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Abstract 

INTRODUCTION: Genetic contributions to Alzheimer’s Disease (AD) are likely polygenic and 

not necessarily explained by uniformly applied linear and additive effects. In order to better 

understand the genetics of AD, we require statistical techniques to address both polygenic and 

possible non-additive effects. 

METHODS: We used partial least squares-correspondence analysis (PLS-CA)—a method 

designed to detect multivariate genotypic effects. We used ADNI-1 (N = 756) as a discovery 

sample with two forms of PLS-CA: diagnosis-based and ApoE-based. We used ADNI-2 (N = 

791) as a validation sample with a diagnosis-based PLS-CA. 

RESULTS: With PLS-CA we identified some expected genotypic effects (e.g., APOE/TOMM40, 

and APP) and a number of new effects that include, for examples, risk-associated genotypes in 

RBFOX1 and GPC6 and control-associated genotypes in PTPN14 and CPNE5. 

DISCUSSION: Through the use of PLS-CA, we were able to detect complex (multivariate, 

genotypic) genetic contributions to AD, which included many non-additive and non-linear risk 

and possibly protective effects.  

 

KEYWORDS: Genome-wide pattern analysis, partial least squares, correspondence analysis, 

genotypic model, discriminant analysis, statistical methods 
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1. Introduction 

Many genes have been linked to Alzheimer’s disease (AD) such as SORL1 [1], EPHA1 

[2], CLU, and PICALM [3], all of which have shown effects in a variety of studies [4]. Though 

there are well-known genetic effects in AD [5–7]—there are still some controversial findings. 

For example, the work reported in [8] showed effects of rare variants in PLD3, where follow up 

studies showed both replication [9] and no replication [10] of PLD3 effects. Overall, recent 

works suggest that the genetic contributions to AD are: polygenic [11,12], epistatic [13], and 

non-linear or non-additive [14]. However, the routine analytical approaches for genetic and 

genomic data do not accommodate such complexities; but, if the genetics of AD are so complex 

why are we still using statistical methods whose assumptions are not suited to detect such 

complex effects? 

With the advent of genome-wide studies, single nucleotide polymorphisms (SNPs) are 

almost exclusively analyzed with the additive model. The additive model transforms a SNP from 

base pair letters into a count based on number of minor alleles where usually a major 

homozygote is “0,” a heterozygote is “1,” and a minor homozygote is “2.” The additive model 

has become popular because it is viewed as both a practical approach [15] and a suitable model 

for complex traits [16]. However, the assumptions of additivity and/or linearity do not always 

hold (see [17,18]). Recent work (in cholesterol) has shown that the genotypic (“full”) model is 

better than the additive model to detect genetic contributions to complex traits [19]. Furthermore, 

additive assumptions can be detrimental because the a priori choice of a model that does not 

match the true inheritance pattern causes a loss of power [20]. Additionally, the values of ‘0’ and 

‘2’ are inherently ambiguous across samples, and this ambiguity could lead to misinterpretation 

or even the dismissal of effects because of the direction of genotypic effects. For possible 
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examples in AD: in [21] the authors reported “direction changes” in their own replication 

analyses, whereas in [22] the authors report effects in the opposite direction in their attempt to 

replicate work in [8]. The additive model has been used in many AD studies even though the 

existence of non-additive effects is often acknowledged and expected [23,24].  With resources 

such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), researchers have had the 

opportunity to analyze genome-wide data in a variety of ways, yet the ADNI genome-wide data 

have almost exclusively been analyzed with the additive model (see, e.g., [25–30]).  

In this study we investigated the ADNI genome-wide data with a technique tailored for 

complex and polygenic effects called partial least squares-correspondence analysis (PLS-CA, 

[31]). PLS-CA is a multivariate technique that allows for a more general approach (i.e., 

genotypic model). Furthermore, PLS-CA was designed to address the complexity of genetic 

contributions (i.e., polygenicity, non-additivity) so that we can detect, rather than assume, 

specific genotypic effects. PLS-CA treats SNPs as categorical data where the genotpyes are 

levels within those SNP categories. Our study was designed to identify multiple specific 

genotypic effects for AD (possible risk factors) and for controls (possible protective factors); the 

specificity afforded by PLS-CA helps disentangle some of the complexities of genetic 

contributions to AD. Our goals with this study were two-fold: (1) apply the technique within AD 

in order to potentially reveal some of the genetic complexities of AD  and (2) illustrate a novel 

approach to perform genetic and genomic association studies. 

Our paper is outlined as follows. In Methods, we describe the ADNI data used in this 

study, followed by descriptions of the SNP and genotype quality control, and statistical 

techniques. We then detail the two phases of our study: (1) “Discovery” (with ADNI-1) which 

includes two genome-wide association analyses (one based on diagnosis, and another based on 
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APOE), and (2) “Validation” (with ADNI-GO/2) that used the genotypes identified in 

“Discovery” to create a candidate panel and then test group association in a new sample. In 

Results we present findings from each of the phases. In Discussion we emphasize the 

“Validation” phase followed by conclusions and limitations. 

2. Methods 

Data used in the preparation of this article come from the ADNI database 

(http://adni.loni.usc.edu). The ADNI project was launched in 2003 as a public-private funding 

partnership and includes public funding by the National Institute on Aging, the National Institute 

of Biomedical Imaging and Bioengineering, and the Food and Drug Administration. The primary 

goal of ADNI has been to collect a wide variety of measures to assess the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI is the result of efforts of 

many co-investigators from a broad range of academic institutions and private corporations. 

Michael W. Weiner, MD (VA Medical Center and University of California at San Francisco) is 

the ADNI Principal Investigator. Subjects have been recruited from over 50 sites across the U.S. 

and Canada. For up-to-date information, see www.adni-info.org. 

