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ABSTRACT 

Over the past thirty years, site-directed mutagenesis has become established as one of the most 

powerful techniques to probe enzyme reaction mechanisms1–3.  Substitutions of active site 

residues are most likely to yield significant perturbations in kinetic parameters, but there are 

many examples of profound changes in these values elicited by remote mutations4–6. Ortholog 

comparisons of extant sequences show that many mutations do not have profound influence on 

enzyme function. As the number of potential single natural amino acid substitutions that can be 

introduced in a protein of N amino acids in length by directed mutation is very large (19 * N), it 

would be useful to have a method to predict which amino acid substitutions are more likely to 

introduce significant changes in kinetic parameters in order to design meaningful probes into 

enzyme function.  What is especially desirable is the identification of critical residues that do not 

contact the substrate directly, and may be remote from the active site.  

 

We collected literature data reflecting the effects of 2,804 mutations on kinetic properties for 12 

enzymes. These data along with characteristic predictors were used in a machine-learning 

scheme to train a classifier to predict the effect of mutation. Use of this algorithm allows one to 

predict with a 2.5-fold increase in precision, if a given mutation, made anywhere in the enzyme, 

will cause a decrease in kcat/Km value of ≥ 95%. The improved precision allows the 

experimentalist to reduce the number of mutations necessary to probe the enzyme reaction 

mechanism. 
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INTRODUCTION 

Site-directed mutagenesis has emerged as the most precise probe of the role of individual amino 

acid side chains in the catalytic mechanism of an enzyme1–3,7–10. Normally, a target residue is 

replaced with one of the other 19 natural amino acids, and the catalytic activity of the mutant is 

compared with that of the wild-type (WT) enzyme. Interpretation of the experimental result may 

be complicated. Interestingly, a negative result is usually definitive in that it allows the 

conclusion that the original side chain residue has no important catalytic function. The 

interpretation of a positive result, wherein the mutation leads to a significant loss in activity, to 

imply that the probed side chain is intimately involved in the catalytic machinery may be 

compromised. It is possible that the original side chain, for example, helps to maintain the 

overall architecture of the active site. Replacements of a target amino acid with several others, 

rather than with a single one, often yield variants with different activity levels11. A notable 

example is seen in probes of the paradigmatic Asp-His-Ser catalytic triad of the serine protease, 

subtilisin.  Replacement of Asp-32 with Ala produced a variant that is 10-4 times as active as the 

WT12. This was taken as further support for the existence of a short strong H-bond between Asp-

32 and His-64 and for its importance in catalysis. However, subsequent substitution of Asp-32 

with Cys removed the short strong H-bond, but this construct retained 12% of the WT activity in 

terms of kcat/Km
9.  

 

Nearly all rationally introduced mutations, which are designed to elucidate mechanism, are 

deliberately introduced at the active site, and indeed substitutions of those side chains intimately 

involved in catalytic mechanism or in substrate binding nearly invariably do result in severe 

compromise of catalytic activity. However in the absence of prior knowledge it would be very 
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difficult to identify positions remote from the active site that are likely to result in significant 

decrements in the catalytic parameters. Nonetheless several examples of remote introduced 

mutations that do have significant effects on catalytic activity have been obtained5,6,13, and these 

often provide important insights into, for example, the coupling of dynamics with catalytic 

activity14,15.  

 

A complete experimental exploration of all possible single amino acid substitutions in a given 

protein requires considerable experimental effort and is currently expensive; therefore, it would 

be useful to have a method to predict which amino acid substitutions are more likely to introduce 

significant changes in kinetic parameters in order to design meaningful probes into enzyme 

function.  What is especially desirable is the identification of critical residues that do not contact 

the substrate directly, and may be remote from the active site. A computational procedure that 

would significantly increase the probability of correctly predicting, inter alia, severely 

deleterious remote mutations, would correspondingly reduce the experimental effort required for 

such identification. We collected data reflecting effects of 2,804 mutations on kinetic properties 

for 12 enzymes. These mutation data along with characteristic predictors, which define each 

substitution, were organized in a MySQL database. The predictors include distance from the 

active site, position-specific amino acid frequency scores (PSAAFS) on related sequences, and 

natural substitution frequency (BLOSUM62)16.  The predictive power for the effect of a novel 

mutation was evaluated independently for each of the three predictors, for the three possible 

combinations of any two of them, and for all three together. The last classifier, incorporating all 

three predictors performed significantly better.  Use of this algorithm allows one to predict with a 

2.5-fold increase in precision, whether a given mutation, made anywhere in the enzyme, will 
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affect a decrease in kcat/Km value of ≥ 95%, thus permitting significant reduction in experimental 

effort necessary to identify deleterious mutations. 
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MATERIALS AND METHODS 

Data collection 

Literature search 

A large database representing the effects of single amino acid substitutions on enzyme activity 

was assembled to serve as a training set for classifier applications. The Protein Mutant 

Database17, PubMed18, and Google Scholars19 were used to gather mutations on enzymes that 

satisfy the following criteria: 1) the availability of at least one structure complexed with a 

substrate or inhibitor in the PDB and 2) lack of reported allosteric behavior. The effects of 2804 

mutations on the kinetic properties of 12 enzymes were acquired. Table 1 lists the enzymes and 

associated mutations included in the MySQL database. Data are available for at least 14 

mutations from each of eight enzymes. The collected data include the following information: the 

substituted mutation, mutant kinetics (kcat/Km), wild-type kinetics (kcat/Km), organism, and 

substrate. The structure of the database is depicted in Figure S1. 

 

Predictors 

Several predictors that were anticipated to correlate with loss of catalytic activity were computed 

for each substitution, and they are described below. 

Distance from Active Site  

The distances (Å) of each mutation from the enzymatic active site were calculated from the PDB 

files. They were measured from the catalytic site to the closest atom on the side chain of the 

residue of interest. The active site for each enzyme was determined from knowledge of the 
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catalytic mechanism and the ligand binding coordinates.  The method used for each enzyme and 

the justification are given in the Table S1.  

