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Abstract 11 

Automated methods of monitoring ecosystems provide a cost-effective way to track 12 

changes in natural system’s dynamics across temporal and spatial scales. Whilst 13 

much work has been done on automated analyses, methods of recording and storing 14 

data captured from the field still require significant manual effort. Here, we 15 

introduce an open source, inexpensive, fully autonomous ecosystem monitoring 16 

unit for capturing and remotely transmitting continuous data streams from field 17 

sites over long time-periods. We focus on the case of autonomous acoustic 18 

monitoring of tropical rainforests, but we give examples of how the modular design 19 

is easily modified to collect data from alternative sensor types in any environment 20 

with mobile coverage. Having surveyed the existing methods, we show how our 21 

system can outperform comparable technologies for fractions of the cost. The solar 22 

powered device is based on a Raspberry Pi, and transmits data through a mobile 23 

network link to a central server to provide a near real-time stream of data. The 24 

system is robust to unreliable network signals, and has been shown to function in 25 

extreme environmental conditions, such as in the tropical rainforests of Sabah, 26 

Borneo. We provide full details on how to assemble the hardware, and the open-27 

source software running on the Raspberry Pi. Paired with appropriate automated 28 
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analysis techniques, this system could provide spatially dense, near real-time, 29 

continuous insights into ecosystem and biodiversity dynamics for a low cost. 30 

1 Introduction 31 

Rainforests in tropical regions around the world hold an enormous wealth of 32 

biodiversity, especially where undisturbed (Gibson et al., 2011). As the global 33 

population continues to grow these habitats have come under pressure from 34 

increasing levels of deforestation, affecting life within the forest (Sala et al., 2000; 35 

Sodhi et al., 2004). One way to quantify the effect of these changes is to track changes 36 

in biodiversity across temporal and spatial gradients. For example, the biodiversity 37 

at one site may be measured over time as the use of the forest changes (Magurran 38 

et al., 2010), or the biodiversity at various sites already experiencing different uses 39 

could be compared (Wilson et al., 2004). In practice, however, quantifying 40 

biodiversity is difficult (Gotelli and Colwell, 2001), with data routinely suffering 41 

from observer bias and from undersampling both spatially and temporally (Foster 42 

and Harmsen, 2012; Leach et al., 2016; Zwart et al., 2014). Increasingly scientists 43 

have moved towards automated methods of biodiversity assessment in order to 44 

bypass these limitations, a trend especially evident in the field of acoustic 45 

monitoring (Acevedo and Villanueva-Rivera, 2006; Pijanowski et al., 2011). 46 

Any automated monitoring effort requires two fundamental stages: data recording 47 

and data analysis. Despite the fast pace of progress being made in automated 48 

acoustic data analysis techniques using machine learning methods such as 49 

convolutional neural networks (Cakir et al., 2016; Piczak, 2015; Salamon and Bello, 50 

2016), unsupervised feature learning (Salamon et al., 2016; Stowell and Plumbley, 51 

2014), Gaussian mixture models (GMM) (Lee et al., 2013; Zhao et al., 2017), hidden 52 

Markov models (HMM) (Aide et al., 2013; Ventura et al., 2015), and random forests 53 

(Bravo et al., 2017), progress on automated data recording for acoustic analyses has 54 

been less rapid. 55 
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Current standard practice within the bio-acoustics community for data collection is 56 

to use a semi-automated approach. Typically, a recording unit (e.g. from the Wildlife 57 

Acoustics Song Meter range www.wildlifeacoustics.com/) is deployed for a set 58 

amount of time, and subsequently manually collected from the field when the data 59 

analysis is to be done (Briggs et al., 2012; Darras et al., 2016; Heinicke et al., 2015; 60 

Newson et al., 2017; Wrege et al., 2017; Zwart et al., 2014). The duration of 61 

deployment is limited by both the local storage capacity of the recording device and 62 

its battery life. For example, performing continuous audible range recordings with 63 

a default configuration of the Wildlife Acoustics Song Meter 4 will allow a maximum 64 

deployment of 450 hours (18.75 days) before a battery replacement is required. Due 65 

to the high cost of commercially available equipment, inexpensive alternatives have 66 

been developed to perform the same task (Maina et al., 2016; Whytock and Christie, 67 

