amplitude, and phase-amplitude-amplitude couplings are 
generalized by means of the weighted multiple regression model. The choice of appropriate weights 
produces estimators that bypass the need for computing the complex-valued phase, which has very 
poor statistical properties. 

 
In addition, a new coupling, denoted as the inhibitory coupling (InhCo), is introduced and defined 

as the dependence of one complex-valued variable on the inverse and on the conjugate inverse of 
another complex-valued variable. A weighted version denoted as wInhCo is also introduced, 
bypassing the need for computing the inverse of a complex variable, which has very poor statistical 
properties. The importance of this form of inhibitory coupling is that it may capture well-known 
processes, such as the observed inverse alpha/gamma relation within the same cortical region, or 
the inverse alpha/alpha relation between distant cortical regions (see e.g. De Pesters et al 2016). 

 

3. Complex-valued random variables 
 
Let ,i ix y  , for 1...i N , denote a paired sample of size N, of complex-valued random variables, 

centered to zero-mean. 
 
Two examples for this type of data are: 

1. The collection of Fourier coefficients at discrete frequencies  ,x y  , for two stationary signals 

 ,x y , for which N epochs are available. 

2. The complex-valued analytic signals obtained with the Hilbert transform at frequency bands 

 ,x yb b , for two signals  ,x y , for N time samples. 

 
A classical textbook on the statistics of stationary processes in the frequency domain can be found 

e.g. in Brillinger 2001. 
 
A paper on how to compute in practice the discrete Hilbert transform (rather than its actual 

definition as the principal value of an integral) and the analytic signal can be found in e.g. Marple 
1999. 

 
Given complex random variables iz , for 1...i N , centered to zero-mean, the non-negative real-

valued amplitude is denoted as: 

Eq. 1 
*

i i i iz z z z

   

Its complex-valued phase is denoted as: 

Eq. 2 
i i

i

i i

z z
z

z z




   

Its inverse can be expressed as: 

Eq. 3 

* *

2 2

1 i i

i ii

z z

z zz 

   

And the inverse of the conjugate variable can be expressed as: 

Eq. 4 
2* 2

1 i i

i ii

z z

z zz 

   
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In general, the superscript “*” denotes complex conjugate and vector-matrix transposed; and •  

denotes the norm of the argument. 
 
The centered, zero-mean amplitude is denoted: 

Eq. 5 

1

1 N

i i i i
i

z z z z z
N

    



      

 
 

4. The linear model and the coherence 
 

Consider the linear model for the zero-mean complex-valued random variables  ,x y : 
Eq. 6 y ax  

 
The simplest measure of coupling in this case is the classical complex-valued coherence (see e.g. 

Brillinger 2001): 

Eq. 7 
yx

yy xx

s
c

s s
  

with: 

Eq. 8 
*

1

1 N

yx i i
i

s y x
N 

   

Eq. 9 
2*

1 1

1 1N N

yy i i i
i i

s y y y
N N 

    

Eq. 10 
2*

1 1

1 1N N

xx i i i
i i

s x x x
N N 

    

 
 

5. The widely linear model and the squared multiple coherence 
 

The widely linear model for the zero-mean complex-valued random variables  ,x y  is: 

Eq. 11 
*y ax bx   

which was proposed by Picinbono and Chevalier (1995). This type of model (Eq. 11) has been 
extensively studied in, see e.g. Mandic and Goh (2009), and Schreier and Scharf (2010). 

 
A measure of coupling for this case is the squared multiple coherence of the response “y” with 

the predictors "x" and " *x ". 
 
In general, the squared multiple coherence (correlation) for centered, zero-mean variables, with 

response     and “p” predictors  1 1p p     is: 

Eq. 12 
2 11

xR
s



  



 S S S  

where in general the covariance matrix is: 

Eq. 13 
*

1

1 N

uv i i
iN 

 S U V  

for any two zero-mean variables  1 1q q  U U  and  1 1r r  V V . 
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The multiple squared coherence for the widely linear model in Eq. 11 is calculated for the 
variables: 

Eq. 14 2 1

*

y

x

x



  
 

  
   
  


 

 
 

6. Models based on relations between different combinations of phases and amplitudes 
of complex variables 

 
 

6.1. Phase-phase coupling (a.k.a. phase synchronization and phase locking value) 
 
Two definitions for phase-phase coupling will be considered. 
 
In a first case, it is defined as the average complex valued phase difference: 

Eq. 15 
*

1

1 N

i i
i

Ave y x
N

  



 
 

or its modulus Ave
  or squared modulus 

2
Ave


, which lie in the range zero to one. A value of one 

is attained when the phase difference is constant, and a value of zero can be attained when the phase 
difference is uniformly distributed. This definition corresponds to the concept of phase-coupling as 
proposed by Rosenblum et al (1996). 