Position-Specific Amino Acid Frequency Score (PSAAFS) 

A multiple sequence alignment (MSA) of closely related protein sequences to an enzyme of 

interest can reveal the degree of conservation at each position and is thus informative for 

predicting the effect of an amino acid substitution on catalytic activity. A protein sequence along 

with a set of default parameters (database UniRef90 2011 April, median conservation of 

sequences: 3.00, remove sequences more than 90% identical) is first submitted to SIFT20, a 

sequence-based method developed to predict the effect of amino acid substitutions on protein 

function. The output MSA is then used to derive a set of position-specific amino acid frequency 

scores (PSAAFS) that fill an m-by-n matrix where m corresponds to the 20 canonical amino 

acids and n represents the length of the protein. The PSAAFS for residue R at position n, or Rn, is 

computed using the following equation, where 1) FR,n is the ratio of the total number of times 

residue R occurs at position n to the number of aligned sequences, 2) An is the number of unique 

amino acids present at position n in the alignment, and 3) Gn represents the number of gaps at 

position n divided by the number of aligned sequences: 

 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑛) =

⎩
⎪
⎨

⎪
⎧
𝑃𝑅,𝑛 +  

𝐺𝑛
20

 + 

1 − 𝐺𝑛
𝑃𝑛

−  𝑃𝑅,𝑛

𝑃𝑛
, 𝑖𝑖 𝑃𝑅,𝑛  ≠  0

𝐺𝑛
20

, 𝑖𝑖 𝑃𝑅,𝑛 = 0

 

 

The formula above accounts for gaps in the alignment as well as number of unique amino acids 
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present at each position. The first term, FR,n, denotes the proportion of times that residue R 

appears at position n. The second term evenly distributes the space taken up by the gaps at 

position n among the 20 residues. The final term reflects the number of distinct residues found at 

position n, or a rough consideration of entropy. For example, consider two cases where we would 

like to find the PSAAFS score for alanine. In an alignment of ten sequences at one position there 

is one alanine and nine leucines, while in the same alignment at another position there is one 

alanine, four leucines, and five valines. Even though alanine appears the same number of times 

in both cases, in the former instance we would like to assign a higher score for alanine because 

fewer unique residues are present at that position, and thus we consider that position to be more 

conserved. Without the third term in the equation, the score for alanine would be exactly the 

same, while PSAAFS assigns scores of 0.3 and 0.178, correspondingly. Altogether, the PSAAFS 

scores for all residues at a given position sums up to 1. 

BLOSUM 

BLOSUM16 is a matrix derived from the conservation of amino acid substitutions. Scores from 

BLOSUM62, which is based on an alignment of sequences with less than 62% sequence identity, 

were used. The scores represent the likelihood of a given substitution to occur naturally.  

Other Predictors 

3D-1D substitution matrix21, SIFT20, solvent accessibility22, sequences conservation scores 

computed from Pfam multiple sequence alignments23, and secondary structures24 were 

considered additionally, but their inclusion did not improve the prediction success. 

 

Classification 
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We explored various classifiers, such as J48, Random Forest and RandomTree, in the WEKA 

package25, and selected Random Forest, which consistently gave good performance. Random 

Forest is an ensemble classifier that constructs multiple decision trees, each of which results in a 

classification “vote.” These trees are constructed by: 1) bootstrapping from training set data and 

2) selecting, at each node, the best split among a random subset of predictors. Aggregating the 

votes from these decision trees dictates the prediction outcome. This algorithm has proven to be 

robust in detecting intrinsic patterns between the provided predictors and some output decision26. 

In the present case, features of amino acid substitutions, such as distance from active site and 

conservation scores, are used to make a binary choice of whether the mutant retains more than 

5% of its wild-type enzymatic activity. The results presented in this paper were computed using 

the “randomForest” package27 implemented in R28. 

 

Assessment of classification accuracy 

The performance was measured using Receiver Operating Characteristic, or ROC curves, as well 

as precision plots. The data-set was classified as follows: 

Positives: deleterious mutations (≥ 95% loss of activity). 

Negatives: neutral mutations (< 95% loss of activity). 

True Positives (TP): correctly predicted deleterious mutations. 

False Positives (FP): neutral mutations predicted as deleterious. 

 

ROC curves are one of the most commonly used ways to visualize accuracy of a classification 

procedure. The y-axis defines the true positive rate (TPR), which is the number of correctly 
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predicted deleterious mutations over all true deleterious mutations. The x-axis defines the false 

positive rate (FPR), which is the number of neutral mutations incorrectly predicted as deleterious 

divided by all true neutral mutations. A curve rising steeply from the origin to the top-left corner 

represents a successful classification, while a random prediction corresponds to a diagonal 

running from the bottom-left to the top-right corner.  

Additionally, precision plots were calculated to facilitate experimental design as they inform the 

experimentalist about the expected yield of deleterious mutations for any arbitrary number of 

total mutations introduced by site-directed mutagenesis. The y-axis is known as “precision”, i.e. 

TP/(TP+FP) while the x-axis is the number of deleterious predictions, i.e. TP+FP. 

 

Method validation 

10-Fold Cross-Validation (10FCV) 

Cross-validation is a statistical method to determine the practical value of prediction models. It is 

a three-step process: 1) The dataset is divided into a training set and test set; 2) the model is 

fitted on the training set before making predictions on the test set; 3) the performance is 

evaluated by comparing the predictions to the experimental result. The dataset is divided into 10 

subsets in 10-fold cross-validation (10FCV). Each subset is withheld in turn from training the 

model for testing and evaluation. This procedure is iterated 10 times, once for each subset. 

A caveat with 10FCV involves the selection of subsets for cross-validation. Subsets should be 

determined such that the elements in each subset are independent to all other elements in the 

other subsets. For example, at position 12 on T4 lysozyme, substitutions to 12 different residues 

were characterized. If the subsets were randomly selected, it is likely that these 12 mutations will 
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be found in different subsets. This creates a problem during cross-validation because different 

mutations made at the same position in a given enzyme frequently may have similar effects on 

catalytic activity. When training and testing sets contain related data points, the model would 

appear to perform better than it does in reality. The 10FCV applied on our mutation data includes 

an additional step to avoid this pitfall. All substitutions made on the same residue in the same 

enzyme are treated as a single element. These elements are then randomly divided into 10 

subsets for 10FCV. 