2016). Nevertheless, these systems still require regular visits post-deployment to 68 

collect data and replace batteries, increasing their effective cost and limiting their 69 

potential scalability. 70 

Only a small handful of projects have attempted truly autonomous acoustic 71 

monitoring, notably Cyberforest (Saito et al., 2015) and ARBIMON (Aide et al., 72 

2013). These systems employ solar panels to provide indefinite power sources, and 73 

remotely upload the audio data as it is recorded. Both systems, however, require 74 

large initial investments in infrastructure (e.g. satellite internet (Saito et al., 2015) 75 

and long distance RF communications equipment (Aide et al., 2013)) running into 76 

thousands of pounds per unit, which hinder their viability as a global solution. 77 

Challenges such as providing a long-term power source and enabling automated 78 

data transmission are not unique to the field of acoustic monitoring. In this study 79 

we outline the design for an inexpensive autonomous ecosystem monitoring device 80 

based around a low-power Raspberry Pi, costing under £250 ($331 USD) per unit, 81 

which will enable continuous data collection from remote field sites. We present the 82 

specific case of an autonomous acoustic monitor. However, the modular design of 83 

the equipment facilitates long-term continuous monitoring from a variety of sensors 84 
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with only minor modifications. We demonstrate this flexibility by implementing a 85 

time-lapse camera unit in place of a microphone. 86 

The equipment has been successfully field-tested in the tropical rainforests of Sabah, 87 

Malaysia at the SAFE project field site (Ewers et al., 2011) over two trial periods 88 

spanning a total operational time of over 6 months. In addition to the hardware 89 

configuration, we provide open source code that runs upon the Raspberry Pi which 90 

can be customised to meet the requirements of individual projects 91 

(www.github.com/sarabsethi/rpi-eco-monitoring). Paired with the appropriate 92 

automated data analysis techniques, the proposed system can facilitate near real-93 

time and continuous monitoring of rainforest biodiversity over extended periods of 94 

time. 95 

2 Methods 96 

2.1 A robust, open, autonomous and networked system design for real-97 

time data capture 98 

In this study, we describe the design of an autonomous ecosystem monitoring unit 99 

that will provide a near real-time continuous data stream from remote field sites 100 

over a period months, with no visits to the equipment required post deployment. 101 

The core requirements for the system are as follows. Data should be captured from 102 

the chosen sensor and uploaded automatically from the field even in the presence 103 

of unreliable and intermittent data connections. The data quality should be as high 104 

as possible to facilitate accurate analyses, whilst maintaining a balance with file size 105 

and working within the limitations of the data connection. Software running on the 106 

monitoring unit should be remotely modifiable to enable operational flexibility 107 

without requiring physical retrieval. The system should be powered by a renewable 108 

source so that battery replacements are not required during the deployment, and so 109 

that excessively large batteries are not a hindrance to installation.  110 
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Our implementation of this autonomous recording unit consists of three main 111 

components (Figure 1): (i) the core data capturing electronics based around a 112 

Raspberry Pi computer; (ii) a mobile network link to enable continuous remote 113 

uploading of the data; and (iii) a solar powered battery system as a renewable power 114 

source. 115 

 116 

Figure 1: A schematic of the autonomous ecosystem monitoring system. Here 117 
we show how data is continuously captured from an ecosystem and uploaded 118 
automatically from the field to a remote server using our system. The monitoring 119 
unit itself consists of three core components: (i) the core data capturing electronics, 120 
(ii) a mobile network link for uploading data, and (iii) a solar power system. 121 

The monitoring unit reboots each morning at a user-determined time (02:00 by 122 

default). On each boot, the latest version of the software running on the Raspberry 123 

Pi is pulled from a GitHub repository, and console logs generated from the previous 124 

day’s operation are transmitted to the server. The logs provide an opportunity to 125 

conduct remote debugging, and the software updates allow modifications to be 126 

made to the data capturing and uploading logic without requiring physical retrieval 127 

of the monitoring units. These software updates add only a small amount to the total 128 

network load of the device; as of December 2017 the size of the repository is 242kB. 129 