Our study included genomic, APOE, and diagnostic data from ADNI-1 and ADNI-GO/2 

in the AD, MCI, and control (CON) groups. ADNI-1 used the Illumina Human610-Quad 

BeadChip while ADNI-GO/2 used the Illumina HumanOmniExpress BeadChip.  

2.1 Participants 

 We obtained final totals of 756 participants from ADNI-1 (AD = 344, MCI = 204, CON 

= 208) and 791 participants from ADNI-GO/2 (AD = 203, MCI = 319, CON = 269). Table 1 

includes overviews (e.g., demographics, cognitive measures) of the ADNI-1 and ADNI-GO/2 

cohorts. Demographic, cognitive, and diagnostic measures were retrieved from the ADNIMERGE 
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package (available via http://adni.loni.usc.edu/). Table 1 generally includes measures collected at 

baseline, though for this study we used the last available diagnosis. Not all measures were 

available at all time points, thus we characterize the sample by the baseline data and last 

available diagnosis. ADNI-GO/2 had additional recruitment groups: subjective memory 

complaints (SMC) and MCI was split into early and late. For the ADNI-GO/2 diagnoses in our 

analyses the two MCI groups were combined. The SMC category was not used as a diagnosis in 

later time points in the ADNI-GO/2 study, only as a recruitment group at baseline. See Table 1 

for details. 

 
Table 1 

Overview of ADNI 1 and ADNI-GO/2 cohorts. 

(a) Diagnosis changes for ADNI1 

 Total  CON-b MCI-b AD-b 
Control 208  195 13 0 
Mild Cognitive Impairment 204  15 188 1 
Alzheimer’s Disease 344  3 163 178 
 

(b) Demographics and summaries for ADNI1 

 Diagnosis 
(Female) 

Age-b mean 
(s.d.) 

Education-b mean 
(s.d.) 

MMSE-b mean 
(s.d.) 

CDRSB-b mean 
(s.d.) 

Control 208 (93) 75.36 (5.27) 16.07 (2.77) 29.01 (1.14) 0.10 (0.33) 
Mild Cognitive 
Impairment 

204 (70) 74.89 (7.40) 15.61 (3.18) 27.41 (1.80) 1.34 (0.83) 

Alzheimer’s Disease 344 (145) 75.22 (7.12) 15.19 (3.09) 24.96 (2.57) 3.11 (1.87) 
 

(c) Diagnosis changes for ADNI-GO/2 

 

 Total  CON-b SMC-b eMCI-b lMCI-b AD-b 
Control 269  142 96 25 6 0 
Mild Cognitive Impairment 319  12 3 227 76 1 
Alzheimer’s Disease 203  1 0 25 52 125 
 

 (d) Demographics and summaries for ADNI-GO/2 

 Diagnosis 
(Female) 

Age-b mean 
(s.d.) 

Education-b mean 
(s.d.) 

MMSE-b mean 
(s.d.) 

CDRSB-b mean 
(s.d.) 

Control 269 (147) 72.37 (6.02) 16.68 (2.50) 29.07 (1.19) 0.17 (0.45) 
Mild Cognitive 
Impairment 

319 (138) 71.93 (7.77) 16.06 (2.64) 28.17 (1.68) 1.23 (0.78) 
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Alzheimer’s Disease 203 (82) 73.79 (7.88) 15.83 (2.63) 24.76 (2.92) 3.67 (1.86) 
 

(e) Self-identified race (non-Hispanic/Latino) for ADNI1 and ADNI-GO/2 

 ADNI1 ADNI-GO/2 
 

White 703 (685) 732 (700) 
Asian 12 (12) 12 (12) 
Black 37 (36) 30 (30) 
American Indian/Alaskan 1 (1) 2 (2) 
Hawaiian/Other Pacific Islander 0 (0) 2 (2) 
Unknown/More than 1 3 (1) 13 (7) 
Total 756 (735) 791 (753) 

 

 

Note. Overviews of diagnostic, demographic, and cognitive/behavioral information for ADNI 1 and ADNI-GO/2. 

All information retrieved from the ADNIMERGE package. CON = control, SMC = subjective memory complaints, 

MCI = mild cognitive impairment, eMCI = early MCI, lMCI = late MCI, AD = Alzheimer’s Disease, MMSE = 

Mini-mental state exam, CDRSB = Clinical Dementia Rating-Sum of Boxes. Items denoted with ‘-b’ are baseline 

measures. (a) shows last available diagnosis vs. diagnosis at baseline for the ADNI-1 cohort. (b) shows the 

demographic and cognitive/behavioral measures for ADNI1. (b) shows last available diagnosis vs. diagnosis at 

baseline for the ADNI-GO/2 cohort. (d) shows the demographic and cognitive/behavioral measures for ADNI-GO/2. 

Note that ADNI-GO/2 included two subtypes of MCI (early and late) as well as the SMC category. (e) shows self-

identified race and ethnicity for both ADNI1 and ADNI-GO/2. 

 

2.2 Statistical techniques 

Preprocessing, analyses, and graphics were performed primarily in R [32] with the 

ExPosition, TExPosition, and TInPosition packages [33,34]. Some in-house 

MATLAB (Mathworks Inc., Natick, MA) code was used for resampling. Code available in Github 

(R packages: https://github.com/derekbeaton/ExPosition-Family/; MATLAB code: 

https://github.com/derekbeaton/Misc).  