Leave-One-Enzyme-Out (LOEO) 

In addition to 10FCV, a variation of cross-validation called leave-one-enzyme-out (LOEO) was 

employed for model assessment. Here the mutations were partitioned into subsets based on the 

probed enzyme. Next, all mutations associated with one enzyme were set aside for testing while 

the remaining data were used to train the classifier. The model then predicted the activity 

changes induced by mutations in the test set. We iterated through this process until all enzymes 

had been withheld for testing. 
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RESULTS AND DISCUSSION 

Predictors of mutation-induced decrement in catalytic function 

Several computational predictors were evaluated in order to estimate their utility to contribute to 

the determination of whether the effect of an arbitrarily chosen mutation is severely detrimental 

to the catalytic activity of a selected enzyme. After considerable experimentation, it emerged that 

the most useful predictors were distance from the active site (r), likelihood of pairwise 

substitutions (BLOSUM62)16, and position-specific amino acid frequency score 

(PSAAFS)20.  We also evaluated 3D-1D scores from environmental profiles29, Pfam 

conservation scores23, solvent accessibility of residues22, and types of secondary structure24 as 

additional possible predictors.  The latter evaluators added very little to what was obtained using 

only r, BLOSUM, and PSAAFS, and were not considered further. 

 

Benchmark data set 

The objective of the present research is to develop a computation procedure to predict mutations 

in any enzyme with known structure and an identifiable active site that have a high probability of 

decreasing the kcat/Km value by ≥ 95%. In order to evaluate the predictors individually and in 

combination we constructed a benchmark data set of known mutation induced changes in 

enzyme catalytic activity. We searched the literature for quantitative reports of changes in 

kcat/Km resulting from mutation from the wild-type. In some cases, where kcat/Km values were not 

available, we collected phenotypic descriptors and converted them into numeric values. The 

developed algorithm requires that an enzyme structure in complex with at least one known 

substrate or analog be available in the PDB30. Table 1 lists the collected set of enzymes and the 
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number of literature reported mutations for each. Historically the vast majority of introduced 

mutations that resulted in large decrements in kcat/Km values were made at residues near the 

active sites in order to explore mechanistic hypotheses, and thus do not allow extensive 

exploration of the distance parameter.  Fortunately, however, for the present exercise, every 

position in T4 lysozyme (T4L)5 and in HIV protease6 had been substituted with one or more 

residues, thus permitting a thorough examination of the r parameter in isolation and together 

with BLOSUM and PSAAFS.  The database is thus dominated by the 1,977 and 478 mutations 

reported for T4L and for HIV protease, respectively. These two enzymes together comprise 88% 

of all of the collected mutations. The advantage of such an abundance of data from these two 

enzymes is, in part, offset by the fact that the effects on kinetic parameters were not investigated. 

However, Hardy et al.5 noted that viral viability requires at least 3% activity in T4L.  We 

rounded this figure to the 95% decrease in activity discussed above.  Swanstrom et al.6 scored 

HIV viability for the mutant proteases as positive, intermediate, and negative.  Our initial 

assumption is that the negative scores also correspond to < 5% activity. The remaining enzymes 

reporting on the effect of mutations exhibit a wide range of catalytic activities. This enzyme 

collection was restricted to those with reported kcat/Km values for small molecule substrates. The 

number of mutations per enzyme varies from 173 on thymidylate synthase (TS) to one on 

fructose-bisphosphate aldolase, as shown in Table 1. 

 

Method evaluation with ROC and precision plots 

In order to estimate the effect of a given mutation on catalytic activity we applied a machine 

learning approach wherein a classifier was trained on the collected mutation data in our database 
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using values of three predictors r, BLOSUM, and PSAAFS. We explored various classifiers in 

the WEKA package25 and selected Random Forest, which consistently gave good performance 

that was evaluated by receiver operating characteristic (ROC) plots (Figure 1). These plots 

depict the accuracy of the predictions by relating the true positive rate (TPR) to the false positive 

rate (FPR). TPR is defined as the ratio of true positives to the sum of true positives and false 

negatives TP / (TP + FN); FPR represents the ratio of false positives to the sum of true negatives 

and false positives FP / (TN + FP). Here, positives are defined as mutations that result in at least 

95% loss of catalytic activity, while negatives are categorized as neutral mutations that retain 

>5% of the wild-type function. A classification able to separate positives and negatives perfectly 

would result in a step-shaped ROC curve that initiates at the origin, rises vertically to the 

coordinate (1,0), and terminates with a horizontal line to coordinate (1,1). The area under such a 

curve (AUC) equals one. Conversely, randomly generated classifications with no predictive 

value will exhibit a diagonal line connecting (0,0) to (1,1) with an AUC of 0.531.  Figure 1a 

shows a ROC plot constructed by using the reported data for T4L as a training set to predict 

deleterious mutations in HIV protease.  The top curve (solid line) delineates an AUC of 0.806, 

which is considerably better than random.  To illustrate - an experimentalist willing to accept an 

FPR of only 0.1, would expect a TPR of 0.6, which is six-fold better than a random prediction 

that would yield a TPR of 0.1.  

The curves in Figure 1 illuminate that the greater contribution of distance to the overall 

performance compared to the other predictors. Figures 1b and c, respectively, were constructed 

from training on HIV protease data to predict T4L mutations, and training on the combined T4L 

and HIV protease data sets to predict the effects of mutations on the remaining ten enzymes. For 

each case, the individual parameters were shuffled in turn to evaluate their predictive abilities. In 
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Figure 1c, the AUC decreased from 0.797 to 0.523, when distance was shuffled as a predictor, 

while much smaller decrements resulted from scrambling either BLOSUM or PSAAFS data. The 

same observation was made from Figures 1b and c to demonstrate the impact of distance on the 

method performance.  