All software running on the Raspberry Pi has been made open-source on GitHub 130 

under the GNU GPLv3 license, and prepared Raspbian SD card images with the 131 
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software pre-installed are also available online. Both can be found at 132 

www.github.com/sarabsethi/rpi-eco-monitoring. 133 

2.2 Low cost core recording electronics 134 

Capture, compression, storage and transfer of the data is managed by a Raspberry 135 

Pi A+ connected to a sensor input, and a Huawei E3531 USB 3G dongle for 136 

connection to the mobile network. The Raspberry Pi runs Python scripts on start-up 137 

which (after checking for software updates) employ a multi-threaded scheme to 138 

continuously record data from the sensor input, and simultaneously in the 139 

background compress and upload processed data files to a remote server.  140 

In this study we focus on the application of acoustic monitoring, employing as a 141 

sensor a Rode SmartLav+ omnidirectional capacitor microphone connected through 142 

a Ugreen USB sound adaptor, as an alternative to the discontinued Cirrus Logic 143 

audio card header used in the Solo recorder (Whytock and Christie, 2016). Single 144 

channel 16-bit audio is recorded at a sampling rate of 44.1kHz (Nyquist frequency 145 

of 22.05kHz) in default segments of 20 minutes. Once one 20-minute segment has 146 

finished recording, the audio is stored in an uncompressed WAV file locally on the 147 

Pi, labelled according to its recording start date and time, and immediately the next 148 

recording begins. 149 

Recording raw sensor data can result in very large file sizes. Thus, whilst not always 150 

necessary, for the case of remote acoustic monitoring it is desirable to compress the 151 

data prior to uploading. In a background thread the 20-minute raw WAV file is 152 

compressed to the lossy format MPEG Audio Layer III (MP3), employing the LAME 153 

codec with variable bit-rate encoding at the highest quality available (≈ 245 kbit/s). 154 

This compression reduces each 20-minute file size from 105 MB to approximately 155 

20 MB, achieving over 5x compression. Lossy compression was chosen over lossless 156 

compression to ensure manageable file sizes, and MP3 was chosen over other lossy 157 

compression formats (e.g. AAC) for its widespread use and flexibility. Similarly, for 158 

pictures the lossy JPEG scheme was used to compress images before transmission, 159 

reducing image file sizes by approximately a factor of four.  160 
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2.3 A robust mobile network upload 161 

Once the compression is complete, the data file is uploaded to a central FTP server 162 

using the 3G dongle to connect to a mobile network. This system is designed to be 163 

deployed in remote regions, where the mobile network signal can drop out for days 164 

at a time due to poorly maintained infrastructure. Therefore, we have built 165 

robustness into our data uploading scheme to account for unreliable and 166 

intermittent connections, ensuring that data is still recorded from the sensor input 167 

continuously when the system is off-line, and subsequently uploaded to the server 168 

when a network connection is made available once again. The 20-minute duration 169 

of the recording and uploading cycle was chosen to ensure individual files were of a 170 

manageable size, without placing unnecessary load on the mobile network data link. 171 

If desired, this value (along with other recording and compression parameters used) 172 

can be modified in the open-source code to fit different use-cases. 173 

Initially, an attempt is made to upload the compressed data file to the server. If the 174 

full file is received by the server, the local copy of the file is deleted on the client side. 175 

However, if a mobile connection is temporarily unavailable the monitoring system 176 

stores the data file locally and adds it to a queue. On the next upload cycle the system 177 

re-attempts the transfer of all data files still stored locally on the Raspberry Pi. 178 

By deleting files that have successfully been uploaded, the storage space on the 179 

device only acts as a buffer between the monitoring system and the remote server. 180 