 
In a second case, it can be modeled as a linear regression between phase variables, for which 

abundant theory exists, see e.g. Jupp and Mardia (1980) and Mardia and Jupp (2000). For such a 
linear relation between the two phase variables, the coherence is: 

Eq. 16 
y x

y y x x

s
c

s s

 

   


  

 
Ultimately, both definitions lead to the same final result, with: 

Eq. 17 c Ave
 



 

However, these two definitions lead to different weighted estimators, as will be shown below. 
 
 

6.2. Phase-amplitude coupling (PAC) 
 
Phase-amplitude coupling (PAC) refers to the dependence of the real-valued amplitude of one 

variable on the complex-valued phase of another variable (which can correspond to two different 
time series or to the same time series). Many different PAC measures have been proposed in the 
literature, as reviewed by, e.g. Penny et al (2008) and van Wijk et al 2015. 

 
One PAC model is: 

Eq. 18    Re Imy a x b x
  
   

where y


 denotes the centered zero-mean amplitude,  Re •  and  Im •  denote the real and 

imaginary parts of the argument, and  ,a b  are the real-valued regression coefficients. This general 
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linear model was proposed in Penny et al (2008). For this model, PAC can be quantified by the 
squared multiple correlation coefficient (Eq. 12) for the variables: 

Eq. 19  

 
2 1

Re

Im

y

x

x



 



  
   
     
   


 

The multiple squared correlation (Eq. 12) for this PAC model (Eq. 19) will be denoted as 2
PACR . 

 
A generalization of the PAC model, denoted here as the PAAC model, was given in van Wijk et al 

2015, which considers the dependence of the real-valued amplitude of one variable on the complex-
valued phase and the real-valued amplitude of another variable: 

Eq. 20    Re Imy a x b x cx
   
    

where x


 denotes the centered, zero-mean amplitude, and  , ,a b c  are the real-valued regression 

coefficients. In this case (PAAC) there are three regression coefficients, with the coefficients  ,a b  

corresponding to the “phase-amplitude coupling” component, and with the coefficient  c  

corresponding to the “amplitude-amplitude coupling” component. Measures of coupling can be 

defined by the regression coefficients  , ,a b c , and in general by the squared multiple correlation 

coefficient for the response y


 as a function of the predictors  Re x
 ,  Im x

 , and x


, i.e. using (Eq. 

12) for the variables: 

Eq. 21 

 

  3 1

Re

Im

y

x

x

x











  
 

    
     
  
   


 

The multiple squared correlation (Eq. 12) for this more general PAC model (Eq. 21) will be denoted 

as 2
PAACR . 

 
 

6.3. Inhibitory coupling (InhCo) 
 
We define “inhibitory coupling” (InhCo) as the dependence of one complex-valued variable on 

the inverse and on the conjugate inverse of another complex-valued variable: 

Eq. 22  
*

*

* 2 2 2

1 1 1x x
y a b a b ax bx

x x x x x
  

       

 

For zero-mean variables  ,x y , the squared multiple coherence for the response variable "y" as 

a function of the predictors 
1

x

 
 
 

 and 
*

1

x

 
 
 

 quantifies the InhCo, with: 

Eq. 23 2 1

*

1

1

y

x

x



  
 

  
   
  


 

for Eq. 12. 
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The use of the term “inhibitory” corresponds to the notion of one process inhibiting another, such 
as the observed inverse alpha/gamma relation within the same cortical region, or the inverse 
alpha/alpha relation between distant cortical regions (see e.g. De Pesters et al 2016). 

 
 

7. Instability of complex-valued phase and inverse variables 
 
The computation of a complex-valued phase variable, as defined in Eq. 2, requires a non-zero 

amplitude value. In practice, when the amplitude is near zero, the phase is nearly undefined. This 
affects the estimated phase-phase coupling (Eq. 15, Eq. 16), and all forms of phase-amplitude 
coupling (see e.g. Eq. 18 and Eq. 20). In a similar manner, the computation of the inverse of a complex-
valued variable requires a non-zero amplitude value, and is nearly undefined for near-zero 
amplitudes, which would affect the estimated inhibitory coupling (InhCo) in Eq. 22. 

 
Little attention has been given to this problem in the literature, as reviewed by Kovach (2017). 

In Kovach (2017), the effect of low amplitudes on phase-phase coupling was studied in detail, and a 
solution was proposed in the form of an amplitude weighted version of the phase-phase coupling. 
The Kovach (2017) estimator is presented in a later section of this present study. 