Although ROC curves provide a good estimate of the performance of prediction algorithms, they 

may mislead, particularly where the number of negative outcomes (i.e. neutral mutations) is 

significantly higher than the number of positive ones (i.e. deleterious mutations)32. An 

illustrative example is taken from Figure 1b, which summarizes the method performance from 

training on HIV protease mutation data to predict the effect of mutations on T4L activity. The 

experiments on mutagenesis on T4L detected 280 (14.2%) deleterious and 1697 (85.8%) neutral 

mutations. An AUC of 0.721 suggests that this procedure produces substantially more accurate 

predictions than would be expected by chance; however, a deeper examination reveals a poor 

performance when predicting deleterious mutations. For example, if an experimentalist were to 

allow an FPR of 0.05, it means that only ~85 (5%) of the 1697 neutral mutations, would be 

predicted incorrectly as deleterious. The corresponding TPR of 0.20 indicates that only 56 (20%) 

would be predicted correctly as deleterious. Table 2 presents an error matrix that provides a 

breakdown of the model performance at an FPR threshold of 0.05. 

Thus a small FPR, which is usually interpreted as a highly accurate classification, in reality may 

result in low precision, which is defined as TP / (TP + FP). Precision represents the fraction of 

predicted deleterious mutations that is correctly classified. The above example shows that, out of 

the total 141 (56 + 85) mutations predicted to be deleterious, 56 were scored correctly, resulting 

in a precision of only 40% despite having selected a stringent FPR threshold. In other words, 

while a method may incorrectly classify a small percentage of neutral mutations as deleterious 
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(here 85 / (85 + 1612)), their absolute number might be so large that the overall number of 

predicted deleterious mutations may be dominated by false positives. 

Precision plots of TP / (TP + FP) vs. TP + FP supplement ROC curves and are especially useful 

when one class, here the negatives (neutral mutations), is significantly overrepresented. Precision 

plots offer an additional advantage in that they may provide better guidance for experimentalists, 

who are usually interested in maximizing the yield of deleterious mutations for a given number 

of constructed mutants as perturbing mutations are more likely to inform on the mechanism of 

action of the probed enzyme. Precision plots can guide the experimentalist in choosing to accept 

a certain number of top predictions as deleterious mutations. For example, Figure 2a shows such 

a plot of predictions on T4L after training on the mutational data for all 11 of the other enzymes. 

Of the top 100 predicted deleterious mutations from the Random Forest classifier (See Methods), 

40 would be correctly identified as contributing to losses of function. The precision plot also 

shows a “random precision” line that denotes the fraction of predicted deleterious mutations 

correctly assigned when predictions are made at random, where only 14 of the top 100 mutations 

would have been correctly identified. 

The utility of a given precision plot or ROC curve is, of course, a function of the data used in the 

training set and of the choice of target enzyme. For example, Figure 2b shows a precision plot 

predicting deleterious mutations in HIV protease using the data for the 11 other enzymes in our 

data set for training. The performance here is much better than that shown in Figure 2a. A 

precision of 0.962 for the 100 highest-scoring HIV protease mutants was achieved compared to a 

precision of 0.4 computed for the 100 top-scoring T4L mutants. The difference in outcomes 

between Figures 2a and 2b is likely a result of the fact that 57.1% of the reported mutations in 

HIV protease are deleterious while only 14.2% of those reported for T4L are. 
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ROC curves and precision plots provide two distinct ways for model evaluation, and both 

demonstrate that the distance parameter has the greatest contribution to the overall performance 

of our method. In line with our findings with ROC curves, the precision plots in Figure 2 clearly 

show a greater decrease in performance when the distance predictor is shuffled compared to 

shuffling BLOSUM or PSAAFS. This suggests that the distance parameter is critically important 

for accurate predictions. 

 

Evaluation of method performance using cross-validation (CV) 

An ideal evaluation procedure would be to select an enzyme for which no mutagenesis data on 

catalytic activity are available, apply the above-described procedure, and test the predictions 

experimentally. Alternatively established methods can be applied to the existing data sets to 

achieve a similar goal. One of which is the 10-fold cross-validation33 (10FCV). In this procedure, 

the data are first randomly partitioned into 10 subsets; then each subset is withheld in turn for 

testing while the other nine are reserved for training. The 10FCV approach assumes that the data 

points are independent samples from the underlying distribution. However, in the present case, 

the mutation data are not entirely independent because often several substitutions were 

introduced at the same position. Therefore, 10FCVs have to be exercised judiciously. Figure 3 

presents two sets of ROC curves, one of which was executed on the (a) T4L mutant data and the 

other on the (b) HIV protease data set. The ROC curves for 10FCV in Figure 3 were constructed 

by stratifying the data such that no single residue appears in more than one subset even if more 

than one mutation had been evaluated at the position. The second procedure that was employed 

to test the performance of a method is Leave-One-Enzyme-Out cross validation (LOEO), where 
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each of the enzymes was independently excluded from the training set for evaluation. This 

approach is represented alongside 10FCV in Figure 3 on the (a) T4L and (b) HIV protease data 

sets. As shown, 10FCV performs equally to LOEO for both T4L and HIV protease in predicting 

the effects of mutations. The AUC for T4L in 10FCV (0.702) is a little less than in LOEO 

(0.721). Likewise, the AUC for HIV protease in 10FCV (0.783) is only slightly lower than in 

LOEO (0.797). The similarity in the outcome of the two evaluation approaches validates the 

stability of the classification. 