This is essential for a system to be able to monitor continuously over extended time 181 

periods. The default set-up for our autonomous recording unit includes a 64GB 182 

micro-SD card allowing for over one month of audio data to be stored locally at any 183 

one time. If this capacity is filled, new recordings are not captured until an internet 184 

connection is reinstated and the transfer of data to the server is resumed. In practice 185 

allowing for one month of offline data is an overly cautious approach, and unit cost 186 

can be reduced by using a smaller micro-SD card, especially when deploying 187 

recording units in areas with reliable data connections. Furthermore, unlike 188 

systems which implement live data streaming using packages such as DarkIce (a 189 
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software which allows live streaming of audio directly from a sound card to a 190 

streaming server: www.darkice.org/), this uploading scheme deals with files in a 191 

general manner allowing the same code-base to be used when monitoring other 192 

forms of data, such as images or environmental measurements. 193 

2.4 Continuous monitoring: solar power and batteries 194 

To ensure fully continuous monitoring over a long time period we use a solar power 195 

system (Figure. 2). A Gamma 3.0 solar charge controller is connected to a 30W solar 196 

panel, a 12V 10Ah AGM (Absorbent Glass Mat) deep-cycle battery, and a 12V to 5V 197 

DC step down converter which ultimately powers the Raspberry Pi. The charge 198 

controller regulates the voltage coming from the solar panel and battery terminals 199 

to ensure a steady 12V DC is supplied to the load. In the case of an unusually long 200 

period of darkness the controller will stop providing current to the load to ensure 201 

the battery is not damaged from over-discharging. When there is sufficient power 202 

to recharge the battery up above a certain safety threshold, power is reinstated to 203 

the load terminals and the recording unit resumes usual operation. 204 

 205 

Figure 2: A schematic of the solar power system used. Here we show the solar 206 
power system used to power our recording unit continuously over long time 207 
periods. The components shown are: (a) a solar charge controller, (b) a 30W solar 208 
panel, (c) a 12V 10Ah AGM deep-cycle battery, and (d) the DC step down unit 209 
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connecting the 12V load terminal to the 5V Raspberry Pi power input. Red and black 210 
lines indicate wires carrying positive and negative voltages respectively. 211 

2.5 Full component list 212 

Table 1 shows the full parts list required to build our autonomous ecosystem 213 

monitoring unit, along with typical costs for each component in the case of acoustic 214 

monitoring. The total unit cost comes to a one-off cost of £227.40 plus £30 per 215 

month for the mobile network data link (Celcom Malaysia). This is the default 216 

configuration, however the costs can be reduced by a number of means, for example 217 

by forgoing the solar component or using a smaller local micro-SD card. 218 

For comparison, a basic setup of the Wildlife Acoustic Song Meter 4 (SM4) comes to 219 

over $1000 USD (~£749), and no configurations are available which offer solar 220 

power or remote data uploading. The ARBIMON permanent station, despite not 221 

providing a continuous audio stream (only one of every ten minutes is recorded), 222 

otherwise provides comparable functionality to our autonomous recording units 223 

and costs $4000 USD (~£2994) not including the cost of a data link (Aide et al., 224 

2013). We further note that all design specifications and code for our system 225 

monitor is open source, which is not the case for these comparison systems. 226 

Table 1: Autonomous acoustic monitoring unit cost breakdown. Parts list and 227 
typical costs for one autonomous ecosystem monitoring unit assembled in the UK, 228 
as of August 2017. In this case the system is configured for acoustic monitoring 229 

Item Cost (GBP £)

One-off costs 

Raspberry Pi A+ 21.59

SanDisk 64GB SD card 17.39

Huawei E3531 3G dongle 21.00

Dri-box weatherproof box 10.09

Anker powered USB hub 20.00

12V to 5V DC step down converter 6.29

12V 10Ah AGM deep-cycle battery 23.98

Solar charge controller 10.99
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30W solar panel  45.08

Audio sensor costs 

Ugreen USB audio card 6.99

Rode SmartLav + electret microphone 44.00

Operational costs 

  60GB data sim card 30.00 per month

 