Because SNPs are categorical we required particular multivariate techniques designed 

specifically for categorical data. The primary techniques used in this study—multiple 

correspondence analysis (MCA) and PLS-CA—are analogous to principal components analysis 

(PCA) and partial least square correlation (PLSC) but are designed to handle categorical data and 
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generally operate under the assumptions of χ2. Data were recoded from nominal (categorical) to 

disjunctive format (see Table 2) because with this format PLS-CA can analyze data with the 

genotypic model under the assumptions of χ2.  We used (MCA) instead of PCA to correct for 

stratification effects. MCA is the analog of PCA—that is, a method that produces orthogonal, 

rank-ordered by variance components—but designed for data in a disjunctive format and also 

adheres to the assumptions of χ2.   

We used two forms of PLS-CA in our discovery phase: discriminant PLS-CA and seed 

PLS-CA. We used discriminant PLS-CA in the validation phase. For details on background, and 

notation on PLS-CA and its derivatives see [31]. We briefly describe our motivation to use these 

two techniques here. We expand on the motivation in Study design and overview. Discriminant 

PLS-CA is a technique that maximizes the separation between a priori groups of participants 

(see also [35]). We used Discriminant PLS-CA to identify genotypes most associated with each 

group. In Seed PLS-CA, a “seed” is a specific genetic marker, where the seed analysis looks for 

distributions of genotypes similar to the seed (i.e., linkage disequilibrium). We used seed PLS-

CA to identify other genotypes with distributions similar to APOE, which is the strongest 

contributor to non-familial AD [36,37]; thus we were trying to find additional candidate 

genotypes that have roughly the same pattern as APOE in the ADNI sample. 

 

Table 2 

Nominal and disjunctive formats of data. 

(a) Nominal 

 SNP1 (with minor homozygote > 5%) SNP2 (with minor homozygote < 5%) 
Subj.1 AG CA 
Subj.2 AA CA 
… … … 
Subj.i AG CC 
… … … 
Subj.I-1 <NA> AA 
Subj.I GG AA 
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(b) Disjunctive SNPs 

 SNP1 (minor homozygote > 5%)  SNP2 (minor homozygote < 5%) 
 AG AA GG  CA+CC AA 
Subj.1 1 0 0  1 0 
Subj.2 0 1 0  1 0 
… … … …  … … 
Subj.i 1 0 0  0 0 
… … … …  … … 
Subj.I-1 .2 .7 .1  0 1 
Subj.I 0 0 1  0 1 

 
(c) Dx and ApoE 

 Dx #ApoE E4 
 

Subj.1 AD 2 
Subj.2 AD 1 
… … … 
Subj.i MCI 1 
… … … 
Subj.I-1 MCI 2 
Subj.I CN 0 

 
(d) Disjunctive Dx and ApoE 

 Dx  # APOE-E4 Alleles 
 

 AD MCI CN  2  1 0 
Subj.1 1 0 0  1 0 0 
Subj.2 1 0 0  0 1 0 
… … … …  … … … 
Subj.i 0 1 0  0 1 0 
… … … …  … … … 
Subj.I-1 0 1 0  1 0 0 
Subj.I 0 0 1  0 0 1 

 
Note. Illustrative example of nominal (a and c) and disjunctive (b and d) coding of illustrative SNPs and diagnosis 

(Dx) and APOE. For SNP 1, all genotypes have a sufficient frequency and are coded (à la genotypic model), but for 

SNP 2, the minor homozygote (CC) does not occur frequently enough and is thus combined with the heterozygote (à 

la dominant model). In all tables, a 1 indicates the presence of a particular level of a categorical variable while a 0 

indicates absence (e.g., Subj.1 is an Alzheimer’s Disease patient, with 2 ApoE E4 alleles, the AG genotype for 

SNP1 and either a CC or CA [presence of minor allele] for SNP2). Note that one subject has missing data (i.e., 

“<NA>”). This subject’s data for SNP 1 is imputed to the mean of the sample for that SNP (SNP 1) where AA 

occurs in 70% of the sample, AG in 20%, and GG in 10%, therefore the missing data are imputed to those values. 

 

 

2.3 SNP Quality Control & Preprocessing 
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For all analyses we excluded any SNPs in the X and Y chromosomes, the 

pseudoautosomal region (XY), and mitochondrial region (i.e., we analyzed SNPs in 

Chromosomes 1–22). All SNPs were preprocessed with PLINK (v1.07; [38]) and in-house R 

code. SNP annotation was performed with the NCBI2R [39], and biomaRt packages [40,41]. 

We used both because in some cases, one annotation package would have information the other 

did not.  

Participant and SNP call rates (i.e., completeness of data) ≥ 90%, minor allele frequency 

≥ 5%, Hardy-Weinberg equilibrium p ≤ 10-6. SNPs were then recoded into a disjunctive format 

(see Table 2a and b). Additionally, any genotype below a 5% threshold was combined with 

another genotype. In our study here, only the minor homozygotes were below the 5% threshold, 

and thus combined with the heterozygotes, which is analogous to a dominant model. Missing 

genotypes were imputed to the mean of the sample (see Table 2a and b).  

2.4 Study design and overview 

 We conducted a two-part study: Discovery and Validation. In the Discovery phase there 

were two analyses with ADNI-1 genome-wide SNPs. The results from the Discovery analyses in 

ADNI-1 were used to create candidate SNP panels for validation in ADNI-GO/2. In the 

validation phase there was one analysis with a specific subset of ADNI-GO/2 SNPs.  