To provide a more comprehensive assessment of the method, the three enzymes with the largest 

number of mutants in the database—T4L, HIV protease, and TS—were selected for LOEO 

evaluation. Figure 4 presents precision plots from LOEO for predicting the effects of mutations 

on (a) T4L, (b) HIV protease, (c) TS with substrate dUMP, and (d) TS with substrate THF. As 

expected, the success rate is higher for enzymes having a greater percentage of deleterious 

mutations. Thus, the method performance was evaluated through a comparison of the precision 

plot to the baseline, represented by a solid gray line on each plot. The 100 top-scoring 

predictions from Random Forest for deleterious mutations for each enzyme were selected for 

further analysis.  A precision of 0.4 over the baseline of 0.142 was realized for T4L mutants, 

which is a three-fold improvement over a random outcome. For predictions on the HIV protease, 

a precision of 0.962, well above the baseline of 0.571, was achieved. Precisions of 0.938 and 

0.760 were attained over random precisions of 0.734 and 0.603 with substrate dUMP and THF, 

respectively, for predictions on TS mutations. While the method improves the prediction of 

deleterious mutations for the enzymes presented above, the variability in these improvements 

over their respective baselines is dictated by both the complexity of the task and the ratio of 

deleterious mutations to neutral ones. The statistical significance of our predictions versus 
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random is revealed through the non-parametric test of ROC curves by Delong34, which gave P-

values of 1.11e-7, 7.31e-23, 5.44e-4, and 7.62e-5 that support a statistically significant 

improvement of predictions on T4L, HIV protease, TS with dUMP, and TS with THF, 

respectively, over random estimations.  

 

Sample predictions from Random Forest 

An experimentalist wishing to illuminate the most kinetically damaging mutations in an enzyme, 

would need to provide the protein sequence, the PDB structure, and the active site coordinates as 

determined from mechanistic analysis. The algorithm employs Random Forest to calculate the 

probability of a ≥ 95% decrease in kcat/Km for all possible natural mutations. 

Random Forest predictions range from 0 (likely neutral) to 1 (likely deleterious). For example, a 

score of 0.70 for a given mutation indicates that 70% of the n (1000 used here) trees constructed 

by the ensemble classifier, call the mutation deleterious; therefore the remaining (30%) of the 

trees classify it as neutral. An output near 0 or 1 implies increased certainty that the mutation 

results in no change or a loss in function, respectively. Table 3 shows a sample Random Forest 

output from applying LOEO individually for the four enzymes with the greatest numbers of 

mutations. The training set contained all mutations from the 11 enzymes that had not been 

omitted. For demonstration, we set an arbitrary cutoff at 0.5 to classify mutations above or below 

that score as deleterious or neutral, respectively. The table displays 20 mutations for each 

enzyme in descending order of certainty, starting with the most confident deleterious prediction 

and extending to neutral predictions for only TS and AspAT. Since the database contains a large 

number of T4L and HIV protease mutations, predictions for only the 20 top-scoring deleterious 
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mutations are displayed for these two enzymes. The experimental results (ER) column denotes 

the experimental evidence for the mutations to be classified as Neutral or Deleterious. The 

Random Forest predictions are listed under the Pred column. For example, the first listed 

mutation for T4L, Q105C, was predicted correctly to be deleterious with support from more than 

91% of the constructed trees. Conversely, Q105G was predicted incorrectly with 90.7% of the 

classification trees scoring it as deleterious when it is in fact neutral. Comparing the results 

across the four enzymes, we saw, as expected, that the quality of the prediction is higher when an 

enzyme with few mutations is omitted from the training set, e.g. AspAT, compared to when an 

enzyme carrying a large number of mutations is excluded, e.g. T4L. 

TS and AspAT both catalyze the transformation of more than one substrate; thus many of the 

introduced mutations were evaluated to test the effect of enzymatic activity on different 

substrates. Although data on AspAT were collected for a total of 44 mutations, many of those 

represent the same substitutions tested over as many as four different substrates, 2-oxoglutarate, 

L-Asp, L-Glu, and oxalacetate. Similarly in TS, some mutations were characterized with both 

deoxyuridine monophosphate (dUMP) and tetrahydrofolate (THF) as substrates. Table 3 

distinguishes between the substrates for TS but not for AspAT because dUMP and THF bind to 

different pockets on TS and therefore require the identification of two different active site 

coordinates. In contrast, a single binding site is shared among all AspAT substrates; thus only 

one active site coordinate set is required. 

The performance of the prediction procedure can be evaluated from the scoring of enzymes in 

Table 3.  The 20 most confident predictions for T4L were called as deleterious (Pred ≥ 0.902). 

However, only ten of these predictions are supported by experiment, while the remaining ten are 

not.  The outcome is strikingly different for HIV protease where 19 of the 20 mutations scored as 
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deleterious are supported by experimental data, although there is less agreement among the HIV 

classification trees. A likely explanation for the observed difference in predictability of 

deleterious mutations between T4L and HIV protease is that only 14.7% of the reported T4L 

mutations result in the deleterious phenotype compared to 57.1% for HIV protease. Thus there is 

a much higher probability that a deleterious prediction made for the latter enzyme will be correct. 

All 14 (eight with dUMP and six with THF) of the top-scoring mutations for TS were called 

correctly as deleterious. The accuracy of predictions for TS is, as discussed above, due to the 

large fraction of deleterious mutations out of all substitutions on made on TS†. Although only 

40.9% of the experimentally characterized AspAT mutations are deleterious, six of the seven 

predicted deleterious mutations for AspAT were scored correctly, while three substitutions were 

incorrectly predicted to display a neutral phenotype.  The success on AspAT predictability is 

notable, because for this enzyme, unlike all the others except T4L, the probability that an 

arbitrarily chosen mutation from the experimental data set is deleterious is much less. This is 

likely due to the inclusion of the large T4L training set for AspAT predictions. 

Of the enzymes examined in this work, only T4L and HIV protease were mutated broadly and 

without prior consideration of mechanism or distance from the active site. Given the similarity in 

approach for the T4L and HIV protease experimental studies, the explanation for the much 

higher frequency of observed deleterious mutations in the latter enzyme remains elusive. 

Mutations in the other enzymes under consideration here were introduced deliberately, most 

                                                            
† The catalytic activity of the H199A mutation was evaluated in two studies separated by 6 years from the Santi 
laboratory11,35). The earlier report was that the mutation decreased the kcat/Km value for both substrates by only a 
factor of ten.  This would be scored as neutral in the present classification.  The later paper reported that the kinetic 
parameters were decreased by >500-fold, and is scored as deleterious in accord with our prediction. Dr. Santi 
(personal communication) wrote that the earlier data were likely compromised by the presence of a small amount of 
WT contaminant.  We relied on his evaluation. 
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often with the specific objective of probing the enzyme mechanism. Consequently, most were 

introduced at or near the active site and preselected as likely to be deleterious. 