Total 227.40 + 30 per month

 230 

2.6 Alternative sensor types and configurations 231 

The modular design of the autonomous recording unit, with the robust data 232 

uploading scheme creates a device that is flexible enough to collect data of many 233 

other types, as well as the example of audible range audio used here. For example, 234 

in two units the audio card and microphone was replaced with a standard 5MP USB 235 

camera. In these units, a single image was captured every 20 minutes and was 236 

uploaded to the server, allowing us to create a long term time-lapse series. Similar 237 

modifications could be made to facilitate long term autonomous data collection of 238 

other data types such as air temperature, wind-speed, light levels, rainfall and 239 

motion-activated camera traps. Additionally, audio data from an array of 240 

microphones could be recorded from one device to enable spatial localisation of 241 

specific calls within the soundscape, or ultrasonic microphones could be substituted 242 

to target different taxa such as bats. It should be noted that recording continuous 243 

audio data over long time-periods is a far more challenging task than sensing most 244 

other environmental variables, in terms of the reliability required, power 245 

consumption, and the volume of data being handled. Therefore, when considering 246 

other sensor types it is likely that other components in the system can be replaced 247 

with cheaper alternatives to save costs.  248 

To an extent, all components are customisable but specific examples include: (i) 249 

reducing the size of the SD card in applications with lesser data requirements (e.g. 250 

temperature and humidity measurements), or in locations with more reliable 251 
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internet connections; (ii) increasing the size of the solar panel and battery for 252 

sensors that consume more power (e.g. pH measuring devices); or (iii) swapping in 253 

a more powerful Raspberry Pi model when increased computing power is required 254 

(e.g. when processing high definition video). 255 

 256 

3 Field Trials 257 

Our field tests have been primarily based at the SAFE project, a large-scale 258 

fragmentation experiment located in the tropical rainforests of Sabah, Malaysia 259 

(Ewers et al., 2011). Additionally, long-term tests have been carried out in a 260 

residential area of London, UK to show the systems viability in temperate climates 261 

with less consistent sunlight. 262 

In March 2017 two acoustic monitoring units and two time-lapse camera units were 263 

deployed (Figure. 3) at SAFE over a period of four months. One audio recording unit 264 

was placed in primary rainforest and the other was placed in an area of heavily 265 

logged forest. The two time-lapse cameras were placed on top of a 53 m tall carbon 266 

flux tower, and to a 50 m tree overlooking the SAFE camp respectively. These trials 267 

highlighted that low quality SLA batteries showed sensitivity to high temperatures 268 

and deep-cycling, and therefore all four monitoring units had occasional periods of 269 

inactivity as the batteries deteriorated over the deployment. These batteries were 270 

replaced with deep cycle AGM batteries in subsequent iterations of the system, 271 

rectifying the issue. Despite the battery deterioration, the monitoring units 272 

continued to boot and resume recording of data automatically when enough power 273 

was available and the remote uploading scheme performed as designed, as all files 274 

that were recorded on the monitoring units were uploaded successfully to the 275 

remote server despite regular periods of network outages. 276 

 In October 2017 a further four acoustic monitoring units were deployed at SAFE 277 

(three in logged forest and one in primary forest). All four units from the second 278 

deployment were still operating as designed as of December 2017. One further 279 
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acoustic recorder has been intermittently tested at a residential location in central 280 

London since March 2016. 281 

 282 

Figure 3: Canopy mounting of the autonomous monitoring unit. Here we display 283 
how the autonomous acoustic monitoring units were mounted in the canopy at SAFE 284 
Project. (a) A series of aluminium rods were affixed to the tree to allow the solar 285 
panel to reach direct sunlight out of the shade of the canopy. (b) A close-up view of 286 
the inverted monitoring unit with all components attached 287 

3.1 Acoustic monitoring  288 

Over 4,400 total hours of audio (approx. 275 GB) has been recorded and transmitted 289 

from the SAFE project sites from the six acoustic monitors. From the acoustic 290 

monitoring unit in London, over 4,000 hours (approx. 250GB) of data has been 291 

recorded and uploaded. The longest fully continuous period of acoustic monitoring 292 

from the tropical forest recorders is still ongoing, and currently stands at 744 hours 293 