Data from ADNI-1 and ADNI-GO/2 were not combined or preprocessed together at any 

stage in this study, so that no contamination or influence occurred from one set on the other. The 

two samples were also kept separate in order to preserve statistical independence for the 

discovery-validation pipeline. Because ADNI-1 and ADNI-GO/2 have two different chip sets, 

we generated a candidate panel of SNPs for ADNI-GO/2 based on the SNPs and their associated 

genes identified in ADNI-1 (Discovery). 
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2.4.1 Discovery study analyses 

The goal of the diagnosis (Dx) × genotype analyses was to detect genotypes most 

associated with each diagnostic category. The seed PLS-CA used APOE E4 as the seed, and was 

performed on APOE (0, 1, or 2 E4 alleles) × genotypes. Both analyses were designed to identify 

candidate markers of AD: the discriminant analysis (henceforth referred to as “Dx-GWAS”) 

identifies genotypes most associated with each group, whereas the seed analysis (henceforth 

referred to as “ApoE-GWAS”) identifies genotypes similar to APOE. All analyses used bootstrap 

resampling [42] to identify stable genotypes. The distributions around the genotype were tested 

with “bootstrap ratios” (BSR; [31]). Significant genotypes in our two GWAS (in ADNI-1) were 

then used to create a new candidate panel of SNPs for validation (in ADNI-GO/2).  

2.4.2 Creation of SNP panels from Discovery for Validation  

Because ADNI-1 and ADNI-GO/2 were used as independent data sets in our study, and 

because the data come from two different genome-wide chips, we used the significant genotypes 

from the discovery analyses (i.e., Dx-GWAS and the ApoE-GWAS) to generate candidate SNPs 

for validation. For all significant genotypes in the discovery analyses, we used their respective 

SNPs to: (1) compile a list of all SNPs within a 50kbase (25+/-) window of those SNPs, and (2) 

retrieve all stable ensembl gene (ENSG) IDs associated with those SNPs from the discovery 

analyses, and in turn retrieve all possible SNPs associated those ENSG IDs. All SNPs from the 

steps (1) and (2) were combined into a candidate set. We extracted all SNPs from the ADNI-

GO/2 data that were from the discovery-derived candidate set for use in the validation phase. 

2.4.3 Validation study analyses 

Validation analyses were conducted on the ADNI-GO/2 data set with a discriminant PLS-

CA on the validation SNPs based on diagnosis. The goal of the validation Dx × genotype 
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analysis was to detect genotypes most associated with each diagnostic category. As in the 

discovery phase, we used bootstrap resampling and the BSR test to identify stable genotypes.  

3. Results 

3.1 Discovery (ADNI-1) 

ADNI-1 genome-wide data contains 620,901 SNPs and 757 participants. After QC and 

preprocessing 756 participants (AD = 344, MCI = 204, CON = 208) and 517,441 SNPs (in 

chromosomes 1–22) remained, which produced a 756 participants × 1,332,455 disjunctive 

genotypes matrix (see Table 2). Only the first two MCA components showed stratification 

effects (race and ethnicity) and were thus removed from (i.e., regressed out of) the data. 

Subsequent components showed no apparent effects of stratification. For the discovery GWAS, 

we used a cutoff of ±5 for the BSR tests which is slightly below the traditional GWAS 

parametric threshold (p < .05 × 10–8 would correspond to a BSR ≈ 5.33). 

3.1.1 Dx-GWAS  

The discriminant PLS-CA produced two components. Component 1 explained 50.25% of 

the variance and was driven by the separation of the AD group from the MCI group (see 

Supplemental Figure 1). Component 2 explained 49.76% of the variance and separated the CON 

group from the other two groups (see Supplemental Figure 1). Figure 1 shows all genotypes 

plotted with their BSR values in a Manhattan-like plot. BSR values can be positive or negative—

because the sign matches their component score—we call this plot “Manhattan on the Hudson” 

(MotH; like a city skyline and reflection on a river). Figure 1a shows the BSRs for all genotypes 

for Dx-GWAS Component 1 and Figure 1b shows the BSRs for all genotypes for Dx-GWAS 

Component 2. The majority of stable genotypes were more related to the AD group than the 

other groups (see Figure S1 and Table S1). 
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3.1.2 ApoE-GWAS  

Because there were only 3 levels to the seed (“0 E4,” “1 E4,” and “2 E4” alleles), seed 

PLS-CA produced only two components. Component 1 explained 51.24% of the total variance 

and was driven by the presence (left) vs. absence (right) of E4 alleles (see Supplemental Figure 

2). Component 2 explained 48.76% of the variance and separates the two E4 alleles group from 

the other two groups (see Supplemental Figure 2). Figure 2 shows the BSRs for all genotypes 

from this analysis in a MotH plot. Figure 2a shows the BSRs for all genotypes for ApoE-GWAS 

Component 1 and Figure 2b shows the BSRs for all genotypes for ApoE-GWAS Component 2 

(see also Figure S2 and Table S2). 
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Figure 1. Manhattan (on the Hudson) plots for the multivariate Diagnosis (Dx)-GWAS. Horizontal axes are 

each genotype ordered by Chromosome (Chr), where each Chr is color-coded (1–22). The vertical axes are bootstrap 

ratio values (BSRs). Both panels show BSRs (analogous to t- or Z-scores; which can be positive or negative) for 

each genotype along Component 1 (a.k.a. Latent Variable (LV) 1; panel a, top) and Component 2 (a.k.a. LV 2; panel 

b, bottom) – the same components as in Figure 2. With respect to the multivariate Dx-GWAS a wide variety of 

genotypes show significant, and similar, effects and are not concentrated in any particular region (see also Table S1 

and Figure S1). 
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Figure 2. Manhattan (on the Hudson) plots for the multivariate ApoE-GWAS. Horizontal axes are each genotype 

ordered by Chromosome (Chr), where each Chr is color-coded (1–22). The vertical axis is bootstrap ratio values 

(BSRs). Both panels show BSRs (analogous to t- or Z-scores; which can be positive or negative) for each genotype 

along Component 1 (a.k.a. Latent Variable (LV) 1; panel a, left) and Component 2 (a.k.a. LV 2; panel b, right) – the 

same components as in Figure 4. With respect to the multivariate ApoE-GWAS, many of the effects are 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/235945doi: bioRxiv preprint 

https://doi.org/10.1101/235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


GW PATTERN ANALYSIS IN AD 18 

concentrated, generally, in Chr19 (see also Table S2) across both components, but much more so for Component 1 

(a; left). While Component 2 (b; right) shows a variety of effects, some of the strongest are still in Chr19. 