 

Analysis of distance 

While the rules for implementation of the BLOSUM and PSAAFS parameters are clearly 

defined, the contribution of the distance parameter may depend on the accurate localization of 

the active site thus decreasing its general applicability. In order to explore the sensitivity of this 

parameter to the precise active site identification, the active site coordinates of HIV protease and 

T4L, as defined in the Methods, were systematically shifted ±2 Å independently along each of 

the Cartesian coordinates. These two enzymes were selected for the test because the available 

data sets provided the most thorough variation on distance.  The coordinate variation affected 

performance by no more than a difference of 0.03 AUC (see Figure S2); therefore the 

contribution of the distance predictor to performance is quite insensitive to the exact placement 

of the active site. 

The precise effect of distance of the mutation from the active site on the predictive accuracy of 

the method is illustrated by the representation of the T4L mutation data in Figure 5, which 

shows the distance distribution of T4L mutational phenotypes (see Figure legend for details). 

Figure 5a explores the distance dependence for all reported mutations.  The possibility that 

active site residues alone dominate the observed trend can be seen from Figure 5b and c, which 

respectively show all data excluding those contacting the bound ligands, N-acetylmuramic acid 

(MUB) and N-acetyl-D-glucosamine (NAG), and those that are < 8Å from the active site (PDB 

ID: 148L).  The trend line follows a slope that significantly deviates from 0 (P-value < 0.02) in 
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all cases; therefore the distance from the active site is an important predictor of whether a given 

mutation will seriously degrade catalytic activity. Each bar in Figure 6 depicts the number of 

residues at 5Å distance intervals from the active site. The numbers at the top of each bar 

represent the fraction of deleterious mutations within that interval. That fraction decreases 

sharply with distance up to 15-20Å, and is relatively constant at about10% beyond that distance. 

Figure 7 presents two sets of ROC curves for LOEO on T4L and HIV protease mutations using 

the distance predictor only. The difference in ROC curves for the performance of LOEO, using 

only distance as the predictor, on all T4L mutations versus on only those greater than 5Å from 

the ligand, MUB and NAG, are negligible (Figure 7a). The same test was applied to HIV 

protease mutations, and we reached a similar conclusion (Figure 7b). Together, this indicates 

that the performance of predictions for mutations away from the catalytic site is equivalent to 

that of substitutions near the active site. 

 

Are specific amino acid substitutions in T4L more likely to be deleterious? 

Figure 8 shows the number of substitutions made to each of the 13 target residues in the 

experimental data on T4L. The total number of replacements to a target amino acid is given at 

the top of each bar.  This number is relatively invariant as expected from the experimental 

protocol. The shaded section of each bar shows the fraction of deleterious mutations observed 

when a WT residue is replaced by the one shown on the abscissa. Mutations to C followed K, P, 

etc. have a higher probability of degrading the catalytic activity than do replacements with eg. G, 

S, or A.  This sensitivity varies over a 10-fold (0.35-0.03) range. Cysteine might have been 

anticipated as the most damaging substitution as its introduction could lead to such molecular 
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mischief as inter- or intramolecular crosslinking. Proline replacements introduce changes in 

secondary structure, and might be expected to disrupt catalytic activity where the effects of such 

perturbations are propagated to the active site.  Finally it is noted that replacements with the 

larger side chain amino acids are clearly more damaging than are substitutions with amino acids 

bearing smaller side chains. This leads to the conclusion that introduced space is more tolerated 

on average than is added bulk.  These observations, albeit based on a large data set for a single 

enzyme, do support the use of alanine-scanning mutagenesis as a general probe to evaluate the 

importance of a given amino acid52. 
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TABLES 

Table 1. Enzymes included in the analysis, sorted by number of mutations*. 

Enzyme Sequence 
length 

# of 
mutations Substrates PDB ID Refs. 

T4 lysozyme (T4L) 164 1977 
N-acetylglucosamine, 
N-acetylmuramic 
acid, peptide 

148L 5 

HIV protease 99** 478 Dihydroethylene-
containing inhibitor 4FL8 6 

Thymidylate 
synthase (TS) 316 173 

Deoxyuridine 
monophosphate 
(dUMP), 
tetrahydrofolate 
(THF) 

1LCA 
11,35–

44 

Dihydrofolate 
reductase 159 50 7, 8-dihydrofolate, 

NADPH 
3DGA (P. falciparum), 
1RX3 (E. coli)  

4,13,45–

49 

Aspartate 
aminotransferase 396** 44 

2-oxoglutarate,  L-
Asp, L-Glu, 
oxalacetate  

1ASM 50–60 

Glutathione 
transferase 219 34 

1-chloro-2,4-
dinitrobenzene, L-
glutathione 

1JLW 61 

Salutaridine 
reductase 311 22 NADPH, salutaridine 3O26 62 

Hexokinase 455 14 ATP, glucose 1V4S 63 

Arginase 323** 5 L-Arginine 1RLA (R. norvegicus), 
2AEB (H. sapiens) 

64 

Fatty acid amide 
hydrolase 537** 4 Oleamide, 

methyl oleate 1MT5 65 

Cytosine 
deaminase 161** 2 5-fluorocytosine, 

cytosine 1P6O 66 

Fructose-
bisphosphate 
aldolase 

358** 1 Fructose 1,6-
bisphosphate 1DOS 67 
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*A total of 2804 mutations were collected for the 12 listed enzymes for analysis. At least 14 

mutations are recorded for eight of the enzymes. **For each monomer of the homodimer, or 

trimer as in the case of arginase. 
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Table 2. Error matrix of predictions on T4L mutants at 0.05 FPR. 

  Number of Deleterious 
Mutations 

Number of Neutral 
Mutations 

Predicted Deleterious 56 (TP) 85 (FP) 
Predicted Neutral 224 (False Negatives) 1612 (True Negatives) 

Total 280 1697 
Abbreviations: TP = True Positives; FP = False Positives. 
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Table 3. Sample Random Forest predictions for T4L, HIV protease, TS (with dUMP and THF), 

and AspAT using the LOEO procedure. 