(31 days).  294 

A one-week period of continuous audio data spanning 16-23 November 2017 from 295 

a logged forest site in SAFE is visualised in Figure 4 (a) using a false colour index 296 

spectrogram (Towsey et al., 2014) 297 

(www.github.com/sarabsethi/false_colour_index_spectrogram). A daily periodicity 298 

is clearly visible in the spectrogram, most notably due to the difference in 299 

vocalisation patterns between the diurnal and nocturnal taxa recorded. In Figure 4 300 

(b) we calculate the acoustic diversity index (ADI) (Villanueva-Rivera et al., 2011) 301 

(www.github.com/sandoval31/Acoustic_Indices) for one minute at 12.20pm each 302 

day over a period of three months at a logged forest site starting from 12 April 2017. 303 
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Such a visualisation facilitates easy outlier identification. For example, in this case 304 

the low ADI value seen at day 0 is caused by anthropogenic noise recorded during 305 

installation of the unit, and at day 57 is caused by a Wreathed Hornbill calling in the 306 

foreground which is not heard at this time of day in the other recordings. 307 

 308 

Figure 4: Long duration audio data visualisations. A continuous one-week period 309 
of audio recorded from SAFE project is displayed in (a) using a false colour index 310 
spectrogram. In (b) the acoustic diversity index is calculated and plotted for one 311 
minute at 12.20pm each day over a monitoring period of three months. 312 

Prolonged exposure to high temperature and humidity could have an adverse effect 313 

upon the electronics within our system. Through our first round of field tests we 314 

demonstrated that even after a six-month deployment in a tropical rainforest the 315 

autonomous monitoring system was able to record and remotely transmit data, 316 

having been exposed to temperatures up to approximately 31.5 degrees Celsius and 317 

an average 614mm of precipitation per month. Furthermore, we measured the 318 

frequency response of the microphone to a logarithmic sinus sweep test between 319 

20Hz and 20kHz and found no significant difference in response between a new 320 
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microphone and one that had been deployed for 26 weeks at the SAFE project 321 

(Figure 5) (www.github.com/sarabsethi/mic_sweep_test_matlab).  322 

323 
Figure 5: Frequency response of microphone remains approximately constant 324 
over deployment time. The frequency response of a brand-new microphone is 325 
measured before (in black) and after a 26-week deployment (in blue).  326 

 327 

3.2 Time-lapse camera  328 

Two time-lapse cameras deployed captured and transmitted over 8,300 images 329 

(approx. 24GB) combined during their deployment. Figure 6 shows a series of 15 330 

images from the same autonomous time-lapse camera unit installed on the carbon 331 

flux tower, each taken one week apart. Whilst differing weather conditions caused 332 

automatic adjustments of the camera’s exposure for each image, there is no visible 333 

degradation in the quality of the photos over this three month period. 334 

 335 
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Figure 6: Time-lapse camera images over 15 weeks. A time-lapse camera unit was 336 
installed on a 53m carbon flux tower; here 15 images are shown, each taken one 337 
week apart. 338 

 339 

4 Discussion 340 

In this study we have introduced an inexpensive method of continuous, autonomous 341 

ecosystem monitoring. The equipment has been shown to be robust and versatile 342 

through successful field testing in both tropical and temperate climates. 343 

The volume of data collected through long term continuous ecosystem monitoring 344 

using such equipment requires consideration. Other studies have performed 345 

analyses directly on the monitoring device at the point of data capture as a way of 346 

reducing the volume of data being transmitted (Deniz et al., 2017). This reduces the 347 

data storage requirements of the device since only analysed statistics derived from 348 

the raw data are kept. However, discarding the raw data limits the use of the 349 

monitoring unit as a general tool as it does not allow re-analysis of the original data 350 

using ever-improving techniques.   351 

For acoustic monitoring, employing the 24-hour recording schedule and VBR MP3 352 

compression used in this study can lead to almost 700 GB of data being recorded per 353 

unit in one year. Whilst many commercial providers offer large data storage options, 354 

plans on this scale can prove costly. Furthermore, performing real-time analyses on 355 

such a large volume of data will either place constraints on the complexity of the 356 

techniques used, or will require significant computing resources to be employed. 357 