 

3.2 Candidate panel creation 

All SNPs associated with significant genotypes in Discovery were used to create the 

candidate panel. A total of 105 genotypes from 96 SNPs exceeded the ±5 BSR threshold (see 

Supplemental Tables 1 and 2). From these 96 SNPs, our candidate panel process identified 

1,045,360 possible SNPs.  

3.3 Validation (ADNI-GO/2) 

ADNI-GO/2 genome-wide data contains 730,525 SNPs and 791 participants. We 

extracted 5,508 SNPs from the ADNI-GO/2 chipset based on the candidate panel of 1,045,360 

SNPs. After QC and preprocessing, 791 participants (AD = 203, MCI = 319, CON = 269) and 

5,508 SNPs remained, which produced a 791 participants × 14,200 disjunctive genotypes matrix 

(see Table 2). Only the first two MCA components showed stratification effects (race and 

ethnicity) and were thus removed from the data. Subsequent components showed no apparent 

effects of stratification. 

A discriminant PLS-CA (Dx × genotypes) was performed on the 791 × 14,200 matrix. 

For the validation analysis, we used a cutoff of ±3.25 for the BSR tests (roughly equivalent to a 

Bonferroni cutoff for the number of unique genes). Discriminant PLS-CA produced two 

components: Component 1 explained 50.41% and was driven by the separation of the MCI group 

from the AD and CON groups (see Figure 3); Component 2 explained 49.59% of the variance 

and separated the CON group from the AD group (see Figure 3). 
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Figure 3. Diagnosis-based analysis in the Validation phase. The groups form a boundary region on the components. 

We denoted portions of this subspace as “control” associated (blue) or “risk” associated (red); anything outside the 

control or risk regions is ambiguous. Genotypes that fall in the “control” region are more associated with the control 

group than the other groups and genotypes that fall in the “risk” region are more associated with {MCI or AD} than 

the CON group. 

 
Table 3 

Validation set: significant genotypes on either component 

rsid genotype BSR - 1 BSR - 2 chr Gene symbol Risk / Control Region 

rs10494979 AA 0.95 -3.422 1 PTPN14 CON 

rs11122374 AA 1.985 3.255 1 TSNAX-DISC1,DISC1 
 rs11122374 GA+GG -1.995 -3.346 1 TSNAX-DISC1,DISC1 
 rs1501158 AA 3.319 -0.409 4 LINC00504 CON 

rs1065261 TT -1.971 -3.451 6 CPNE5 
 

19 

s. 

ol 
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rs3213537 TC+TT 1.345 -3.31 6 CPNE5 CON 

rs11777456 AA -3.366 -1.615 8 NCALD 
 rs10990353 AA -3.374 1.483 9 ZYG11AP1 / LOC100421294 RISK 

rs10990353 GA+GG 3.496 -1.482 9 ZYG11AP1 / LOC100421294 CON 

rs7093342 GA -3.395 -0.848 10 ITIH5 
 rs7093342 AA 3.904 1.5 10 ITIH5 
 rs1979522 AG+AA 3.275 2.298 12 LRMP 
 rs4773782 GG -3.608 0.185 13 GPC6 RISK 

rs17105992 GG -3.513 -0.847 14 LOC107984016,RAD51B 
 rs17105992 AG+AA 3.55 0.844 14 LOC107984016,RAD51B 
 rs4902611 AA -3.93 -1.293 14 LOC107984016,RAD51B 
 rs8052288 GA -3.476 -0.692 16 RBFOX1 RISK 

rs1553614 AA -0.278 -3.272 16 RBFOX1 
 rs6859 GG 0.415 -3.895 19 NECTIN2‡ CON 

rs2075650 GA -0.656 3.5 19 TOMM40 RISK 

rs2075650 AA 1.555 -5.558 19 TOMM40 CON 

rs2075650 GG -2.12 4.338 19 TOMM40 RISK 

rs157582 GG 0.162 -5.297 19 TOMM40 CON 

rs157582 AA -1.773 3.72 19 TOMM40 RISK 

rs1160985 CC 0.344 4.349 19 TOMM40 RISK 

rs1160985 TT 0.048 -4.101 19 TOMM40 CON 

rs769449 GG 1.749 -6.527 19 APOE CON 

rs769449 AA -1.792 5.195 19 APOE RISK 

rs769449 AG -0.995 4.194 19 APOE RISK 

rs439401 TT 0.678 -3.277 19 APOE CON 

rs4420638 GA 0.207 3.95 19 APOC1 RISK 

rs4420638 AA 0.803 -6.458 19 APOC1 CON 

rs4420638 GG -1.637 3.913 19 APOC1 RISK 

rs383700 GG -0.179 3.314 21 APP RISK 

rs383700 AG+AA 0.179 -3.436 21 APP CON 

rs440666 TT 0.631 -3.88 21 APP CON 

rs1127721 TT -0.789 -3.543 22 PARVG 
 Note. ‡ rs6859 previously associated with PVRL2. Significant genotypes for both components from the validation 

set. Component 1 primarily separated CON from AD, whereas Component 2 primarily separated AD from the other 

two groups. In the validation analysis, we used the asymmetric version of correspondence analysis (CA) to help 

visualize which genotypes are most associated with each group, and to create identify “control” (CON) and “risk” 

(RISK) regions within the CA components (see Figure 3). Genotypes labeled as CON or RISK indicate which 

region they are in, otherwise their association is more ambiguous in terms of association with risk or control 

(“protective”) factors.  
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Table 3 lists all significant genotypes from Validation. In Figure 3, we highlight 

boundaries to interpret genotypic effects. We focused specifically on two boundaries: (1) the 

boundary associated with the CON group (lower right, blue) and (2) the boundary associated 

with “risk status” (i.e., AD or MCI; upper middle to middle left, red). The relevant SNPs are 

highlighted in their boundary colors in Figure 3 and identified as part of the “RISK” or “CON” 

region in Table 3.  