Distance, BLOSUM62, and PSAAFS were used as predictors. The experimental results (ER) 

column shows the experimental evidence for the mutations as either deleterious (D) or neutral 

(N). The table is ordered by the Prediction (Pred) column from high (likely deleterious) to low 

(likely neutral). All predictions for deleterious mutations (Pred > 0.50) are in bold. 

T4L ER Pred HIV  ER Pred TS_dUMP ER Pred TS_THF ER Pred AspAT ER Pred 

Q105C D 0.912 A28S D 0.76 H199V D 0.619 R23F D 0.547 W140F D 0.756 

Q105F D 0.912 G27A D 0.735 H199A D 0.608 R23I D 0.547 W140G D 0.721 

R145C N 0.912 G27I D 0.724 H199T D 0.608 R23V D 0.547 Y70S D 0.721 

R145F D 0.912 G27L D 0.724 R23F D 0.544 W82A D 0.508 Y225R D 0.718 

Q105G N 0.907 D25H D 0.706 R23I D 0.544 W82S D 0.508 A224I N 0.715 

Q105L N 0.907 D25Y D 0.704 R23V D 0.544 W82N D 0.508 K258H D 0.709 

R145G D 0.907 G27V D 0.704 H199S D 0.511 E60L D 0.487 K258A D 0.704 

R145L D 0.907 G27D D 0.703 R218K D 0.504 P197L D 0.480 H143A N 0.48 

R145Y D 0.907 L23P D 0.699 E60L D 0.484 P197Y D 0.480 R292D D 0.467 

R145P N 0.907 D25A D 0.695 D221C D 0.482 P197C N 0.480 C191A N 0.437 

T142G N 0.905 G27P D 0.695 P197I D 0.475 P197I N 0.480 C191S N 0.397 

T142Y D 0.905 G27R D 0.695 P197L D 0.475 H199V D 0.473 D222E D 0.392 

T142F N 0.905 L23V N 0.686 P197Y D 0.475 W82F D 0.469 Y70F D 0.345 

T142H D 0.905 A28G D 0.61 P197C N 0.475 R23Q D 0.467 Y225F N 0.345 

R14C N 0.905 A28T D 0.61 P196C D 0.472 P197F D 0.449 V39L N 0.296 

R14F N 0.905 L23Q D 0.607 P196I D 0.472 P197W D 0.449 C192A N 0.296 

Y18G D 0.902 L23R D 0.607 P196Y D 0.472 W82M D 0.433 H143N N 0.289 

Y18P D 0.902 A28E D 0.568 P197F D 0.463 R23D D 0.417 N297S N 0.279 

L32H N 0.902 T26A D 0.51 P197W D 0.463 R23G D 0.417 T109S N 0.172 

L32P N 0.902 G86C D 0.508 R23Q D 0.461 R23L D 0.417 C270A N 0.116 
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FIGURES 

a.   b.   

c.  

Figure 1. Estimated false positive and true positive rates as a function of shuffling each predictor 

individually. 

The performance is measured from (a) training on T4L mutant data set to test on HIV protease, 

(b) training on HIV protease mutants to predict T4L mutation results, and (c) training on T4L 

and HIV protease data sets combined to predict effects of mutation on all 10 other enzymes. In 
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the legends, “All” indicates that all three predictors, distance, BLOSUM, and PSAAFS, were 

used in training and prediction. The others were constructed by shuffling the indicated predictor 

in order to assess its contribution. The areas under the curves (AUC) are given in the insets. 
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a.  b.  

Figure 2. Precision curves as a function of shuffling each predictor individually. 

Predictions were made for all possible mutations on either (a) T4L or (b) HIV protease. Each 

example was trained on the mutation data for all 11 other enzymes. The predicted mutations 

were scored by the Random Forest classifier and ranked in order of likelihood to be deleterious. 

Each predictor was independently shuffled to assess its overall contribution to the method 

performance, as was done for the ROC curves. The “Random Precision” line shows the fraction 

of experimentally reported deleterious mutations. 
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a.  b.  

Figure 3. ROC curves comparing Leave-One-Enzyme-Out (LOEO) and 10-fold cross-validation 

(10FCV). 

These evaluation procedures were applied on the (a) T4L and (b) HIV protease mutant data sets. 

The distance, BLOSUM62, and PSAAFS predictors were used in both cross-validation analyses. 

See text for details. 
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a.  b.  

c.  d.  

Figure 4. Precision plots calculated for Leave-One-Enzyme-Out cross-validation (LOEO) on 

specific enzymes. 

The evaluation was performed on the three enzymes for which the most data are available—(a) 

T4L, (b) HIV protease, and TS with (c) dUMP as the substrate and (d) with THF. The training 

sets contained all mutation data from Table 1 excluding those for the tested enzyme. The 

distance, BLOSUM62, and PSAAFS predictors were used in generating the model. Precision 

curves were constructed for all eight enzymes where data for at least 10 mutations were 

available. Curves for the remaining five are not shown to maintain clarity. 
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a.  b.  c.   

Figure 5. Distribution of distances of T4L mutations from the active site for each observed T4L 

phenotype. 

The boxplots organize (a) all T4L mutations in the data set, (b) omitting residues less than 5Å 

from the MUB and NAG ligands68, and (c) excluding residues less than 8Å from the active site 

(as defined in Methods) into quartiles. The tails denote the minimum and maximum range of 

each distribution. The bottom and top edges of the box designate the first (25th percentile) and 

third (75th percentile) quartiles, respectively. The bold division at the center of the box shows the 

median of the sample. The values below the phenotype labels report the number of mutations 

within each category. Each gray line represents the weighted linear regression based on the four 

median values. All P-values are below 0.02, supporting the hypothesis that the slopes ≠ 0. 