 
 

8. General stabilization by setting a threshold for the minimum allowed amplitude 
 
One naïve solution that immediately comes to mind is to set a threshold for the minimum allowed 

amplitude, and to discard all data below the threshold, prior to estimating the coupling measures. 
 
Note that for stationary time series, the squared amplitude of the Fourier transform is the 

periodogram, which has an asymptotic chi-square distribution with two degrees of freedom, of the 

form 
2

2
2

2

 
 

 
, where 2  is the population spectral density. Standardized squared amplitudes, 

defined as the squared amplitudes divided by the average, have an approximate 2
2  distribution. 

 
In this case, the p=0.05 threshold occurs at a value of 0.103. Thus, 0.103 can be taken as an 

approximate minimum allowed standardized squared amplitude value, such that any standardized 
squared amplitude below this threshold should be discarded and not included in the estimation of 
coupling models that involve phase or inverse variables. 

 
For instance, an algorithm for computing phase-phase coupling is: 

Step#1: Given the original data  ,i ix y  for 1...i N . And given a threshold for the minimum allowed 

squared amplitude denoted as 2min Amp  (e.g. 2min 0.103Amp  ). 

Step#2: Compute the squared amplitudes  2 2,i ix y
  . 

Step#3: Compute the mean values for the squared amplitudes, denoted as  2 2,x y
 

. 

Step#4: Transform the squared amplitudes to standardized squared amplitudes 
2 2

2 2
,i ix y

x y

 

 

 
 
 
 

. 

Step#5: For 1...i N  do 
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if 
2 2

2 2

2 2
min mini ix y

Amp or Amp
x y

 

 

    
     
        

 then delete the i-th pair  ,i ix y . 

Step#6: With a possibly reduced data set, then compute the phase-phase coupling (Eq. 15, Eq. 16). 
 
The algorithm for PAC and for InhCo (Eq. 18, Eq. 20, Eq. 22) is basically the same: 

Step#1': Given the original data  ,i ix y  for 1...i N . And given a threshold for the minimum allowed 

squared amplitude denoted as 2min Amp  (e.g. 2min 0.103Amp  ). 

Step#2': Compute the squared amplitudes  2 2,i ix y
  . 

Step#3': Compute the mean values for the squared amplitudes for 2x
 . 

Step#4': Transform the squared amplitudes to standardized squared amplitudes 
2

2

ix

x





 
 
 
 

. 

Step#5': For 1...i N  do 

if 
2

2

2
minix

Amp
x





 
 

 
 

 then delete the i-th pair  ,i ix y . 

Step#6': With a possibly reduced data set, then compute PAC and InhCo (Eq. 18, Eq. 20, Eq. 22). 
 
 

9. Phase-phase coupling stabilization of by the method of weighted averages (Kovach 
2017) 

 
The phase-phase coupling in Eq. 15 has the form of an average: 

Eq. 24 
*

1

1 N

i i
i

Ave y x
N

  



 
 

 
To avoid the effect of low amplitudes when computing phases, Kovach (2017) proposed a 

weighted average: 

Eq. 25 

*

1

1

N

i i i
i

N

i
i

w y x

wAve

w

 












 

with non-negative weights: 
Eq. 26 i i iw y x

 
  

which gives the amplitude-weighted phase locking value of Kovach (2017): 

Eq. 27 

*

1

1

N

i i
i

N

i i
i

y x

wAve

y x




 









 

 
The advantage of the weighted average in Eq. 27 is that it does not require the computation of 

phases. In addition, data with low amplitude contributes less to the coupling measure. 
 
However, this stabilization method cannot be generalized to other coupling measures, such as 

those used for PAC and InhCo couplings, which have the form of a squared multiple correlation or a 
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squared multiple coherence. This is because these measures cannot be explicitly expressed as a 
simple average that can then be conveniently weighted. 

 
Nevertheless, the basic idea of finding appropriate weights for a weighted average as proposed 

by Kovach (2017), can be extended to develop new estimators in the form of weighted correlations 
and coherences with appropriate weights. The new estimators follow next. 

 
 

10. General stabilization by weight transformations 
 

Consider centered, zero-mean random variables, with response     and “p” predictors 

 1 1p p    , with sample data  ,i i  , for 1...i N . And let 0iw   denote real-valued, non-

negative weights, such that: 

Eq. 28 

1

0
N

i
i

w


  

 
The weighted multiple coherence (correlation) can be written as: 

Eq. 29 
2 11
w xR

s


  



 S S S  

where: 

Eq. 30  w   

and: 

Eq. 31  w   

where the covariance matrices are defined in general in Eq. 13. 
 