4. Discussion 

There has been an increased interest in multivariate approaches for genetics [43], 

especially for AD [44].  However, many studies in AD still only use the additive model contrary 

to: (1) known non-linear and non-additive effects (such as in [45–50]), and (2) the fact that the 

genotypic [19] or co-dominant [20,51] models appear to be better suited for complex effects.  

Because of our approach we easily identified more specific genetic contributions to AD 

than other approaches can. We emphasized genotypes instead of presumed additive effects 

within SNPs. Our Validation phase revealed many complex effects that highlight why a simple 

additive model (all in the same presumed direction, i.e., the minor allele), or any a priori model, 

may not be sufficient to characterize complex genetic effects (see also Figure 3 and Table 3); for 

examples: (1) rs769449 is approximately linear where the minor homozygote and the 

heterozygote are in the risk region, and the major homozygote in the control region, (2) 

rs4420638 is approximately dominant where the minor allele is in the risk region, (3) rs440666 is 

approximately recessive where the minor homozygote is in the control region, and (4) rs8052288 

showed a heterozygous effect in the risk region.  

4.1 Specific effects of well-known genes 
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Some of the strongest effects in all of our analyses were associated with genotypes in 

Chromosome 19 (Chr19). These effects included some well-known genes in AD:  TOMM40, 

APOE, APOC, and NECTIN2. However, PLS-CA identified exactly which genotypes contributed 

to which effects (see Fig. 3 and Table 3). For examples, the ‘AA’ genotype of rs769449 (APOE) 

and the ‘GG’ genotype of rs2075650 (TOMM40) are at the extreme of our plot, directly opposite 

of the CON group, and almost exactly half way between AD and MCI (Fig. 3). This means that 

‘AA’ in rs769449 and GG in rs2075650 rarely occur in CON, but tend to occur roughly equally 

in both the AD and MCI groups. Most importantly for Chr19 effects: our Discovery phase 

identified ‘AA’ of rs6859 associated with the presence of APOE E4, whereas our Validation 

phase identified ‘GG’ of rs6859 associated with the CON group. While the “direction” of the 

effect is the same across both studies, the source of the effect was not (i.e., minor allele vs. major 

allele). Taken together, the Discovery and Validation analyses suggest that, depending on the 

genotype, rs6859 confers both a risk and a possibly protective factor. 

APP is also well-known in AD [52]. We found that APP was identified through the Dx-

GWAS in Discovery and also showed effects in the Validation analyses (see Table 3). The 

Validation analyses show that various APP genotypes were associated with “risk” and “control” 

(Fig. 3 and Table 3). Given the findings across both our Discovery and Validation phases, our 

findings here suggest that APP is more related to diagnostic criteria than to APOE distribution, 

and that specific APP genotypes provide possibly protective effects (e.g., ‘TT’ in rs440666). 

4.2 Lesser-known and novel genetic effects 

We found risk specific genotypes from SNPs in the GPC6 and RBFOX1 genes (Table 3; 
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Fig. 3). Both of these genes have been associated with pathological or cognitive phenotypes of 

AD. These two genes have shown associations with very different phenotypic or outcome 

measures in AD. RBFOX1 has been associated with pathological effects in the brain, such as 

neurofibrillary tangles [53] as well as neuroimaging phenotypes [54] and hippocampal volumes 

[55] in AD. In contrast, GPC6 has been associated with cognitive and behavioral decline in AD 

[56].  

Our analyses also revealed several novel genetic effects. Some of these were “control” 

effects, and some were “risk” effects. Of the control-associated effects, we found contributions 

from genotypes in the PTPN14, CPNE5, and LINC00504 genes. Additionally, we also found 

contributions from genotypes in the ZYG11AP1 and LOC100421294 genes, where each had 

various genotypes associated with both “control” and “risk” effects. There are no reported effects 

of rs1501158 (LINC00504) and rs10990353 (ZYG11AP1 / LOC100421294) in AD, dementia, or 

the cognitive aging literature. CPNE5 has not been reported in AD but has been associated with 

other neurodegenerative diseases [57].  

Finally, there were also several stable effects that were “ambiguous” (i.e., we could not 

classify as “risk” or “control” because they fall outside of our designated regions). However, 

these effects are of interest because (1) effects appear in both analyses and (2) of their 

associations in various neurodegenerative disorders or their interactions with other genes that 

play substantial roles in AD. PARVG has been associated with Parkinson’s Disease [58] and 

neurodegeneration [59]. Furthermore, RAD51B, NCALD, and DISC1 are rarely reported in AD, 

but they have been associated with the amyloid precursor gene APP [60]. RAD51B has also been 

associated with macular degeneration [61,62]. Furthermore, DISC1 has been associated with 

late-onset AD [63], as well as Aβ production [64]. 
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5. Conclusions 

Like in our work here, [54–56] use the ADNI sample. However, these studies use more 

complex study designs or more complex methods, which, in some cases [54,55], demand vast 

computational resources. Other work, such as [56], also have more data and larger samples. 