Mutations that introduced (++) and (+) phenotypes are classified as neutral, and those with the 

(+/-) and (-) phenotypes are classified as deleterious. A total of (a) 160 residues with 1977 total 

mutations, (b) 147 residues with 1818 mutations, and (c) 1818 mutations covering 147 residues 

are represented in the plots. Experimental data were collected from Rennell et al5. 
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Figure 6. Numbers of residues and of deleterious mutations as a function of the distance from 

the active site of T4L. 

In general, every residue in T4L was substituted by 13 different replacements5. Mutations to 

wild-type were excluded from the figure. The number of residues in each distance interval is 

described by the height of each bar. The dark gray region indicates the total number of 

deleterious mutations in that range divided by 13, while the light gray section represents the total 

number of neutral mutations divided by 13.  Graphically, this illustrates the ratio of deleterious to 

neutral mutations found in a particular distance interval from the active site. The proportion of 

deleterious mutations is given as a fraction out of total mutations characterized in the range and 

reported in decimal form above each bar.  
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a.  b.  

Figure 7. ROC curves for LOEO on T4L and HIV protease mutations using only the distance 

predictor. 

T4L and HIV protease mutations are predicted individually using Random Forest trained on 

mutations on the 11 other enzymes (LOEO). ROC curves illustrating the performance of the 

predictions for T4L (a) and HIV protease (b) mutations are shown above. The “Pred All” curves 

report predictions on all T4L or HIV protease mutations, while the “>5 Ang” curves evaluate 

predictions on T4L or HIV protease mutations greater than 5Å from its respective ligands. For 

both T4L and HIV protease, the differences in performance using the distance predictor alone to 

make predictions for all mutations on a selected enzyme versus those omitting residues less than 

5Å from the ligand is negligible. 
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Figure 8. Catalytic effect of targeted mutational changes on T4L, arranged in descending order 

of the fraction of deleterious mutations made to the specified residue. 

A total of 1977 mutations were made, 280 of these were deleterious, with at least 97% of the 

catalytic activity lost upon substitution. The heights of the light gray bars indicate the total 

number of neutral mutations made to that residue, while the dark gray portions indicate the 

number of deleterious mutations. Mutations made to C, K, P, or R were the most frequently 

deleterious (> 20%), whereas mutations made to A, S, or G were rarely deleterious (< 5%). 

Mutations to alanine were deleterious only ~3% of the time (4 deleterious/145 mutations). 
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SUPPLEMENTARY MATERIAL  

Table S1. List of active site coordinates used to compute the distance predictor. 

Enzyme Active site coordinate Details PDB ID  

T4 lysozyme 
(T4L) (10.805, 50.494, 40.451) 

A point equidistant to the midpoint of 
OE1 and OE2 on Glu-11 and the 
midpoint of OD1 and OD2 on Asp-20 

148L 

HIV protease (15.868, 24.143, 18.502) Carbonyl carbon (C) between P1 and 
P1' residues 4FL8 

Thymidylate 
synthase (TS) 

THF: (17.362, 50.167, -
49.225); dUMP: (12.608, 
48.981, -53.490) 

THF: C6 of ligand 10-propargyl-5,8-
dideazafolic acid; dUMP: SG of Cys-
198 

1LCA 

Dihydrofolate 
reductase (32.730, 44.617, 12.129) Midpoint between C7 of ligand 

methotrexate and C4N of NADP 1RX3 

Aspartate 
aminotransferase (-5.695, 56.058, 23.096) Atom C4A of ligand pyridoxal-5'-

phosphate 1ASM 

Glutathione 
transferase (32.759, 64.359, 63.469) 

Geometric center of Cα’s for 
positions 65, 67, 104, 106, 107, 108, 
111,167, 171 on Chain A and 
positions 104 and 108 on Chain B 

1JLW 

Salutaridine 
reductase (16.070, 62.882, -12.186) 

Geometric center of Cα’s for 
positions 180, 236, and 240 on Chain 
A 

3O26 

Hexokinase (24.754, 1.807, 64.866) 
Geometric center of Cα’s for 
positions 151, 168, 169, 204, 205, 
231, 256, 289, and 290 on Chain A 

1V4S 

Arginase (40.322, 29.108, 47.216) 

Geometric center of Cα’s for 
positions 130, 137, 139, 141, 142, 
181, 183, 186, 232, and 246 on Chain 
A of 1RLA 

1RLA (R. 
norvegicus), 
2AEB (H. 
sapiens) 

Fatty acid amide 
hydrolase (17.009, -28.840, 26.398) 

Geometric center of Cα’s for 
positions 142, 217, and 241 on Chain 
A 

1MT5 

Cytosine 
deaminase (-4.494, 31.577, 29.155) 

Geometric center of Cα’s for 
positions 33, 51, 62, 64, 91, 94, 114, 
152, and 155 on Chain A 

1P6O 

Fructose-
bisphosphate 
aldolase 

(12.729, 4.294, 4.017) 

Geometric center of Cα’s for 
positions 35, 61, 109, 110, 226, 227, 
264, 265, 267, 286, 288, 289, and 331 
on Chain A 

1DOS 
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Figure S1. Schema of the mutation data in MySQL. 

This diagram shows the overall organization of the MySQL database that was used to store mutation-associated data collected from the literature. Each box 

with a blue border on top is a table with column headers enumerated within the box. The tables are further organized into five main categories: prediction 
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(red), enzyme (blue), entries (green), source (yellow), and test set (violet).  
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a.  b.  

Figure S2. ROC curves measuring the effect of the placement of active site coordinates on 

method performance. 

Two sets of ROC curves were constructed, one from the mutation data on (a) T4L and the other 

on (b) HIV protease. The black solid curves show the results of 10FCV on the respective 

enzymes using distance, PSAAFS, and BLOSUM as predictors (0.711 AUC for T4L and 0.791 

for HIV protease). The gray dotted curves indicate the results of 10FCV when the active site 

coordinates are adjusted ±2Å independently along each of the Cartesian coordinates while the 

other two predictors remain unchanged. The differences between the AUC’s of the solid and 

dotted curves do not exceed 0.032 for T4L and 0.023 for HIV protease. This demonstrates that 

the exact placement of the active site coordinate does not affect method performance 

substantially. 
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