Note that Eq. 29 is invariant to a change of global scale of the weights, i.e. the weighted multiple 

coherence (correlation) does not change for new weights 
i iw w  , for any constant 0 . 

 
 

10.1. Weighted phase-phase coherence 
 
Using the notation for the weighted multiple regression model corresponding to Eq. 29, Eq. 30, 

and Eq. 31, the complex-valued phase variables are: 

Eq. 32 

y

x





   
 

  
 

 
The choice of weights in this case is the same as used by Kovach (2017) in Eq. 26: 

Eq. 33 w x y
 

  

This gives: 

Eq. 34 

     

     

w x y y x y

w x y x y x

   

   

     
 

    
 

 

which are to be used in Eq. 29. Because this is a simple bivariate case, the weighted phase-phase 
squared coherence and coherence can be explicitly expressed as: 

Eq. 35 
22

w wR c
 
  

with: 
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Eq. 36 

 

 

*

1

2

1

N

i i i i
i

w N

i i
i

x y y x

c

x y

 




 







 

 
Note that the weighted phase-phase coherence introduced in this work as Eq. 36, differs from 

weighted average of Kovack (2017) in Eq. 27, in that the coherence approach in Eq. 36 gives more 
importance to phase differences that have higher joint amplitudes. 

 
However, both approaches have the main common feature of avoiding the instability related to 

computing complex-valued phases. 
 
 

10.2. Weighted phase-amplitude coupling (wPAC) 
 
Using the notation for the weighted multiple regression model corresponding to Eq. 29, Eq. 30, 

and Eq. 31, the PAC model in Eq. 18 has real variables: 

Eq. 37  

 

Re

Im

y

x

x







 
   
    
   


 

 
The obvious stabilizing choice of weights in this is: 

Eq. 38 w x


  

This gives: 

Eq. 39 

   

 
 

 

Re

Im

w x y

x
w

x

 
   
  

  
     

   

 
 

which are to be used in Eq. 29, giving: 

Eq. 40 
2
wPACR  

which is the weighted squared multiple correlation for the PAC model. 
 
This does not require the computation of phases, and does not have the statistical instability of 

the non-weighted model. In explicit form, the weighted model is: 

Eq. 41      Re Imx y a x b x
 

   

 
 

10.3. Weighted phase-amplitude-amplitude coupling (wPAAC) 
 
Using the notation for the weighted multiple regression model corresponding to Eq. 29, Eq. 30, 

and Eq. 31, the PAAC model in Eq. 20 has real variables: 
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Eq. 42 

 

 

Re

Im

y

x

x

x









  
 

    
    
  
   


 

 
The obvious stabilizing choice of weights in this is the same as before, see Eq. 38. This gives: 

Eq. 43 

   

 

 

 

Re

Im

w x y

x

w x

x x

 

 

   
 

  
  

    
   
  

 
 

which are to be used in Eq. 29, giving: 

Eq. 44 
2
wPAACR  

which is the weighted squared multiple correlation for the PAAC model. 
 
This does not require the computation of phases, and does not have the statistical instability of 

the non-weighted model. In explicit form, the weighted model is: 

Eq. 45        Re Imx y a x b x c x x
   

    

 
 

10.4. Weighted inhibitory coupling (wInhCo) 
 
Using the notation for the weighted multiple regression model corresponding to Eq. 29, Eq. 30, 

and Eq. 31, the InhCo model in Eq. 22 has complex variables: 

Eq. 46 
*

2

1

y

x

x x

  
 

  
   

  


 

 
The obvious stabilizing choice of weights in this is: 

Eq. 47 
2w x


  

This gives: 

Eq. 48 

   

 

2

*

w x y

x
w

x


   
  
  

   
   

 
 

which are to be used in Eq. 29, giving: 

Eq. 49 
2
wInhCoR  

which is the weighted squared multiple coherence for the InhCo model. 
 
This does not require the computation of inverse of complex variables, which would produce 

statistical instability in the non-weighted model. In explicit form, the weighted model is: 

Eq. 50 
2 *x y ax bx


   
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11. Conclusions 
 
Coupling measures that involved complex phase or complex inverse variables have very poor 

statistical properties, This was shown by Kovach (2017) for phase-phase coupling. One remedy, as 
proposed by Kovack (2017), was to replace the average with a weighted version, that bypassed the 
need of computing the complex phase. 

 
Motivated by this methodology, but applying it to weighted multiple regression models, we 

present weighted versions of many forms of couplings between diverse combinations of phases and 
amplitudes and inverses. Based on the same arguments as in Kocach (2017), these new weighted 
estimators should have improved statistical properties as compared with the estimators commonly 
used in the literature up to now. 
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