Furthermore, [65] also used the ADNI sample and have recognized the utility and power of the 

genotypic model. Yet, compared to all of these approaches, our much simpler and 

computationally less expensive approach (with a comparable or smaller sample size than these 

other studies) found some of the same effects reported in all of the aforementioned papers, such 

as the contributions of GPC6 and RBFOX1. PLS-CA also found a number of well-known genetic 

contributions to AD such as the effects across Chr19. The Chr19 effects were important because 

they highlight that our method can and does identify well-known and robust effects, and thus 

illustrates validity for the problems at hand. But more importantly, we identified many novel 

effects that otherwise could not be detected without a more general approach. Taken together, 

our study helps reveal some of the genetic complexities of AD, especially in that we have 

identified many genotypes from many genes that contribute in a variety of ways (e.g., minor 

allele as possibly protective, heterozygous effects). 

 PLS-CA has many advantages over traditional and more recent approaches to GWAS. 

First, PLS-CA does not make assumptions about genotypic effects, rather, PLS-CA reveals the 

types of effects (e.g., additive, dominant) and the directions of these effects. More importantly, 

because PLS-CA is a multivariate technique, it actually provides estimates of the contributions of 

these genotypes to polygenic effects (see BSRs in Table 3 or component scores in Figure 3). 

Together these features of PLS-CA are particularly suited for our problem. PLS-CA has 

identified and specified the expected complex genetic contributions to AD, and thus techniques 
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such as PLS-CA help making clearer interpretations, as well as reduce false positives, non-

replications, conflicting reports, and otherwise problematic interpretations of genetic effects. 

5.1 Limitations 

 The ADNI data sets are, by today’s standards, relatively small samples for such a study. 

However, our study design emphasized our Validation step to help confirm effects identified in 

Discovery. Additionally, our Validation phase could have weighted the candidates based on 

bootstrap ratios from the Discovery phase to emphasize the strength of effects. However, we 

chose not to and opted for a more data-driven strategy. Ultimately this choice was beneficial: for 

example, if we had used weighted values in the Validation phase we may have missed effects 

such as those associated with rs6859 (i.e., rs6859 expressed different effects in Discovery 

compared to Validation). Furthermore, the individuals within these groups are heterogeneous, 

and could possibly have confounding factors (e.g., vascular incidents) or misdiagnoses. Because 

of the difficulty of diagnosing AD in vivo, we are limited in our claims to AD broadly, but have 

provided a clearer genetic landscape of the cohorts within ADNI-1 and ADNI-GO/2. Thus, the 

effects we have identified should be further verified in a predictive analysis wherein individuals 

could be genotyped for the specific markers we have identified; which may be possible through 

similar studies that are in progress (e.g., ADNI-3, the Ontario Neurodegenerative Disease 

Research Initiative [66]). 
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Supplemental Material 

Table S1 
Dx GWAS Significant genotypes  
 
(a) Dx GWAS Component 1 (AD vs. MCI) – significant genotypes 
 

rsid genotype BSR –1 BSR –2 Chr Gene Symbol 
rs1061622 GG -5.320 -1.059 1 TNFRSF1B 

rs6696924 GG -5.516 -0.177 1 C8A 

rs679350 TT -5.007 -0.244 1 C8A 

rs1522551 TT -5.075 -0.197 3  

rs7626449 AA -5.332 0.454 3  

rs13157174 GG -5.170 -0.074 5 LINC02216 

rs2875382 TT -5.057 -1.290 6 MRAP2 

rs4501410 GG -6.050 1.185 6  

rs11783013 GG -5.498 -0.397 8  

rs902466 TT -5.440 0.230 10 ARHGAP19-SLIT1 

rs16977252 GG -5.617 -0.471 15 AKAP13 

rs12934725 GG -5.230 0.536 16 RBFOX1 

rs9952815 GG -6.027 0.745 18 NOL4 

rs283168 TT -5.331 -0.389 19  

rs916326 GG 5.356 0.315 20 PTPRT 

rs13054435 AA -5.541 -0.213 22 NUP50-AS1 

rs4820946 CC -5.641 -0.500 22 MIR3928 
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(b) Dx GWAS Component 2 (CON vs. {AD & MCI}) – significant genotypes 
 

rsid genotype BSR - 1 BSR - 2 Chr Gene 
rs1115763 CC -1.001 5.970 2  AC007682.1 

rs12618595 AC+AA 1.418 5.474 2  OSBPL6 

rs1470524 TT -1.144 5.178 2  
 rs1387089 CT+CC -0.701 5.015 3  
 rs1387094 GT+GG -0.541 5.004 3  
 rs4685465 GT+GG -0.765 5.136 3  
 rs9821034 GG 0.905 5.370 3  
 rs3846336 AG+AA 0.462 5.329 4  CCDC149 

rs6448119 TT 0.027 5.711 4  
 rs6812046 TT 0.355 5.462 4  
 rs6851636 GG -0.371 5.457 4  
 rs7656406 AA 0.184 5.480 4  
 rs6882277 GG 0.230 5.867 5  
 rs13236754 GG -0.163 5.234 7  ZNF398 

rs1557664 GG 1.430 5.924 7  
 rs9640538 AA -0.297 5.487 7  
 rs10814567 GG 0.160 5.360 9  POLR1E 

rs10814571 AA -0.128 6.816 9  POLR1E 

rs1590255 CA+CC -0.732 5.042 9  
 rs3739574 TT -0.121 6.805 9  POLR1E 

rs7468695 GA+GG -1.168 5.073 9  
 rs11598825 AA -0.487 5.257 10  ITIH5 

rs947696 TT 1.400 5.473 10  
 rs11160481 CC 0.013 5.017 14  
 rs1243473 TT 0.439 5.782 14  ARHGEF40 

rs4635275 AA 0.002 5.028 14  
 rs7146951 GG 0.005 5.764 14  
 rs9806693 AA -0.668 5.969 15  MORF4L1 

rs4789240 TT 1.051 5.089 17  SDK2 

rs9892996 AA -1.531 6.928 17  
 rs9949152 CC -3.019 5.005 18  
 rs2075650 AA 3.295 -5.584 19  TOMM40 

rs7251241 AA 0.937 5.282 19  UNC13A 

rs2830052 CC -0.086 5.614 21  APP 

rs8141950 TC+TT 0.767 5.674 22  PARVB 

 
 
Note. Significant genotypes from Dx GWAS Components 1 (a) and 2 (b). Gene symbols via 

NCBI2R. Component 1 separated AD from MCI, thus, most genotypes here are more associated 
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with AD than MCI; the exception is rs916326 where GG is more associated with MCI than AD. 