For the task of species identification from audio data, for example, it has been shown 358 

that selecting subsets of the acoustic data during known active calling hours can lead 359 

to representative results (Zwart et al., 2014). The open source code used in our 360 

system can be easily modified to accommodate for customised recording schedules, 361 

and thus reduce data storage requirements. 362 

To help alleviate the issues associated with such large amounts of data we include a 363 

stage of data compression before remote transmission. However, when using lossy 364 
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forms of compression, it is important to consider a potential degradation of the 365 

quality of the signal. For acoustic monitoring we use MP3 compression, which, like 366 

many other lossy compression schemes, employs perceptual coding to remove parts 367 

of the audio signal that are not audible to human ears (Brandenburg, 1999). 368 

Previous studies have shown that MP3 compression has little effect upon the ability 369 

of trained birders to discern calls in a recording, as compared to using the 370 

uncompressed WAV file format (Rempel et al., 2005). However, future studies could 371 

further investigate the effect of audio compression upon the accuracy of automated 372 

bio-acoustic analyses, potentially allowing for higher data compression rates to be 373 

used. 374 

The automated data transmission component of our system uses a mobile network 375 

data connection, which constrains the potential locations at which the recording 376 

units can be deployed. The robust data-uploading scheme allows us to target areas 377 

with less reliable connections, but many remote sites will not have access to even 378 

this level of connectivity. Alternatives such as satellite internet (Saito et al., 2015) 379 

and long-distance radio frequency (RF) links (Aide et al., 2013) have previously 380 

been used to remotely transmit acoustic data from remote field sites. However, both 381 

of these would significantly add to both the cost and power requirements of our 382 

system, limiting its scalability. Mesh networks are an increasingly popular solution 383 

for low-power long-distance remote data transmission (Akyildiz and Wang, 2005; 384 

Dugas, 2005), and using such an approach would be a recommended addition to 385 

future iterations of this system. 386 

Harnessing solar power during the daytime allows our autonomous recording units 387 

to perform uninterrupted 24 hour monitoring through the night and periods of 388 

inclement weather. However, the efficiency of solar panels suffers significantly if the 389 

panels are not exposed to direct sunlight. Undisturbed tropical rainforests typically 390 

have high closed canopies (Hardwick et al., 2015). This means that solar panels 391 

placed on the forest floor would most likely not be able to generate enough power 392 

to keep the recording unit operating continuously; we avoided this issue by 393 
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installing the monitoring units in the canopy. Whilst canopy installation significantly 394 

increases the effort required for maintenance and retrieval of the units, our fully 395 

autonomous approach means that physical access should only be required in the 396 

case of an equipment malfunction, as the data is remotely transmitted. Furthermore, 397 

the modular design of the recording unit allows the flexibility to swap in alternative 398 

renewable power sources where solar power may not be an appropriate choice (e.g. 399 

at polar locations with limited sunlight hours). 400 

Our autonomous monitoring device can be made from readily available equipment, 401 

for a fraction of the cost of comparable alternatives, especially in the case of acoustic 402 

monitoring. The affordability will allow automated ecosystem monitoring to be 403 

carried out on a finer spatial scale as more recording units can be deployed within 404 

the scope of one study. In addition, equipment deployed in wild habitats such as 405 

tropical rainforests is often damaged or destroyed by regular tree-falls, extreme 406 

weather conditions or animal interference. For this reason it is desirable to deploy 407 

equipment that is less costly to repair or replace when necessary. The modular 408 

design also allows for specific replacement of only the damaged components rather 409 

than the whole unit, saving on maintenance costs of the system. 410 

5 Conclusion 411 

In this study we have outlined the design and implementation of an open source 412 

robust autonomous ecosystem monitoring unit, which allows remote collection and 413 

transmission of field data over long time periods. The equipment can be built for 414 

significantly less expense than existing systems offering comparative functionality, 415 

allowing field studies to be designed at a larger scale than previously possible. In 416 

addition to the hardware design, we have open-sourced the code providing the 417 

reliable recording and upload mechanism, which should allow the broader scientific 418 

community to further develop this method of fully automated data collection. 419 
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