Component 2 separates CON from {AD & MCI}, thus, most genotypes here are more associated 

with disorder status (AD or MCI) than CON; the exception is rs2075650 where AA is more 

associated with CON than disease status. 
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Table S2 
ApoE GWAS Significant genotypes  
 
(a) ApoE GWAS Component 1 (Presence vs. Absence of E4) – significant genotypes 
 

rsid genotype BSR - 1 BSR - 2 Chr Gene Symbol 
rs10830213 GG 6.537 -0.724 11  RAB38 

rs157580 AA -7.842 -2.918 19  TOMM40 

rs157580 GG 14.612 -2.130 19  TOMM40 

rs2075650 AA 15.323 -0.619 19  TOMM40 

rs405509 AA -6.101 -2.567 19  APOE 

rs405509 CC 6.701 -1.244 19  APOE 

rs439401 CC -8.703 -2.630 19  
 rs6859 AA -5.614 -3.096 19  NECTIN2/PVRL2 

rs8106922 AA -7.514 -3.490 19  TOMM40 

rs8106922 GG 20.928 -4.430 19  TOMM40 
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(b) ApoE GWAS Component 2 (2 E4 alleles vs. {0 or 1}) – significant genotypes 
 

rsid genotype BSR - 1 BSR - 2 Chr Gene Symbol 
rs2000072 AA -0.211 5.066 1 LINC00624 

rs4253890 CC -1.077 5.985 1 PTPN14 

rs6681032 TC+TT 0.157 5.439 1 
 rs6703696 GA+GG 0.169 5.604 1 
 rs7541019 GG 0.576 5.069 1 TSNAX-DISC1,DISC1 

rs11899115 AA -0.640 5.996 2 
 rs13009482 CT+CC -1.383 5.696 2 
 rs722963 TT -0.288 5.093 2 
 rs10019637 CC -0.964 5.412 4 
 rs10804966 AA -0.151 5.267 4 EVC 

rs300574 TT 0.275 5.860 4 SPRY1 

rs7678082 TC+TT -0.105 5.196 4 WWC2 

rs7681283 GG -0.168 5.278 4 EVC 

rs868082 TC+TT -0.187 6.130 4 
 rs10041935 CC -0.895 5.750 5 
 rs236444 TT -1.938 7.117 6 CPNE5 

rs1673206 TT -1.294 5.026 7 
 rs6960851 AA -0.713 5.079 7 
 rs537941 TT -0.730 5.270 8 NCALD 

rs1492598 AA -0.933 5.119 9 
 rs4935847 TT -0.247 6.085 11 
 rs1647147 GG -1.396 5.407 12 
 rs16928445 TT 0.609 5.015 12 LRMP 

rs4759955 TT -0.490 5.903 12 TMEM132D 

rs6582412 AA -1.433 5.113 12 
 rs944838 CC 0.373 5.917 13 GPC6 

rs9549831 AA 0.454 5.082 13 
 rs4905290 GG -0.457 5.019 14 CLMN 

rs6573852 GG 0.438 5.294 14 RAD51B 

rs7148010 TT 1.018 5.112 14 SMOC1 

rs10519492 GA+GG -0.468 5.537 15 
 rs6496431 GG -0.087 5.072 15 
 rs714900 TC+TT -0.627 5.611 15 
 rs7177541 AA -0.664 5.299 15 
 rs4500815 AA -0.280 5.300 18 CTIF 

rs9955327 CC -1.958 5.021 18 CELF4 

rs10423685 TT -0.479 5.053 19 ZNF600 

rs157580 GA 4.603 8.591 19 TOMM40 

rs6509238 CC 0.056 5.038 19 
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rs8106922 GA 3.703 9.456 19 TOMM40 

 
(c) ApoE GWAS Significant genotypes on both Components. 
 

rsid genotype BSR - 1 BSR - 2 Chr 
rs2075650 GA -17.593 7.374 19 
rs2075650 GG -25.132 -13.27 19 
rs439401 TC 5.052 7.920 19 
rs439401 TT 25.848 -5.790 19 

 
 

Note. Significant genotypes from ApoE GWAS Components 1 (a), 2 (b), and on both 

Components (c). Gene symbols via NCBI2R. Component 1 separated presence from absence of 

E4 alleles. Genotypes that have a negative bootstrap ratio (BSR) were more associated with the 

presence of an E4 allele. Component 2 separated, essentially, the 2 E4 alleles from the other (0 or 

1) E4 alleles. In (b) all genotypes were more related to the absence of 2 E4 alleles. In (c) these 

genotypes contribute to both components and suggest that these genotypes are in very high 

linkage disequilibrium with ApoE (note that the GG genotype of rs2075650 strongly contributes 

to both components and in the same direction as the presence 2 E4 alleles). 
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Supplemental Figure 1. The component map from the Dx-GWAS (discovery phase). The 

component map shows significant genotypes and the group configuration to illustrate—as a 

biplot—the relationship between the genotypes and groups. 
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Supplemental Figure 2. The component map from the ApoE-GWAS (discovery phase). The 

component map shows significant genotypes and the group configuration to illustrate—as a 

biplot—the relationship between the genotypes and groups. 
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